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Abstract—In this work we design and compare different supervised
learning algorithms to compute the cost of Alternating Current Optimal
Power Flow (ACOPF). The motivation for quick calculation of OPF cost
outcomes stems from the growing need of algorithmic-based long-term
and medium-term planning methodologies in power networks. Integrated
in a multiple time-horizon coordination framework, we refer to this
approximation module as a proxy for predicting short-term decision
outcomes without the need of actual simulation and optimization of them.
Our method enables fast approximate calculation of OPF cost with less
than 1% error on average, achieved in run-times that are several orders
of magnitude lower than of exact computation. Several test-cases such
as IEEE-RTS96 are used to demonstrate the efficiency of our approach.

I. INTRODUCTION

Alternating Current Optimal Power Flow (ACOPF) is solved
hourly or intra-hourly by system operators (SO) world-wide as part
of real-time operation process, to ensure safe and robust operation.
The resulting mathematical problem is computationally complex, as
it is a non-linear, non-convex optimization program.

In recent years, there is a growing interest in devising smart algo-
rithmic solutions for long-term optimal planning in different tasks;
two examples are system development and asset management [1], [2].
Such planning tasks are becoming increasingly complicated as inter-
mittent generation capacity increases [3]. As a result, more stochas-
ticity is involved in power system operation to the extent where
sophisticated prediction and optimization methods are crucial [4]. The
complex coordination between long-term operation and short-term
control, combined the high uncertainty in long time-horizons makes
long-term planning extremely challenging. As demonstrated in [2],
solving an extensive amount of OPF problems to mimic short-term
decision-making does not scale well to realistic grids, with thousands
of nodes, generators and loads. The computational burden increases
in planning for horizons of months to years.

Stochastic optimization is often the tool used for planning under
uncertainty. When Monte-Carlo simulation is used, the method in-
volves generation of scenarios in accordance to some probability,
which in the case of long-term planning span over months or even
dozens of years. In this context, scenario evolution is dependent
on the sought plan and contains hourly states of the system and
exogenous conditions such as wind generation and consumption.
For illustration, consider a maintenance planner assessing several
alternatives for next year’s proposed outage schedule. To evaluate
each of the schedules, a long trajectory of system states needs to be
generated, examining the network’s ability to comply to a secured
OPF in each hour of the trajectory, given the proposed outages of
each schedule. He will therefore reproduce different possible network
conditions during each of the year’s months, in terms of likely nodal
wind generation and demand during that month. For each of the
reproduced conditions, hourly OPF problems will be solved given the
specific future topology of the grid under the outages planned for this
month. The planner will conduct this using Monte-Carlo simulation,
iterating many times for each of the year’s months, per each of the

optional outage schedules. The more accurate he wishes the result to
be, the more samples of wind and demand values should be drawn
from the assumed probabilistic distribution, fed to corresponding
secured OPF programs being solved. Each such OPF solution can
be used to evaluate the outage schedule in one or more possible
ways: counting how many of the OPF programs resulted in a feasible
solution; averaging the resulting OPF costs.

Motivated by the above use-case, in this work we consider the
need to quickly solve numerous OPF problem instances, for which
the solution accuracy is not of the first priority.

A. Contribution

Our main contribution is in studying the merits of approximation
techniques for OPF feasibility and cost. Other works often assume
prior knowledge of the cost function and focus on predicting nodal
generation values. Here we solely care about the cost function, thus
we are able to perform better in terms of accuracy and run-time
gain. We deploy our ACOPF approximation methods on several test-
cases, such as IEEE RTS-96. For that, we compute OPF feasibility
and cost using supervised learning, i.e., an algorithm is given pairs
of data samples and their desired output, and generates a functional
relation between the two.

Moreover, we reveal segmentation in regression accuracy that
captures spatial clustering of network states; we attribute this behavior
to the multimodality originating from different congestion modes. We
thus allow for deriving decision rules on if and when to predict OPF
costs, or alternatively perform accurate computations. By studying
the pros and cons of different known regression techniques, we allow
operators to choose the most appropriate one, i.e, the algorithm that
offers the best trade-off between computation time and accuracy.

B. Related work

Machine learning methods, especially neural networks algorithms,
have been used to tackle different problems in power systems as is
summarized by Bourguet et al. [5]. In the context of Optimal Power
Flow (OPF), common approaches rely on supervised learning, where
the input is the state of the power system and the output is the solution
of the OPF given by any other expert system.

Dated work by Chen et al. [6] uses neural networks as a tool
for predicting economic dispatch results, tested on a 21 thermal
unit system. A more recent work [7] trains a neural network for
the task of voltage-secured OPF prediction. Additional efforts on
tackling economic dispatch and OPF prediction can be found in [8],
[9], [10]. Common to all attempts listed is the multi-dimensional
target output of generation values of each generator. This task turns
highly challenging as the number of passive network components and
generators grow. As opposed to that, we choose to focus on predicting
the scalar results of OPF feasibility and cost.

In the context of designing proxies for short-term operation as an
inner mechanism for long-term planning, recent attempts are reported
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in [11], [12], [13]. These construct proxies for scheduling problems,
rather than single-stage decisions. In [11], reliability is defined based
on the ability to recover from any single transmission contingency and
approximated using a reinforcement learning algorithm; reliability
is again assessed in [12], in a day-ahead setting and comparison
of supervised learning methods is conducted. The authors of [13]
approximate cost values of the scheduling problem using nearest-
neighbor classifier, based on network topology as well as wind
and load forecasts. These attempts, as well as the one described in
this paper, introduce the notion of proxies that approximate short-
term decision processes outcomes in a hierarchical multiple time-
horizon coordination framework; thus they alleviate the need of actual
simulation and optimization of such short-term processes.

II. OPF COST AND FEASIBILITY PREDICTION

Our goal in this work is to find a functional representation to the
OPF cost, i.e., the OPF objective function’s value at its solution. The
ACOPF formulation, as brought in [14] is the following quadratic
program, with linear constraints and quadratic cost function:

C(x∗, l) = min
x

1

2
xᵀGx+ aᵀx (1)

subject to

g(x, l) = 0 (2)

hmin ≤ h(x, l) ≤ hmax (3)

where x denotes active and reactive generation values, along with
voltage magnitudes and angles on buses; l ∈ IR+

nb denotes the
vector of loads on all nb buses; C(x∗, l) denotes overall OPF cost at
the solution x∗, which for brevity we also denote by C∗(l); Equation
set (2) are the nodal power balance constraints; Equation set (3) are
the operative limits constraints.

Problem (1) is feasible when a solution x∗ exists given a load
vector l. Feasibility is denoted by δ(l); formally,

δ (l) =

{
1 if a feasible OPF solution exists
0 otherwise.

In the rest of the section we introduce the proposed supervised
learning approach for predicting C∗(l) and δ(l), based on load values
l.

A. Supervised learning

Supervised learning is a sub-field of machine learning, where
prediction of an output value is conducted based on corresponding
input values [15]. Available in supervised learning context is a
learning set {(l(j), (δ(l(j)), C∗(l(j)))}nj=1, composed of n input-
output pairs. When the output value is discrete and belongs to a
relatively small set, e.g., OPF feasibility δ(·), the task is referred to
and treated as a classification problem. Alternatively, in the case of
continuous possible output values, e.g., OPF cost C∗(·), it is then
a regression problem. Both problems are treated in this work. We
now refer to the data-set generation process and present the different
algorithms used for solving these two problems.

B. Training set generation

Supervised learning requires generating dataset of labeled samples,
i.e, network states and their corresponding OPF feasibility indicators
and their costs. A network state is defined as the vector of load values
on each load bus, i.e., the vector l = (l1, . . . lnb). The set of networks

states {l(j)}nj=1 is generated by uniformly drawing elements from the
convex polytope

{l|li ≤ ᾱ · Li, li ≥
¯
α · Li, ∀i = 1, . . . , nb} , (4)

where
(
L̄1, . . . L̄nb

)
denotes the vector of loads corresponding to

the nominal mean demand, and ᾱ,
¯
α are parameters corresponding

to minimal and maximal multipliers of these values. We set ᾱ = 2
and

¯
α = 0.2, used for considering both regular and extreme load

scenarios. For sampling, we use the Hit&Run Monte-Carlo algorithm
[16]. Once obtaining the sample set, we solve the resulting OPF per
each j-th sample l(j) and pair it with its feasibility indicator and cost
(δ(l(j)), C∗(l(j)).

C. Algorithms

We now list the algorithms used for classification of feasibility and
regression of cost, along with a quick introduction to each.

1) Classification algorithms : The first, simple choice of classifica-
tion algorithm is the ”trivial classifier”, a predictor that always outputs
1, meaning assumes the problem is feasible. We also train a naive
Bayes classifier with Gaussian kernel [17], that learns a generative
model on the data and maximizes posterior distribution for choosing
an output; logistic regression [18] that evaluates the probability of a
given output using a logarithm of a linear regression model; decision
tree [19] that separates the data to pairs of sets using a feature-value
threshold combination; random forest [20] and extremely randomized
tree [21] that constitute ensamble variants of decision trees; neural
network [22] with one hidden fully connected layer of 10 neurons
that well captures non-linear function representations.

2) Regression algorithms: A basic regression algorithm we con-
sider first is linear regression [23], that has linear prediction complex-
ity in the number of features. In addition, we also examine a multi-
model extension of linear regression – piece-wise linear regression
[24] which computes different linear regression models on subsets
of the dataset; Gaussian process regression [25] with matern32 and
ardmatern32 kernels for its capability of estimating any continuous
function arbitrarily well due to the Gaussian priors which assign mass
to every neighborhood of points in the training set, at the price of
prediction time that is dependent on training set size; neural network
[22] with one hidden fully connected layer of 10 neurons.

III. EXPERIMENTS

We first discuss the metrics used in our evaluation methodology
to compare the different utilized methods and then present our
experimental results.

A. Evaluation methodology

The goal of a supervised learning algorithm is to generalize well
on samples that have not been presented to it during training. We
thus randomly divide our labeled dataset into a training set which
consists of 80% of the dataset, and a test set which consists of the
remaining 20%.

Evaluating performance of an algorithm depends on its role;
classification algorithms are evaluated using the accuracy metric
whereas regression algorithms are evaluated using average relative
error. We denote by δ∗(l) and C∗(l) the true feasibility and optimal
cost values as calculated by an OPF solver, and by δ̂∗(l) and Ĉ∗(l)
the approximate feasibility and cost computed by our procedure.
Classification accuracy is therefore defined as

1

nt

nt∑
k=1

1[δ(l(k))=δ̂(lk)],



Case Training set size Test set size
Case 5 16000 4000

Case IEEE RTS-79 40000 10000
Case IEEE RTS-96 148000 37000

Table I: Training and test set sizes, used both for cost regression and
feasibility classification; these are chosen when reaching a plateau in
prediction performance.

and regression relative error as

1

nt

nt∑
k=1

|Ĉ∗(l(k))− C∗(l(k))|
C∗(l(k))

,

where nt is the number of test samples.
Furthermore, we compare run-times of predicted versus exact OPF

computation. The run-time gain is the ratio between the two.

B. Experimental results

We run our experiments on a MacBook Pro (early 2015) with a
2.7GHz dual-core Intel Core i5 processor, with 8GB of memory. All
code is written in Matlab [26]. We use Matpower [14] for network
test-cases and OPF calculations.

In our simulations we consider three test cases: a toy 5-bus case
[27], IEEE RTS-79 [28] and IEEE RTS-96 [29]. Peak loads and daily
demand profile are based on real data, taken from [30]. The data are
then generated as explained in Section II-B, sampling from the set
described in Eq. (4). In most figures, the results on the 5-bus case
were omitted due to constant high performance, however we still
consider it for visualizing the effect explained in Fig. 3.

Training and test set sizes of solved OPFs can be found in Table I.
To determine the required dataset sizes we increase it in steps, until
the relative error of linear regression stabilizes. Linear regression is
chosen due to its fast training and prediction times. We then conduct
the following experiments.

1) Feasibility classification: Each algorithm listed in Section II-C1
is trained on the training set and tested for its accuracy using the test
set. Table II summarizes the results. In the case of IEEE RTS-79,
accuracy of above 98% is obtained using logistic regression, random
forest, extra randomized trees and the neural network. Scaling to a
larger test-case, IEEE RTS-96, exhibits that the only classifier that
retains very high performance is the neural network. We attribute
this property to neural networks’ well-established ability of learning
non-linear representations using relatively small data-sets [31].

Next, we demonstrate the algorithmic efficiency of training and
prediction. Table III summarizes actual training run-time of the full
training set, and prediction run-time of a single sample on IEEE-
RTS96 for the different methods inspected. All considered methods’
training time is less than 1 minute, which we consider as negligible
when used in the task of predicting thousands of OPF solutions. We
witness that for a neural network, which provided the best prediction
results, the run-time is an order of magnitude lower than of exact
computation, whereas the accuracy sacrifice is extremely low. It is
thus encouraging to see that the trade-off between accuracy and run-
time is almost inexistent since the best methods are also the quickest.

2) Cost regression: As in the classification procedure, we begin
by training regression algorithms on the training set and then test for
their relative error. We first inspect linear regression, for its benefits
in simplicity, fast training and prediction time, and explainability. The
latter is regarded as the ability to inspect regression coefficients and
relate them back to the power system considered. Nonetheless, these
desired properties do not justify usage of the algorithm given the poor

Method Training time [s] Prediction time [s]
Gaussian Naive Bayes 0.403 5.6 · 10−6

Logistic Regression 46.19 2.4 · 10−6

Decision Tree 32.7 2.2 · 10−6

Random Forest 26.1 7.6 · 10−6

Extra-Tree 6.47 9.5 · 10−6

Neural Network 35.3 1.3 · 10−6

Exact OPF calculation N/A 0.74

Table III: Average CPU run-time of the full training set, and predic-
tion run-time of a single sample per each classification method, for
IEEE RTS-96.

(a) Linear Reg. - IEEE
RTS-79

(b) Gauss. Proc. - IEEE
RTS-79

(c) Neural Net - IEEE
RTS-79

(d) Linear Reg. - IEEE
RTS-96

(e) Gauss. Proc. - IEEE
RTS-96

(f) Neural Net - IEEE
RTS-96

Figure 1: Scatters of OPF costs, comparing exact solutions to their
corresponding predictions, for IEEE RTS-79 and IEEE RTS-96.

results shown in Fig. 1. The figure exhibits scatters of accurate OPF
costs versus predicted costs for linear regression, Gaussian process
and neural network.

Careful inspection of linear regression reveals multimodality in
the dataset as load and consequently cost increases, that corresponds
to different areas of line congestions (we rule out the possibility
of piecewise-linear behavior stemming from cost structure, as it is
polynomial and not piece-wise in this case). For that reason we also
inspected piecewise-linear regression. As will be seen in following
paragraphs, it also performed poorly and had long training time;
this direction was not further investigated. It can also be seen that
Gaussian process and neural network are able to capture the cost
function very well, with advantageous results for neural network in
the case of IEEE RTS-96.

In addition to inspecting correlation of scatters, we compute the
relative error of cost prediction; the results are brought in Table
IV. Gaussian Process exhibits the best results for IEEE RTS-79,
averaging 0.25% relative error. However, it is again demonstrated
that a neural network is more appropriate for larger test-cases, as it
achieves 0.85% relative error for IEEE-RTS96, whereas for Gaussian
process it drops to 4.43%.

To assess the computational efficiency of our method we compute
prediction run-time gain, i.e., the ratio between the algorithm’s
prediction time and accurate OPF run-time. The results are brought
in Table V. Piecewise-linear regression for IEEE-RTS96 was not
conducted due to long training periods. As expected, since linear
regression prediction is simply vector multiplication, it achieves
extremely large run-time gains – it is 3.4 · 104 faster than exact



Figure 2: Relative error throughout the evolution of daily load. This
is to test the algorithms’ sensitivity to changes in loads, without
specifically training them on such data.

computation. Considering an approximation error of 2.85% and 7.6%
for the two networks, respectively, this method may turn the desirable
one for several applications where such errors are acceptable.

An additional vital parameter is scalability. As network size
increases, linear regression run-time gain increases since accurate
OPF solution time grows super-linearly in network components,
whereas linear regression grows linearly. It thus outperforms all other
algorithms in terms of scalability. In the case of Gaussian process,
the method quickly becomes intractable as network size grows; this
is because the training set required grows proportionally as well, and
as explained in Section II-C1, prediction time of Gaussian process
is dependent on the training set size. Neural networks, on the other
hand, are scalable as their computational complexity as a function of
network components is lower than of OPF calculation, thus showing
increased run-time gain for IEEE-RTS96 compared to IEEE-RTS79.

In order to inspect the usability of our approach for hourly OPF
calculations, such as in the long-term planning assessment scenario
described in the introduction, we assess regression accuracy through-
out the evolution of daily load. Consequently, we test the algorithms’
sensitivity to changes in loads, without specifically training them on
such data. The daily load profile is based on historical US data,
adopted from [30]; we simply compute the mean profile across
multiple trajectories and use it to scale the peak load according to the
hour of the day. The results are found in Fig. 2. They exhibit high
sensitivity of linear regression to new data, performing the worst
among the algorithms tested by producing maximal relative error of
nearly 20% at morning time. Gaussian process achieves a maximal
error of 3.5%, which remains consistently high during the day. Neural
network greatly outperform other algorithms, as it does not achieve
more of 1.2% error. Overall, the two last techniques seem to be well
suited for computing the cost in a real world situation, being able to
generalize well on new data.

Lastly, we investigate approximation quality as a function of load
values in the different buses. For that purpose, relative regression
error is segmented into three groups of low, medium and high errors.
The segmentation is performed using thresholds that are automatically
determined using the K-means clustering algorithm. Fig. 3 contains
plots of the results for Gaussian process and linear regression in 3D.
The 5-bus test-case is used in that experiment, as it only contains
three loads and thus easily visualized. The plots in both algorithms

(a) Gaussian Process: low, medium and high er-
ror intervals are [0%, 0.12%], [0.12%, 0.38%],
[0.38%, 1.4%].

(b) Linear Regression: low, medium and high
error intervals are [0%, 13%], [13%, 55%],
[55%, 196%].

Figure 3: Cost regression approximation quality as a function of
load values in the different buses. The segmentation is performed
using thresholds that are automatically determined using the K-
means clustering algorithm.

exhibit clear clustering of approximation quality in specific sets of
linear load combinations. We again attribute this behavior to the
multimodality originating from different congestion modes. Experi-
menting with larger test-cases required dimensionality reduction; we
therefore applied Principal Component Analysis (PCA) on the loads
and inspected the resulting 3D plots. We noticed that projecting to the
principal component space skewed the segmentation, rendering this
visualization method useless in the setting we experimented with.

IV. CONCLUSION

In this work we use supervised machine learning methods to
quickly predict two outputs of optimal power flow calculation. We
show that for the test-cases inspected, extremely high accuracy for
both feasibility classification and cost regression are obtainable.

At times, the accuracy vs. runtime trade-off is not be resolved by
solely focusing on the former. The potential overall gain in CPU time
is the fundamental advantage of this method, when used in the context
of long-term assessment/control applications. We enable predicting
the feasibility of OPF problems in run-time that is several orders
of magnitude lower than exact calculations, and with accuracy that
is occasionally above 98%. Thus, we allow for a dramatic saving
in CPU time of up to 34K as shown in Table V. Additionally, the
method allows for solution cost computation without prior knowledge
of the cost function.



The comparison between different regression methods reveals
a trade-off in accuracy and run-time gain. Linear regression, for
example, demonstrates a run-time gain of roughly 2K, in both training
and prediction, over neural networks. Albeit neural networks are often
considered the popular choice, it may not always fulfill the needs of
fast enough computation when approximation quality is not of first
priority.

Further research will investigate the usage of deep networks with
convolutional-type layers tailored to a power network rather than
the usual images use-case. It will also consider an active learning
framework, possibly in a semi-supervised setting, where confidence is
maintained on prediction accuracy; when confidence high, prediction
result should be used. However, when it is below a certain threshold,
exact OPF calculation will be made instead.
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Test-case Trivial Naive Bayes Logistic Decision Tree Random Forest Extra-Tree Neural Network
IEEE RTS-79 0.8± 0 0.95± 3.5 · 10−2 0.99± 2.1 · 10−2 0.98± 6 · 10−3 0.98± 1.7 · 10−2 0.98± 3.5 · 10−2 0.99± 4.2 · 10−2

IEEE RTS-96 0.7± 0 0.73± 4 · 10−2 0.84± 8.7 · 10−2 0.95± 4.1 · 10−2 0.97± 3.6 · 10−2 0.97± 7.2 · 10−2 0.99± 4.7 · 10−2

Table II: Feasibility classification accuracy (fraction of correct predictions on the test set) for IEEE RTS-79 and IEEE RTS-96

Case Linear Regression Piece-wise Regression Gaussian Process Neural Network
Case IEEE RTS-79 2.85%± 0.05% 2.79%± 0.05% 0.25%± 0.07% 0.32%± 0.07%
Case IEEE RTS-96 7.6%± 0.088 NA 4.43%± 0.044% 0.85%± 0.013%

Table IV: Average regression relative error for IEEE RTS-79 and IEEE RTS-96

Method Linear Regression Piece-wise Regression Gaussian Process Neural Network
Case IEEE RTS-79 2.3 · 104 348 13.3 10.8
Case IEEE RTS-96 3.4 · 104 NA 2.8 14.3

Table V: Regression run-time gains for IEEE RTS-79 and IEEE RTS-96
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