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Abstract—A robust power scheduling algorithm is proposed
to schedule power flow between the main electricity grid and
a microgird with solar energy generation and battery energy
storage subject to uncertainty in solar energy production. To
avoid over-conservatism in power scheduling while guaranteeing
robustness against uncertainties, time-varying ”soft” constraints
on the State of Charge (SoC) of the battery are proposed. These
soft constraints allow SoC limit violation at steps far from the
current step but aim to minimize such violations in a controlled
manner. The model predictive formulation of the problem over
a receding time horizon ensures that the resulting solution
eventually conforms to the hard SoC limits of the system at
every step. The optimization problem for each step is formulated
as a quadratic programming problem that is solved iteratively
to find the soft constraints that are closest to the hard ones and
still yield a feasible solution. Optimization results demonstrate
the effectiveness of the approach.

I. INTRODUCTION

With the rapid growth of renewable Distributed Energy

Resources (DERs) in power systems and due to their inherent

uncertainties, economic energy management and planning is

of great importance for microgrids of different scales. A

Microgrid is defined as a group of interconnected DERs, loads,

and storage units that act as a unified entity in the electricity

market and is able to operate in both connected and islanded

modes from the main electricity grid. In the connected mode,

microgrids are connected to the main grid at the Point of

Common Coupling (PCC) and any power exchange between

the microgrid and the main grid is measured at this point.

DERs within the microgrid may provide part or all of the

microgrid’s energy demand; hence reducing the energy drawn

from the main grid. Electricity providers use different pricing

schemes to encourage certain consumption behaviors among

consumers and make power grids more efficient and reliable.

Microgrids may use such energy price data to optimally

schedule their loads, storage units, and dispatchable DERs [1].

The existence of storage provides additional flexibility

to benefit from such pricing schemes. Optimal microgrid

scheduling should take into account microgrid operational

costs and seek to compute optimal storage/DER dispatch

schedule [2], [3], [4]. This optimal power value should be

computed based on load requirements, hardware constraints,

storage capacity, and with the consideration of intermittent and

uncertain nature of renewables. Load and renewable generation

uncertainty are two major sources of uncertainty in microgrids

that could highly impact its economic performance [5]. Various

approaches have been proposed to address uncertainties in

the predicted load [6], [7]. Renewable uncertainties generally

impose a greater impact if a significant portion of microgrid

energy is provided by renewable DERs. Various robust and

stochastic microgrid scheduling methods have been studied to

address renewable uncertainty challenges.

A widely popular approach to handle uncertainty is to

formulate the problem as an stochastic programming problem

by considering different scenarios for the uncertain parameters

and their probabilities [8]. The goal of the problem will then be

minimizing cost of current decisions plus the expected value of

cost of future decisions. In an alternative approach, uncertain

generation can be handled by robust optimization formulations

where all possible scenarios within the uncertainty set are ac-

counted for and constraint satisfaction is guaranteed regardless

of the realization of the random variables within a certain

set [9], [10]. If a feasible solution exists for this problem,

it tends to be more conservative yet less computationally

intensive compared to the stochastic formulation. In a different

approach, the problem can be studied within the framework of

Chance Constrained Programming (CCP). Assuming known

distribution for the uncertain variables, CCP can be used to

compute a minimizing solution that meets inequality con-

straints with a certain probability [11], [12]. Although less

conservative for most realizations of the random variable,

this approach may lead to constraint violation if knowledge

of distribution is inaccurate or if extreme realizations of the

random variables occur.

In the context of day-ahead microgrid scheduling, the

intended scheduling interval is relatively large. In addition,

forecast of uncertain renewable generation will be updated

and more accurate forecasts will become available as time

progresses. These are two motivations behind taking a model

predictive approach to the scheduling problem. If such ap-

proach is taken, one need not determine a unique scheduling

at the beginning of the 24-hr interval that is robust against

all possible uncertainties. Instead, some possible realizations

may be allowed to violate the conditions at steps far into the

future. Future updates of the model predictive solution will

guarantee that no actual condition violation will happen. This

framework will however allow for more optimal (less conser-

vative) solutions to the problem. Diferent works have taken

a model predictive approach to the scheduling problem [13],

[14]. Reference [8] compares the performance of stochastic
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and deterministic MPC in economic scheduling of microgrids.

Also, [15] provides a model predictive economic scheduling

solution and discusses the impact of forecast error.

In this work, microgrid optimal scheduling problem is

considered for a grid-connected microgrid with solar gener-

ation and energy storage. Approximate solar forecast and its

uncertainty bounds are assumed to be known for the day-ahead

microgrid operation and are updated at 15-min intervals. To

reduce conservatism in the presence of inherent uncertainties

of PV generation, the problem is formulated within a model

predictive framework and hard constraints are replaced with

their relaxed versions at each step of MPC. At each step

with the newly updated predictions, a quadratic programming

problem is solved to yield an economic solution.

Notation. Set of time intervals over 24 hours is denoted as

T = {1, 2, ..., T }. s(t) is a random variable representing solar

generation during interval t, while s̄(t, τ), su(t, τ), sl(t, τ) are

solar generation forecast, its upper bound, and its lower bound

during interval t for predictions made at step τ . In a similar

way, c(t) is a random variable showing the charge level of the

battery during interval t and c̄(t, τ), cu(t, τ), cl(t, τ) are charge

level forecast, its upper bound, and its lower bound during

interval t for MPC step τ . In the remainder of the paper, τ

indices for MPC steps are dropped for simplicity when it does

not lead to confusion. d(t), e(t), and r(t) show load demand,

energy to/from the inverter, and energy flow at PCC during

interval t. Energy variables (s, d, e, r) are assumed uniform

over the intervals and represent total energy over the 15-min

interval.

II. SYSTEM DESCRIPTION AND PROBLEM

FORMULATION

We study a grid-connected microgrid consisting solar energy

generation, battery energy storage and several loads. Strict

load requirements of the microgrid enforce that complete

demand must be met at each time. The storage unit can be

exploited to implement power shifting by using the stored

energy at times of high market price and therefore reduce

energy input from the main grid at those times. The economic

scheduling problem is expected to propose a microgrid power

flow solution at the point of common coupling that while

reducing a certain cost function, meets microgird’s operational

constraints and guarantees robustness against PV prediction

uncertainties. This work aims to develop a model-predictive

robust optimization scheme based on 24-hr prediction of solar

energy, load demand, and price. The 24-hr horizon is divided

into ∆T = 15 min intervals and the optimization algorithm

for the remaining intervals of the 24-hr period is run at the

beginning of each MPC step. However, only the results for the

impending interval will be implemented. We first formulate the

benchmark scheduling problem without uncertainties.

A. Benchmark Problem

The microgrid is assumed to have a certain energy demand

for each of the considered intervals t ∈ T . The sum of energy

from the main grid and energy from DER/storage during each

interval should meet this load demand

d(t) = e(t) + r(t) (1)

Additionally, variation in the charge level of the battery can

be expressed as

c(t+ 1) = c(t) + s(t)− e(t) (2)

It should be noted that as indicated in this equation, a unique

decision variable e(t) (inverter energy to/from microgrid)

should be applicable regardless of the actual realization of

PV generation. This means that uncertainty in PV generation

should only translate into uncertainty in the state of charge of

the battery.

Constraints. The microgrid optimal scheduling problem

should be solved with the consideration of operational con-

straints of the system. A few of the most essential constraints

are formulated in this section. The inverter can only provide

power to the microgrid subject to its operational limits

Pmin.∆T ≤ e(t) ≤ Pmax.∆T (3)

where Pmin/max is min/max inverter power. The state of

charge of the battery should stay within its upper and lower

limits

Cmin < c̄(t, τ) < Cmax (4)

The scheduling should further enforce that the final charge

level of the battery at the end of the 24-hr interval is equal to

its initial charge.

c̄(t = T, τ) = C0 (5)

Taking into account the last two constraints, the set of feasible

battery charge levels can be denoted as

C = {c(t, τ) | Cmin < c(t, τ) < Cmax ∀t ≥ τ ;

c(t = T, τ) = C0} (6)

Cost Function. The optimal scheduling problem is expected

to minimize a cost function comprising cost of electricity and

other operational costs of the microgrid. Cost of energy pro-

vided by the renewable source is assumed to be negligible. The

total cost associated with microgrid operation is formulated

below. The first term accounts for energy charge during the 24-

hr period and the second term shows demand charge incurred

during the time interval with maximum energy consumption.

The last cost term is a penalty on battery charge/discharge to

reduce energy loss due to battery round-trip efficiency.

f =
T
∑

t=1

v(t)r(t) + krmax + α

T
∑

t=1

e(t)2 (7)

where v(t) is electricity unit price at time t, rmax is energy

flow at PCC during the interval with maximum energy con-

sumption, and k and α are weighting coefficients.



B. Renewable Forecast Uncertainty

Numerous solar forecasting methods have been explored in

the literature. In this work, we assume knowledge of expected

value of solar generation during interval t at MPC step τ ,

E{s(t)}τ = s̄(t, τ) as well as its upper and lower bounds

su(t, τ), sl(t, τ) is available for all t ≥ τ . These bounds

should guarantee with a high degree of confidence that the

realized amount of solar generation will be within their range.

This solar forecast data is updated with the most recent data

at each step. Clearly, more accurate predictions and smaller

uncertainty bounds are available if forecast interval t is closer

to current step τ . For each MPC step τ , we define the sequence

Su : {su(τ), su(2), ..., su(T )} as a solar scenario consisting

of upper forecast points for all times τ ≤ t ≤ T . This scenario

represents an unlikely realization of s(t) over the remainder

of the 24-hr period which takes the upper solar forecast value

at each time. In a similar way we define Sl and S̄ as the

lower and average solar scenarios. In order to be able to

implement the unique decision variable e(t) for all possible

solar scenarios, the uncertainty in solar generation should only

translate into uncertainty in the state of charge of the battery.

With the motivation to obtain a single scheduling plan that

accommodates various solar generation scenarios (S̄, Su, Sl),
we intend to extend the aforementioned problem into a robust

scheduling problem.

III. UNCERTAINTY HANDLING AND ROBUST SCHEDULING

A. Existing Approaches

A rudimentary approach would be to enforce the above hard

constraint (4) on charge level of all possible solar generation

scenarios.

Cmin < cu(t, τ) < Cmax

Cmin < cl(t, τ) < Cmax (8)

Such constraint over the 24-hr period could make the solutions

highly conservative or even infeasible [9]. To reduce the

conservatism knowing that the solution will be updated at later

steps, a chance constrained formulation would require

P (Cmin < cu(t, τ) < Cmax, Cmin < cl(t, τ) < Cmax] ≥ β

where P (.) is probability of the constraint satisfaction. This

constraint is a rational relaxation of the previous constraint.

It can therefore yield feasible/more optimal solutions for the

next MPC step and update its solution at every step. It however

requires knowledge of distribution of the uncertainty and

demands higher computational complexity than the previous

approach. A different approach would be to implement an

additional cost term in the cost function associated with SoC

limit violation in the place of SoC constraints for upper and

lower SoC scenarios [6].

faug =
T
∑

t=1
max{0, cu(t)− Cmax}

+
T
∑

t=1
max{0, Cmin − cl(t)}

(9)

Although this additional cost term could act as a soft constraint

on SoC limit violation, it has no structure to differentiate

between intervals with and without uncertainty.

B. Proposed Method

We propose a framework to generalize the regular SoC

constraints (6) in a structured way that makes it applicable

to uncertain solar scenarios. The idea is to enforce the hard

constraint (6) only on the expected value of solar forecast

and a relaxed version of it on other possible solar generation

scenarios (Su, Sl). The result is that instead of limiting all

possible charge level realizations to fall within upper and lower

limits, we allow them to linearly grow out of bounds during

uncertain intervals, but control their growth by a parameter

representing tightness of the constraint. The rationale behind

this scheme is that the uncertainty in accumulative solar gen-

eration is additive over time and therefore storage scheduling

over time should allow more relaxed constraints in the future in

order for the solution to remain feasible. We define parameter

η to characterize such relaxed constraints on SoC of battery

under upper and lower PV scenarios. Figure 1-top shows the

proposed constraint on the battery charge level across different

uncertainty scenarios at the beginning of the 24-hr interval.

Also, Figure 1-bottom shows the updated constraints at time

τ for the remainder of the 24-hr interval. These constraints

can be formulated as

Cl(t, τ) < cu(t, τ) < Cu(t, τ)

Cl(t, τ) < cl(t, τ) < Cu(t, τ) (10)

Cl[u](t, τ) =











Cmin[max] t < ta

Cmin[max] − [+](t− τ).η ta < t < tb

Cmin[max] − [+](tb − τ).η tb < t

ta and tb are the time stamps of start and end of uncertainty

in solar prediction. For η = 0, this condition is equivalent

to the strict conditions in (4). Applying the hard constraint

(η = 0) may yield no feasible solution over the entire 24-hr

interval which means the problem was not solvable if hard SoC

constraints were to be enforced on all possible scenarios at all

times. For larger values of η, condition (10) means relaxation

of conditions (4) as time progresses. Condition (10) could

be tested iteratively with different values of η to obtain the

smallest η (η∗) for which a solution exists. Solutions will

then exist for all η > η∗. The bigger the choice of η, the

less conservative and less robust the solution will be. The

benefit of the alternative soft SoC constraint, as opposed to

hard SoC requirement (4), is the reduced conservatism on

the optimal solution freedom while keeping different scenarios

under control. However, by running this algorithm at regular

15-min periods with updated forecast, we ensure that the

resulting schedule will strictly meet hard SoC requirements

(4).

Robustness Analysis. At each step of MPC, we want to

make sure that the output e(t) computed for the next step

with soft SoC constraints does not lead to SoC limit violation.



Fig. 1. Top. Uncertainty plot at the beginning of the 24-hr interval. Expected
solar generation and its upper and lower uncertainty bounds are shown in
blue. Hard SoC limits (green) are replaced by soft constraints (orange) to
reach feasible solutions and reduce conservatism when there is uncertainty in
solar prediction. Bottom. Uncertainty plot at time τ = 10 hr of the 24-hr
interval. Updated solar forecast and its upper and lower uncertainty bounds
for the remainder of the 24-hr interval (t ≥ τ) are shown in blue.

To achieve this, one can shift the soft constraint one step to

the right so that the impending step always follows the hard

limits while steps after that follow soft limits. Another less

conservative approach would be to limit next step’s optimal

solution according to the following

c(τ) + su(τ) − Cmax ≤ e(τ) ≤ c(τ) + sl(τ) − Cmn (11)

Based on the previous discussion, we can formalize Algo-

rithm 1 for microgrid robust optimal scheduling.

Algorithm 1 Microgrid Robust Optimal Scheduling

1: Start at the beginning of the 24-hr interval τ = 1
2: Obtain price and load demand data for the next 24-hr

3: while τ ≤ T do

4: Update solar forecast and its bounds for t = τ : T
5: Initialize parameter η = η0
6: repeat

7: Solve the quadratic programming problem with

cost function (7) and subject to constraints

(1− 5, 11, 12) using any available solver

8: Update η using bisection to find smaller values

of η that gives a feasible solution

9: until |ηcurrent − ηlast| < ǫ

10: η∗ = η

11: Obtain Optimal scheduling solution with η = η∗ for

t = τ : T but implement only e(t = τ)
12: Wait until the beginning of the next scheduling

period and arrival of updated forecast data

13: End while

IV. RESULTS

We study the microgrid of a medical facility that is planning

integration into the main grid. Solar generation forecast at the

beginning of the 24-hr horizon and its uncertainty bounds for

the considered facility are illustrated in Figure 1.Load demand

and price data are also illustrated in Figure 2. Also, microgrid

specifications are listed in table 1.
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Fig. 2. Optimization results for scheduling performed at time τ = 1.
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We seek to compute an economic schedule for inverter

power that can be implemented regardless of the realization

of solar profile within the estimated boundaries. An attempt

to solve the problem with the given solar bounds and hard

constraints of equation (4) on all solar scenarios reveals that no

feasible solution exists. Even if such solution existed, it would

be highly conservative due to the requirement that all possible

scenarios should stay within bounds even for time intervals

far from the current interval for which accurate predictions

do not exist. Since we assume no knowledge of uncertainty

distribution except its upper and lower bounds, CCP is not a

0 5 10 15 20 24

0
20
50

90
110

0 5 10 15 20 24

0
20
50

90
110

0 5 10 15 20 24

0
20
50

90
110

S
oC

 [%
]

0 5 10 15 20 24

0
20
50

90
110

0 5 10 15 20 24

Time [hr]

0
20
50

90
110 SoC [%] - Scenario 1

SoC [%] - Scenario 2
SoC [%] - Scenario 3
SoC Limit
Relaxed SoC Constraint

Fig. 4. Effect of storage size on scheduling with uncertainty. With increasing
storage size, η∗ decreases meaning that relaxed constraints come closer to
hard SoC constraints.



good solution fit for our problem.

Next we investigate microgrid scheduling problem over 15-

min intervals using the proposed algorithm. Algorithm 1 is

implemented on a system with parameters C = 1 MWh, C0 =
500 kWh, SoCmin = 20%, SoCmax = 90%, Pmin,max =
−(+)250 kW, η0 = 1, and ǫ = 0.01. Gurobi commercial

solver is used for solving the quadratic programming problem

at each step. The resulting power profile as well as battery

charge levels are presented. Figures 2 and 3 show the result of

scheduling at time τ = 1. Maximum power flow at PCC over

the entire 24-hr interval is remarkably reduced by flattening

PCC power profile. The inverter power profile has also low

volatility in this case which makes it robust against unmodelled

prediction errors. Evolution of battery charge level within the

soft SoC constraints under three scenarios of solar generation

is indicated in Figure 3.
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Fig. 5. Evolution of battery SoC over the 24-hr interval shown at 9 steps
during the day. The dashed line shows the current step of optimization and the
purple line shows the actual realization of battery charge level for past times.
While the results of optimization at earlier steps show apparent SoC limit
violation at times far from the current step, no actual SoC violation occurs
as time proceeds as the optimization is updated at every MPC step.

To investigate the effect of storage size while solar uncer-

tainty exists, Figure 4 shows economic scheduling results at

the start of the 24-hr horizon. For microgrids with different

storage sizes, the minimum viable η (η∗) for solution fea-

sibility is obtained for each case. For smaller storage sizes

(800, 1000, 1200, 1400), η∗ is greater than zero meaning that

no feasible solution would exist had the soft constraints not

replaced the hard ones. For storage of size 1600, the problem

is solvable with η = 0 or equivalently hard SoC constraints.

To illustrate the evolution of microgrid charge level over the

24-hr interval, Figure 5 shows the evolution of battery charge

level as the result of scheduling over the 24-hr interval. It

is seen that as time proceeds and updated solar predictions

become available, soft SoC constraints become tighter and no

violation of hard SoC limits is observed at the end of the 24-hr

interval.

V. CONCLUSIONS

A robust microgrid scheduling algorithm is proposed to

optimize power exchange between microgrid and the main grid

with uncertain solar prediction. To implement the algorithm, it

suffices to have upper and lower bounds on solar generation to

describe such uncertainty. By relaxing the original constraint

on the charge level of the battery, optimal solutions are sought

in a larger space of possible battery charge levels. The problem

is formulated as a quadratic program and is solved at 15-min

steps over a 24-hr interval and updated prediction data is used

for each step. The model predictive formulation of the problem

ensures that the apparent hard constraint violation does not

lead to charge level requirement violation. The results indicate

scheduling profiles that are in agreement with the defined

cost function and follow the expected requirements under

different uncertainty scenarios. Also, the effect of storage size

on handling the uncertainty is investigated.
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