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Abstract— To mitigate the uncertainty of variable renewable 

resources, two off-the-shelf machine learning tools are deployed 

to forecast the solar power output of a solar photovoltaic system. 

The support vector machines generate the forecasts and the 

random forest acts as an ensemble learning method to combine 

the forecasts. The common ensemble technique in wind and solar 

power forecasting is the blending of meteorological data from 

several sources. In this study though, the present and the past 

solar power forecasts from several models, as well as the 

associated meteorological data, are incorporated into the random 

forest to combine and improve the accuracy of the day-ahead 

solar power forecasts. The performance of the combined model is 

evaluated over the entire year and compared with other 

combining techniques.  

Keywords—Ensemble learning, post-processing, random forest, 

solar power, support vector regression. 

I. INTRODUCTION  

The wind and solar energy resources have created 
operational challenges for the electric power grid due to the 
uncertainty involved in their output in the short term. The 
intermittency of these resources may adversely affect the 
operation of the electric grid when the penetration levels of 
these variable generations are high. Thus, wherever the 
variable generation resources are used, it becomes highly 
desirable to maintain higher than normal operating reserves 
and efficient energy storage systems to manage the power 
balance in the system. The operating reserves that use fossil 
fuel generating units should be kept to a minimum in order to 
get the maximum benefit from the deployment of the 
renewable resources. Therefore, the forecast of these variable 
generations becomes a vital tool in the operation of the power 
systems and electricity markets [1]. 

As in wind power forecasting, the solar power also consists 
of a variety of methods based on the time horizon being 
forecasted, the data available to the forecaster and the 
particular application of the forecast. The methods are broadly 
categorized according to the time horizon in which they 
generally show value. Methods that are common in solar power 
forecasting include Numerical Weather Prediction (NWP) and 
Model Output Statistics (MOS) to produce forecasts, as well as 
hybrid techniques that combine ensemble forecasts and 
Statistical Learning Methods [2]. Applying machine learning 

techniques directly to historical time series of solar 
photovoltaic (PV) production associated with NWP outcomes 
have placed among the top models in the recent global 
competition of energy forecasting, GEFCom2014 [3].  Just to 
name a few of the machine learning tools, the artificial neural 
networks (ANN) and support vector regression (SVR), gradient 
boosting (GB), random forest (RF), etc. are believed to be the 
most common. 

Hybrid models of two or more statistical and physical 
techniques are often combined to capture complex interactions 
and provide useful insights and better forecasts. In ref. [4], the 
authors implement a hybrid model that consists of ARMA and 
ANN to forecast the solar irradiance by NWP data for 5 
locations of a Mediterranean climate. They found the proposed 
model outperforms the naïve persistence model and 
improvement with respect to its core techniques as well. The 
study reported in ref. [5] presents the benefits of combining the 
data of solar irradiance that is derived from a satellite with 
ground-measured data to improve the intraday forecasts in the 
range up to six hours ahead. In ref [6], the authors combine 
satellite images with ANN outcomes to forecast the solar 
irradiance of leading time up to two hours for two sites in 
California.  

In ref. [7], several statistical combining methods are used to 
combine multiple linear regression models for load forecasting, 
and the authors conclude that the regression combining 
technique is the best. While ref. [8] uses several statistical 
models to forecast the hourly PV electricity production for the 
next day at some power plants in France, the random forest 
(RF) has shown a superior performance. Ref. [9] also found the 
random forest has the best performance among others to 
predict the daily solar irradiance variability of four sites with 
different climatic conditions in Australia. The authors of [10] 
used random forest with other models as well to forecast the 
solar power in GEF2014 competition. They indicate that the 
random forest and the gradient boosting technique are the most 
accurate models. In the aforementioned studies, RF is not 
implemented there as a combining method; it is a standalone 
forecasting model that depends on its own trees.  

The commonly used ensemble technique in wind and solar 
power forecasting is to blend the weather data from several 
sources. As in ref. [11], the authors compare several data-
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driven models using input data from two NWPs and building 
two artificial hybrid and stochastic ensemble models based on 
ANN, the model that combines multiple models outperforms 
the rest of the models. It points out that the ensemble is 
enhanced by including forecasts with similar accuracy, but 
generated from NWP data of higher variance and different 
data-driven techniques. Ref. [12] uses Ensemble Prediction 
System (EPS) to produce weather scenarios by running 
multiple initials to quantify the uncertainty and then produce 
the probabilistic solar power forecasts of sites in Italy. Ref. 
[13] applies a physical post processing and ANN to improve 
the solar irradiance forecasts of one and two days ahead. 

The majority of the existing research literature on 
combining forecasting methods of solar forecasts do not 
include the previously generated forecasts to boost the model 
performance. It can be useful to add these past models’ 
outcomes as well into the ensemble learning methods. The 
research team from the National Renewable Energy Laboratory 
(NREL) and IBM Thomas Watson Research Center [17] 
deployed and tested several machine-learning techniques to 
blend three NWPs outcomes. They conclude that the ensemble 
approaches that take into account the diversity and the state 
parameters of the models provide lower errors in the solar 
irradiance forecasting. Although these studies forecast the solar 
irradiance at different sites in the U.S., the time period is 
limited since they do not investigate the performance of the 
different seasons over the entire year. 

Using RF as a combining method of other models in solar 
power is scarce. This paper adopts RF to combine the forecasts 
for a PV system and investigates the performance throughout a 
complete year. The rest of the paper is organized as follows: 
Section II describes the ensemble method that is used to build 
and combine the SVR models. Section III discusses the 
methodology of combining the solar power forecasts. Section 
IV presents the results and the evaluation of the model. Section 
V provides the conclusions. 

II. ENSEMBLE LEARNING 

The algorithms that use decision trees can be useful to 
combine the different models’ outcomes efficiently. This 
ensemble approach combines all the outputs from variant 
models besides the features, such as the weather data that allow 
the ensemble method to find the associative rules to determine 
the best output. For instance, if the weather is sunny, then 
model A performs best, and its output should be selected; 
otherwise model B should be selected, and so on. This 
ensemble learning approach has shown very promising results 
in numerous machine learning benchmarks. For more details 
on this topic, i.e., ensemble learning and its techniques as 
bagging, boosting, stacking, and Bayesian averaging, the 
interested reader may refer to [16], The general diagram of 
combining the models is shown in Fig.1. 

A. Random Forest 

Since the classification and regression trees (CART) use 
the bagging principle of the ensemble learning, and they are 
built by the same data, these trees are sometimes correlated and 
statistically dependent. Consequently, to make the trees more 
variant and uncorrelated, Breiman [17] proposed that each split 

of the bagged tree should be grown by a random number of 
features and observation samples. Hence, this method is called 
the random forest (RF).  

 

 

 Fig.1.  General diagram of combining different models 

Three parameters are required to be set in RF, the number 
of trees B (forest size), m the number of predictors out of p 
available variables (features) that are randomly chosen to be 
used for each split, and the minimum number nmin of 
observations per node (leaf size).  

The random forest building algorithm [16] has three major 
steps. 

• Create B sample datasets of size N from the training 
data; these sample datasets can be replaced and 
overlapped. 

• For each sample dataset, grow a random forest tree Tb, 
by repeating the following steps for each terminal node, 
until the minimum node size nmin is reached: 

I. Select m predictors at random from the p 
variables.  

II. Pick the best predictor among the m 
selected predictors for the split-point.   

III. Split this point (node) into two daughter 
nodes by setting certain decision rules. 

• Finally, find the ensemble of the trees   {Tb}1
B, where B 

is the number of trees in the random forest. 

The prediction of a given point x of the response variable 
can be obtained by averaging the individual tree’s outputs: 

𝑓𝑅𝐹 =
1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

 (1) 

The ensemble learning algorithm repeatedly assembles the 
input data to create regression trees that best fit the relationship 
between the features and the output. This process of 
decorrelation of the trees makes the random forest outcomes 
less variable, and hence more reliable. 

III. MODELING 

A. Data Description  

The solar power system is in Australia and has a latitude 
35°16'30"S, longitude 149°06'49"E, altitude 595m. The panel 
type is Solarfun SF160-24-1M195, consisting of 8 panels, its 
nominal power of 1560W, and panel orientation 38° clockwise 
from the north, with panel tilt of 36°. The weather forecasts 
data and the available measured solar power data starts from 
April 2012 to May 2014, as shown in Fig.2.  
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(a) (b) 

Fig.2.  (a) The weather data and their numeral codes,      
(b) available data size  

Normalizing the data is of paramount importance since the 
scale used for the values for each variable might be different. 
The best practice is to normalize the data and transform all the 
values to a common scale, as shown in equation (2). 

XScaled = a +
[x − min(X)]

[max(X) − min(X)]
∗ {b − a} (2) 

 

Where x is a sample from data variable X, {a, b} is the desired 
range of the normalized data, such as {0, 1}, and X (min, 
max)=the minimum and maximum values of the observed data. 

There is also a standardization technique, especially when the 
variance of the data is high, which is making the data to have a 
zero mean and a unit standard deviation, as follows: 

Xstandardized =
[x − mean(X)]

std(𝑋)
 (3) 

B. Model Building 

The different models are achieved by using different 
parameterization within the same model, i.e., support vector 
regression models (SVRs). Refer to [18] for more details about 
this model. The models are built as in Fig.3, where the 
available data is divided into two sets, one dataset consisting of 
all 26 months and another dataset consisting of the most recent 
12 months only, as shown in Fig.2.a. Then, each of these 
datasets is used to build 12 SVR models based on two 
normalization techniques as in Equations (2) and (3), after that 
two different SVR’s hyper-parameters of C and Gamma are 
also chosen, and different combination of weather variables are 
used to produce 12 models from each two datasets to get the 
total of 24 SVR models.  

 

Fig.3.  Construction of 12 SVR models from a dataset. Another 12 SVRs from 
the other dataset. The total number of SVR models is 24 

 

The forecast methodology is shown in Fig.4.a. The 
forecasting day should be excluded from the data, while the 
rest of the available data is used to train the SVR models. The 
super learner is the random forest where the available weather 
and the previous forecasts are blended together to find the 
associative rules to achieve better solar power forecasts for the 
next day, as shown in Fig.4.b, and they should be as close as 
possible to the observed solar power that minimize the forecast 
errors of that day. 

  

(a) (b) 

Fig.4.  Demonstrates (a) the 24 hours ahead forecasting and (b) 
the combining methodology scheme for May 31st. 

RF does not need cross-validation to estimate the 
parameters because it has a built-in estimation of accuracy. The 
parameter selection is carried out by the wrapping strategy or a 
greedy search for the best evaluation results among the 
available training data, the parameters search of RF are shown 
in Fig.5, [number of trees B=100, samples m=6 (i.e.,18/3), leaf 
size nmin =5]. It is worth mentioning that a change with a 
reasonable range of these parameters does not affect the RF 
performance significantly. Thus, the robustness and flexibility 
of RF are the main advantages of this ensemble method. 

 

   

(a) (b) (c) 

Fig.5. The search for random forest parameters. (a) The forest size, (b) the 
features number at each node, (c) the leaf size (minimum number of 
samples at each node). 

IV. RESULTS AND EVALUATION 

The following metrics are used to evaluate the accuracy of 
the forecasts and the model performance: graphs, Root Mean 
Square Error (RMSE) as calculated by (4), and a comparison 
with other combining methods. For comparison purposes, the 
simple average combining method (Avg.), and the best model 
(Model 4) out of the 24 SVRs are adopted to evaluate the 
performance of the combined forecasts. Also, the improvement 
or the skill factor is used to compare the performance of the 
combined forecasts with respect to the other methods as in (5). 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌̂

𝑖
)

2

𝑛

𝑖=1

 (4) 

where 𝑌̂ is the forecast of the solar power and Y is the observed 

value of the solar power. 𝑌̂ and Y are normalized to the 
nominal installed capacity of the solar power system, 𝑛 is the 
number of hours - it can be day hours or month hours. The 
objective is to minimize the RMSE for all forecasting hours to 
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yield more accurate forecasts. If the training and testing of the 
model are carried out for just the daylight hours while filtering 
out the night hours (which have zero solar power generation), 
the RMSE should also be determined for these daylight hours 
only without including the night hours.   

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 (%) = 

 
(𝑂𝑡ℎ𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 − 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑀𝑒𝑡ℎ𝑜𝑑)

𝑂𝑡ℎ𝑒𝑟 𝑀𝑒𝑡ℎ𝑜𝑑
∗ 100 

(5) 

The best model (model-4) is made of normalization 
technique (A), SVR’s hyper-parameters C=10 gamma =8, and 
the original 14 weather inputs by using a dataset of all 
available months. 

Best Model (4) = 
All-months dataset + Normalize (A) 

+ Parm10_08 + Orig14ins 
(6) 

 

In the graphical illustration, the month of October is chosen 
for comparison of all SVRs models with other combined 
models as shown in Fig.6. For the aggregation of daily RMSEs 
over the whole month, it is obvious the ensemble forecasts 
(black line) has a lower RMSE than SVR models and the 
simple average combining method (dark blue line). However, 
in a few days, the best SVR model (model-4) or the average 
method could be more accurate, as in 6th, 7th, 16th, 28th, and 
29th days, when they have a lower RMSE.   

The fluctuation in the daily RMSE can be seen among the 
24 SVR models, and it’s a normal trend in the forecasting 
models. However, the ensemble method produces more 
accurate combined forecasts and the performance of this 
combining model becomes more stable than in the individual 
SVR models. 

 

 Fig.6.  Daily RMSE of different models and combined forecasts, October  

To get a broader evaluation of the combined forecasts 
performance, the comparison is conducted with the best model 
(model 4) and the simple average method over a complete year, 
as shown in TABLE I. It is clear that the ensemble method has 
lower monthly RMSEs. The improvement rate of the ensemble 
method over the other methods is calculated as in (5). In some 
months such as October, the ensemble method has an 
improvement rate of 18% and 28% over the best model and the 
average method respectively. For two months where the 
improvement rate is negative, such as in March the simple 
average and the best model are better than the ensemble, and 
also in June, the best model has the lowest monthly RMSE.  

In general, the aggregated mean (i.e., the statistical 
average) of the monthly RMSEs indicates that the combined 
forecasts from the ensemble method have the most accurate 
forecasts (RMSEmean=0.0725), while, the total improvement of 
the ensemble method over the average and the best model is 
9% and 5 % respectively.  

Notice that the monthly RMSE is calculated for all hours of 
the month where n in (4) is not the day hour, but rather the 
month hours. Thus, it could be 744, or any other number of 
hours depending on the month. 

The Random Forest is a nonlinear model and a black-box 
and difficult to analyze. In order to get an idea about the 
performance of the model, a statistical analysis is conducted. 
Firstly, the importance estimation of the RF inputs (features) is 
found. This would be available since one of the algorithm steps 
is to estimate the best features to split the nodes, as explained 
in Section II.A. October and March are chosen for this 
analysis, because in these months, the largest change in the 
ensemble method performance occurs. The features are the 
weather variables and the 24 SVRs’ outcomes. As shown in 
Fig.7 and Fig.8, the features do not have the similar pattern of 
importance; thereby, in the data training by RF, they would 
give different results and different performance. 

Secondly, a statistical analysis by finding the standard 
deviation and the correlation between the SVR models’ 
outcomes is conducted over the full year. Fig.9 presents the 
histograms of this statistical metrics.  

 

  

(a) (b) 

 Fig.7.  The estimation of weather features importance by Random Forest, 
(a) October, (b) March 
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TABLE I 
RESULT OF DIFFERENT MODELS AND THE COMBINED 

FORECASTS 
 

 

Month

RMSE Improvement of 

Ensemble Over: Best 

Model (4)

Simple 

Average
Ensemble

Best Model (4) Simple Avg.

June 0.0734 0.0784 0.0764 -4% 3%

July 0.0878 0.0877 0.0849 3% 3%

August 0.0859 0.0877 0.0833 3% 5%

September 0.0843 0.0921 0.0815 3% 12%

October 0.0851 0.0974 0.0701 18% 28%

November 0.0826 0.0923 0.0737 11% 20%

December 0.0747 0.0798 0.0643 14% 19%

January 0.0627 0.0670 0.0580 7% 13%

February 0.0772 0.0811 0.0730 5% 10%

March 0.0800 0.0822 0.0846 -6% -3%

April 0.0645 0.0653 0.0640 1% 2%

May 0.0560 0.0559 0.0561 0% 0%

Aggregated Mean 0.0762 0.0806 0.0725 5% 9%



 

 

Note: This is a pre-print of the full paper that published in Innovative Smart Grid Technologies, North America Conference, 2017, which can be referenced as below: 

 M. Abuella and B. Chowdhury, “Random Forest Ensemble of Support Vector Regression for Solar Power Forecasting,” in Proceedings of Innovative Smart Grid 

Technologies, North America Conference, 2017. 

  
(a) (b) 

 Fig.8.  The estimation of models’ outcomes importance by Random 
Forest, (a) October, (b) March 

 

For October, the standard deviation is high, and hence the 

correlation of the SVRs’ outcomes, and thus the ensemble 

method, has the best performance. However, in the last 

months - March, April, and May, the standard deviation is low 

and the correlation is high, and the performance of the 

ensemble method in these months is not as good as the other 

months, as indicated in TABLE I. 

 

Fig.9.  The standard deviation and the correlation of different models  

V. CONCLUSION 

Combining the forecasts by the random forest leads to more 
accurate forecasts throughout the year. These combined 
forecasts are produced from an intelligent weighting approach 
that takes into account the weather situations, the past forecast 
of the forecasting models (24 SVRs), and their different 
temporal horizons - these all are used as associative rules in the 
ensemble method to yield accurate forecasts and a stable 
performance. The simple average as a combining method is not 
enough to get better forecasts since it does not capture or 
represent all the varieties in the weather data, and hence the 
solar power forecast. The forecasting errors are inherited 
mostly from the NWP model errors, and some of the errors 
resulting from the technical degrading of the physical systems 
(PV modules efficiency, orientation, etc.). Adding the past 
generated forecasts increases the accuracy of the combined 
forecasts. 
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