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Abstract— Nowadays common practice in deploying 

photovoltaic distributed generations (PVDGs) is customer-based 

installation in the distribution network. Increasing level of PVDG 

applications and expedite approval by utilities have raised concern 

about the negative impacts of PVDG installations on the 

distribution network operations such as reverse power flows and 

undesirable voltage fluctuations. One potential solutions is to 

optimize the siting and sizing of these distributed renewable 

generation resources. This paper presents a comparative study on 

both optimal and randomized installation of PVDGs with the 

latter modeling real life customer-based renewable integration. 

The proposed models examine and compare the impacts of PVDG 

installation on distribution network operation. Numerical 

simulations have been performed on a local distribution network 

model with realistic load profiles, GIS information, local solar 

insolation, and feeder and voltage settings. It is found that when 

the distribution system has a medium penetration ratio optimal 

PVDG installations may introduce essential improvements in 

terms of voltage deviation and energy loss reduction than 

randomized installation. However, if the penetration ratio is very 

low or extremely high there will be not significant difference 

between the two. 

 
Index Terms— Photovoltaic distributed generation (PVDG), 

distributed generation, random installation, optimal installation. 

 

I. INTRODUCTION 

In USA, although in few cases the DG application process 

requires evaluation of all interconnection requests, all utilities 

offer expedite approval for small scale DGs (e.g., 25 kW and 

below) requested by customers[1]. The increasing number of 

applications raised concerns of many distribution network 

operators (DNOs) that they do not feel able to guarantee 

reliability and quality to other customers once they allow large 

aggregation of DGs to be connected to the distribution network 

[1]. From an electrical perspective, PVDGs are sources of 

electrical energy at distribution networks for which these 

networks have not been designed initially and allocating PV 

distributed generation (PVDG) systems in distribution systems 

may inflict unwanted challenges in traditional power systems, 

which have been designed radial and unidirectional [2]. The 

most common potential concerns caused by solar power are 

steady-state overvoltage, impacts on system losses, and issues 

 
 

with voltage regulating devices, protection, and voltage 

fluctuation [3]. 

Optimal sizing and sitting of DGs as a solution to address the 

DG impacts on the electrical network have been extensively 

studied in the past few decades [4]. Examples of studies include 

the assessment of maximum DG penetration ratios  [5], [6], 

rooftop PVDG on residential customers [7], [8],  numerous 

analytical [9], [10] probabilistic [11], [12], and heuristic 

approaches [13], [14] for DG sitting and sizing, aiming to fulfill 

different technical and/or economical criteria. In [15] authors 

compared the centralized utility-based DGs in which the utility 

owns and operates the renewable DGs with the decentralized 

consumer-based DGs in which each consumer owns and 

operates the renewable DGs. For detailed reviews see Refs. 

[16], [17]. The review of the literature shows that to date, 

numerous studies related to PVDG in distribution networks 

have focused on optimal installation of PVDGs and mitigating 

high PV penetration issues. However, there is a gap between 

proposed studies by researchers and common practice for 

PVDG installations in real world. Considering customer 

decision based PVDG applications, it is important to model 

customer behavior to study different PVDG penetration impacts 

and, most importantly, compare with optimal allocation to have 

a comparative insight on both situations. In other words, this 

study is intended to bridge randomized and optimized PVDG 

installation and elucidate what will happen if customers are 

allowed to freely install rooftop PVDGs on their premises and 

is it worthy to optimally install PVDG systems? 

The main contributions of this paper can be listed as: a) 

Introducing a deployment framework that allows optimization 

in both the size and location of PVDG to minimize energy loss 

and voltage deviation subjected to distributed PV constraints 

and operational constraints; b) Development of a model to 

mimic customer behavior in PVDG deployment and 

investigated the impacts of randomized PVDG installation; and 

c) Completing a comparative study on both optimal installation 

and free customer decision based PVDG installation. The 

combination of an optimized model with a statistical model to 

study a PVDG installation impacts, allows to identify the 

outcomes for different PVDG deployment policies towards 

possible strategies to maximize advantages and minimize 

negative impacts of PVDGs. 
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The rest of the paper is organized as follows: Section II 

describes the modeling approach for a distribution network. 

Section III explains the problem formulation and methodology 

of comparative analyses. Simulation results are presented in 

section IV. Finally, conclusions are drawn in section V. 

II.  ELECTRICAL DISTRIBUTION NETWORK MODELING 

A radial electrical distribution model with six feeder lines has 

been developed for a local utility network in an urban area. The 

summer peak load is 23,260 kW which consists of 1,902 

customers from categories of residential, small commercial, and 

industrial (including large commercial). For security reasons, 

the local utility could not provide detailed information about the 

network topology and configurations. Therefore, the 

distribution network is modeled based on the rational alignment 

of the electrical system and statistical analysis of available data 

from the local utility and Open Energy Information (OpenEI) 

dataset [18]. First, the whole system is divided into six sub-

regions based on the area map and electrical network topology. 

Next, we identify a collection of buildings according to the 

customer demand data collected from a substation of the local 

utility company. Then the precise number of buildings of each 

category in each sub-region is derived using the GIS 

information (Fig. 1). More details on the distribution network 

modeling can be found in [13].  

 

 

A. Solar radiation and PV installation 

Solar insolation is determined using the LiDAR elevation 

source data from the US Geological Survey (USGS) “The 

National Map” (TNM) Download Manager service (U.S. 

Geological Survey, 2016) which were converted by ArcGIS 

into a solar insolation raster. Using this process the percentage 

of each building covered with high insolation points (i.e. 

average solar insolation of greater than 4.6 kWh/m2/ day) is 

calculated. Then the buildings will be divided into three 

categories based on their density of high-insolation coverage. 

Figure 2 shows the distribution of low, medium, and high-

insolation buildings within a selected neighborhood. 

 

Next we need to estimate the potential installation capacity 

of distributed PV in the study area therefore the potential 

electricity production.  First it is assumed that PVDG could only 

be installed on the rooftops of buildings that fall into the “high-

insolation” category.  This implies that 510 of the residential 

buildings (36%), 119 of the small commercial buildings (30%), 

and 26 of the large commercial and industrial buildings (34%) 

would become eligible for PV installations. Aggregating the 

potential PV generation from every eligible building we may 

determine the total solar power in the studied substation area, It 

is found that the total potential PV generated power of 16,280 

kW is equal to 70% of the total area peak load.  The potential 

annual energy production from PV generation is 21,137 MWh, 

equal to 18% of the area’s annual energy demand of 114,758 

MWh. Our proposed study indicates that a substantial portion 

of the study area’s electricity demands could be met through 

local distributed PV generation.  

Considering geographic location of high-insolation buildings 

we are able to allocate them to a number of buses in the 

developed distribution network which are potentially ready for 

a PVDG installation. Consequently, 50 solar ready buses will 

be considered in the distribution network. Maximum capacity 

to PVDG installation at each bus is derived based on the number 

of high insolation buildings connected to the bus and their 

potential PVDG capacity.  

III. PROBLEM FORMULATION AND ANALYSIS METHODOLOGY 

To perform a comparative study on the PVDG deployment, 

we propose two different types of impact assessments. First, an 

optimization framework is defined to determine the optimal 

placement and sizing of PVDG systems to manage the power 

loss and voltage deviation. The objective function is subject to 

distributed PV constraints and operational constraints of a 

distribution network, such as avoiding reverse power flows for 

a given PVDG penetration ratios. Then a stochastic framework 

is developed to model random PV installations which mimic 

customer-based renewable integration.   

The PV penetration ratio is defined based on the system peak 

load as follows 

𝛾(%) =
∑ 𝑃𝑃𝑉𝑖

max𝑁
𝑖=1

max
𝑡

(∑ 𝑃𝐿𝑜𝑎𝑑𝑗(𝑡)𝑀
𝑗=1 )

∗ 100%  (1) 

where 𝑃𝑃𝑉 and 𝑃𝐿𝑜𝑎𝑑  are PV panel output power (kW) and 

electrical load demand (kW), respectively. The total real energy 

loss of radial distribution system can be calculated as [19] 

𝐸𝑙𝑜𝑠𝑠 = ∑ ∑ |𝑖𝐿
𝑡 |2𝐿

𝑙=1
𝑇
𝑡=1 𝑅𝐿  (2) 

where 𝑖𝐿
𝑡  is current flowing through line L at time t and 𝑅𝐿 is 

resistance of line L. The formulation for voltage profile 

improvement (𝑣𝐷) with 𝑣𝑛
𝑡  as the voltage of bus N at time t is as 

follow [20] 

𝑣𝐷 =
1

𝑇𝑁
∑ ∑ |𝑣𝑖

𝑡 − 1|𝑁
𝑙=1

𝑇
𝑡=1   (3) 

A. Optimal PVDG installation 

The multi-objective function can be formulated as follows, 

 
Fig. 1.  Study area and sub-regions. 

  

 

Fig. 2.   Distribution of low, medium, and high insolation on buildings. 
  



 

which defines the optimal PVDG siting and sizing for 

minimizing energy loss and enhancing loadability and voltage 

profiles while satisfying the network constraints. 

min
ℒ𝑃𝑉,𝑃𝑃𝑉

𝑚𝑎𝑥
𝑓 = 𝐸𝑙𝑜𝑠𝑠 + 𝜔 ∗ 𝑣𝐷 (4) 

                  Subject to: 

𝑓(𝑃𝐿 , 𝑃𝑃𝑉 , 𝑣|𝑌𝑏𝑢𝑠) = 0 
(5) 

𝑖 = ℎ(𝑣|𝑌𝑏𝑢𝑠) (6) 

𝑃𝑃𝑉(𝑡) = 𝑔(𝑃𝑃𝑉
𝑚𝑎𝑥 , 𝐼(𝑡)) (7) 

0 ≤ 𝑃𝑖
𝑚𝑎𝑥 ≤ 𝑃𝑃𝑉,𝑖

𝑚𝑎𝑥̃ (8) 

1𝑇𝑃𝑃𝑉
𝑚𝑎𝑥 ≤ 𝛾. 𝑃𝑠𝑢𝑏

𝑚𝑎𝑥  (9) 

𝑖𝑖𝑗
𝑡 ≥ 0       ∀ 𝑖 < 𝑗 (10) 

0.95 ≤ |𝑣𝑖| ≤ 1.05 (11) 

where ℒ𝑃𝑉 = [ℓ1, ℓ2, … , ℓ𝑛]𝑇  ℓ𝑖 ∈ {0, 1} is the PVDG location 

vector, and ω is a relative weight factor between the two 

objectives. With ω = 0, the aforementioned optimization 

problem is equal to minimizing energy loss only. With ω = ∞, 

it is equal to minimization of voltage deviation alone.  

𝑃𝑃𝑉
𝑚𝑎𝑥 = [𝑃1

𝑃𝑉 , 𝑃2
𝑃𝑉 , … , 𝑃𝑛

𝑃𝑉] is the PVDG installation capacity 

vector,  𝑌𝑏𝑢𝑠 is the network admittance matrix, 𝑖 is vector of bus 

injected current, 𝑣 is bus voltage vector, 𝐼(𝑡) is solar insolation 

at time t, 𝑃𝑃𝑉,𝑖
𝑚𝑎𝑥̃is PV installation limit for bus i derived from 

solar data analysis, and 𝑖𝑖𝑗
𝑡  denotes the current flowing from bus 

i to j at time t, L is the number of lines, n is the total number of 

buses, and 𝑃𝑠𝑢𝑏
𝑚𝑎𝑥 is defined as the substation peak load. Note 

that eq. (5) and (6) define the network constraints enforced by 

AC power flow and network operation constraints, respectively. 

And eq. (7-9) represent the PVDG installation constraints. 

B. Customer-based integration modeling 

The customer-based integration modeling consists of random 

siting and sizing of PVDGs which simulate customer decisions 

on PVDG installation and size selection. With each selected set 

of location and size of PVDGs the hourly profile of PV 

generations will be calculated accordingly and fed into the AC 

power flow model to determine the system state variables, i.e., 

the bus voltage magnitude and the phase angle. A set of Monte-

Carlo experiments will be designed as follows to evaluate the 

impacts of randomized PV installation on the distribution 

network operation: 

1. Random selection of S locations for PVDG installation 

from the predefined solar ready buses in the system. This 

step generates a binary decision vector = [0/1, . . .,
0/1]1×50 , where 1 represents PVDG installation and 0 

none-PV installation on the corresponding solar ready bus, 

with the constraint of 1𝑇𝑋 = 𝑆. 

2. Define the PV installation threshold for solar ready buses 

derived from solar data analysis, i.e., 𝑦 = [𝑃𝑃𝑉
𝑚𝑎𝑥̃].  

3. Generate the PV size selection factor (β) using the uniform 

distribution, 𝛽~Uniform [𝛽min, 1], where 𝛽min ≥ 0 is 

called the customer decision factor (CDF) denoting the 

willingness of customer to install the largest possible PV 

generation on the site. 

4. Determiner the PV installation size for all the selected 

buses as ( 𝑍𝑖 = 𝑋𝑖 ∗ 𝑦𝑖 ∗ 𝛽𝑖). 

5. Calculate the PV power output using the solar insolation 

data and the size of the corresponding PV installation on 

the site [21]. 

6. Run a daily time-series AC power flow analysis. The 

solution results (i.e., voltage, current, and reverse power 

flow) are stored for the next-step impact assessments. 

In this study the local solar insolation profiles have been 

obtained from [22]. It is worth noting that the customer decision 

factor (CDF) is set to mimic customer’s decision on the PVDG 

size selection. This factor may be related with various 

parameters such as the finance budget, incentives, and 

economics. With CDF we wish to model the willingness or 

tendency of customers to install high PVDG sizes. A larger 

value of CDF implies a higher possibility for the customer to 

utilize all the potential rooftop area to install a largest possible 

PVDG. 

IV. SIMULATION RESULTS AND IMPACT COMPARISON 

In this section, the simulation results of optimal vs. random 

PVDC installations are presented to compare their impacts on 

the distribution network operations. Particle swarm 

optimization algorithm is used to solve the optimization 

problem [23]. In the optimal installation model, we consider the 

penetration ratios (γ), ranging from 0% to 70% with 5% step; 

and three different objective functions: (a) voltage 

improvement and energy loss reduction; b) Energy loss 

reduction alone with ω = 0 in (4), and III) Voltage improvement 

only with ω = ∞.  

The algorithm to mimic customer-based random installation 

is applied to the same distribution network in order to examine 

the impacts of PVDGs on the distribution network in term of 

reverse power flow, voltage deviation and energy loss. To 

generate random PVDG installation samples, customer 

decision factor is set to (𝛽min = 0.8), so that the size selection 

factor (β) is a uniform random value between 0.8 and 1.0.  

The total reverse power flow experienced by feeders in radial 

distribution network can be calculated as: 

𝐹𝑟
𝑡𝑜𝑡 = ∑ ∑ 𝐹𝑟,𝑙

𝑡𝐿
𝑙=1

𝑇
𝑡=1   (12) 

where 𝐹𝑟,𝑙
𝑡  denotes the power flow of line l flow at the reverse 

direction (i.e., feeding back toward the substation) at time t. 

Figure 3 presents a scatter plot of total reverse power flow 

𝐹𝑟
𝑡𝑜𝑡  of each random installation case in the given distribution 

network with the average 𝐹𝑟
𝑡𝑜𝑡 of all the cases with the same 

penetration ratio depicted as a red solid line. It shows that when 

the penetration ratio increases, the number of cases that have 

reverse power flow increases as well. However, the increasing 

trend does not grow linearly. That is, when the penetration ratio 

is small i.e. γ < 30%, there is not a considerable reverse power 

flow in random installations. But after some particular 

penetration ratio, e.g., γ = 30% in our simulated system, a 

significant raise in the number of cases with reverse power flow 

issues will appear and more cases will have large magnitudes 

of 𝐹𝑟
𝑡𝑜𝑡. Note that the distribution network we studies has 

limited tolerance to operate normally with reverse power flows 



 

as reported in [24]. Therefore, the distribution network owners 

(DNOs) may need to specify a safety threshold for PVDG 

installation. When the penetration ratio of PVDG installation 

grows beyond this threshold, mitigation actions such as 

equipment upgrades or optimized installation of PVDGs will 

become necessary to manage the reverse power flow issues.   

 

 
The results for voltage deviation across the whole 

distribution network obtained from both optimized and random 

installations are presented in Figure 4. For random installations 

the polynomial function for curve fitting of voltage deviation 

with respect to penetration ratio is given as: 

∆𝑣 = 0.012𝛾2 − 0.01𝛾 + 0.023    (13) 

For both optimal installation and the fitting curve of random 

installations, the voltage deviation achieves its minimum value 

around the penetration ratio of 𝛾 = 40%. It also indicates that 

installing PVDGs with growing penetration ratios will keep 

improving the system’s voltage deviation until it reaches some 

specific penetration ratio after which the voltage deviation 

improvement will be decreasing or even diminishing. In 

comparison with the original system, for the given distribution 

network, installation of PVDGs improves voltage deviation 

across the network for all the penetration ratios, which may 

implies that the DNOs may not need to upgrade their voltage 

regulatory equipment due to the increasing renewable 

penetration ratios. However, one must keep in mind that our 

analysis model in this study has not considered fast dynamics 

of PV generation caused by cloud moving or stormy weather 

and the latter may cause severe voltage fluctuations and make 

necessary the upgrade of voltage regulation scheme.  

 
Empirical PDFs for voltage deviation of random installations 

are shown in Figure 5. We observed that the voltage deviations 

for all penetration ratios follow a normal distribution with 

different mean values. It can be seen that by increasing 

penetration ratio mean value for distribution decrease, however, 

after penetration ratio at 40% mean value increases. In addition, 

it is found that for high penetration ratios empirical PDF has 

smaller standard deviation which indicates that for higher 

penetration ratios the voltage deviation for random samples 

tend to be close to the mean value, however, for lower 

penetration ratios (15-25%) the voltage deviations are spread 

out over a wider range of values. 

 
Figure 6 shows the total energy loss of random installations 

in comparison with optimized installations. For random 

installations the polynomial function for curve fitting of total 

energy loss with respect to penetration ratio is as follows:  

𝐸𝑙𝑜𝑠𝑠 = 3.9 ∗ 103 ∗ 𝛾2 − 104 ∗ 𝛾 + 2.5 ∗ 104    (14) 

It can be seen that by increasing penetration ratio of PVDGs, 

total energy loss decrease. It is generally accepted that 

increasing penetration ratio of PVDGs may increase total 

energy loss in the distribution network for several reasons such 

as high feeder loadings and  lack of local reactive power [25]. 

However, at given distribution network due to limitation on 

maximum PVDG penetration forced by available rooftop area 

for PV installation and solar insolation, penetration ratio does 

not reach to the critical penetration ratio.  Moreover, it is found 

that there is a significant gap between total energy loss of 

optimized and random installation of PVDGs in the given 

distribution network particularly at moderate penetration ratios.  

 
Empirical PDF for total energy loss of random samples is 

shown in Figure 7. Our study shows that the total energy loss 

for all penetration ratios follows a normal distribution with 

different mean values. It can be observed that as the penetration 

ratio increase the mean value decrease. Furthermore, increasing 

 
Fig. 3.   Total reverse power flow of random installations with 𝛽min= 0.8 
  

 
Fig. 4.   Voltage deviations of both random and optimized PV installations  

 
Fig. 5.   Empirical PDFs for voltage deviation of random installations  

 
Fig. 6.   Energy loss of both random and optimized installations 

  



 

the penetration ratio not only changes the mean value but also 

changes the shape of the empirical PDFs. At penetration ratio 

of 25% we have a wider PDF (higher standard deviation), 

however, at higher penetration ratio we have a narrower normal 

distributions (lower standard deviations). In other words, at 

higher penetration ratio of random installations, total energy 

loss of distribution network does not have a large amount of 

variation.  

 

V. CONCLUSION AND FUTURE WORKS 

A comparative study on the PVDG installation in power 

distribution system is presented in this paper. First, a framework 

to optimize the siting and sizing of PVDG units is developed 

with the objective of minimizing the voltage deviation and total 

energy loss. Then randomized installation of PVDGs is 

examined to model the customer-based PVDG deployments. 

Comparing the optimal with the randomized PVDG 

installations indicates that when the system has a medium 

renewable penetration ratio an optimal installation is necessary 

because it will bring significant improvements in energy loss 

reduction and voltage deviation. However, when the renewable 

integration ratio is lower or very high, there will be less 

difference between the types of installation. Depending on 

DNOs’ desire and the expected penetration ratio, the utility 

company may consider optimized installation at the distribution 

network.  As the future extension of this study we may consider 

annual analysis along with economic analysis to suggest the 

best strategy for PVDG installation.  
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Fig. 7.   Empirical PDFs for total energy loss of random installations 


