
Smart Households Demand Response Management 

with Micro Grid 
 

Hossein Mohammadi Ruzbahani, Abolfazl Rahimnejad, Hadis Karimipour 
School of Engineering 

University of Guelph 

Guelph, Canada 

{hkarimi, hmoham15, arahimne}@uoguelph.ca 
 

Abstract— Nowadays the emerging smart grid technology opens 

up the possibility of two-way communication between customers 

and energy utilities. Demand Response Management (DRM) 

offers the promise of saving money for commercial customers 

and households while helps utilities operate more efficiently. In 

this paper, an Incentive-based Demand Response Optimization 

(IDRO) model is proposed to efficiently schedule household 

appliances for minimum usage during peak hours. The proposed 

method is a multi-objective optimization technique based on 

Nonlinear Auto-Regressive Neural Network (NAR-NN) which 

considers energy provided by the utility and rooftop installed 

photovoltaic (PV) system. The proposed method is tested and 

verified using 300 case studies (household). Data analysis for a 

period of one year shows a noticeable improvement in power 

factor and customers’ bill. 

Keywords— demand response management, optimization, peak 

hour, smart home, smart grids.   

NOMENCLATURE 

𝑚         Total number of uninterruptible loads 

𝐻          Time slot, 30 minutes 

𝑃𝐶
𝑡         Value of actual consumption at time t   

𝑃𝑂
𝑡          The objective curve at time t 

𝐷𝑠         Customer’s discomfort associated with a delay 

𝑑𝑠         Customer discomfort associated with a shift 

𝑥𝑛
𝑠         Binary variables for device s in time slot n 

𝑃𝑠ℎ𝑚

𝐻      Consumption of device m in time slot H 

𝐵𝐻        Solar cell operating status (Binary) in time slot H 

𝑇𝐴𝑝𝑝𝑖
     Operation time of device i 

ℎ𝐴𝑝𝑝𝑖
    Operation time slots of the device i  

𝑃𝐵𝑆𝐿
𝐻       Solar cell battery charge level in time slot H 

𝑇𝐵         The time required for the battery to be fully charged  

𝑃𝐴𝑙𝑙𝑚
𝐻      Total consumption of all loads in time slot H 

𝐷𝑐         Number of devices of type k available for control 

𝑃𝐴𝑙𝑙
𝐻        Total consumption of shiftable devices in the time 

𝑓𝑗
𝑡           Number of fixed devices of type j 

𝑃𝑖          Power consumption of the device type i 

𝑃𝑃
𝑡         Predicted load consumption at time t 

𝑃̅𝑜𝑓𝑓      Average consumption during off-load  

𝐿𝑚𝑖𝑛      Minimum usage required during off-peak hours 

𝑃𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑
𝑚𝑎𝑥              Maximum consumption during peak hours 

[𝑇𝑝𝑒𝑎𝑘𝑖

𝑆𝑡𝑎𝑟𝑡, 𝑇𝑝𝑒𝑎𝑘𝑖

𝐸𝑛𝑑 ]      Start and end time interval for Peak hour i 

𝐶𝑃𝑚
𝐻                        Number of preferred time slots for shifting 

determined  by load m in time slot H 
𝑠𝑖

𝑡     Number of shiftable devices of type i shifted to time t 

𝑠𝑘
𝑡      Number of shiftable devices of type k shifted away 

from time t 

I. INTRODUCTION 

      According to the U.S. Department of Energy, demand for 
electricity is expected to grow 30% by 2035 as a result of new 
consumption models (smart appliances, electric vehicles and 
whole house monitoring systems) [1]. Integration of the smart 
grid technology into the bulk power system provides the 
opportunity for two-way communication between the utility 
company and end-users through Demand Response 
Management (DRM) [2]. A detailed study of the potential 
impact of residential demand-side management on the cost and 
greenhouse gas emissions is presented in [3]. 

Although the future of DRM depends on automatic control 
of residential loads, the end-users play a significant role by 
shifting the use of appliances to the off-peak hours [4]. 
Different techniques are required to act as a bridge between the 
consumer and the utility for controlling the load demand 
during peak hours. However, in most techniques, incentive-
based DR programs play a major role in improving grid 
operation and reliability as well as cost management [5]. 

Most of the researches on DRM are limited to high voltage 
levels, such as industrial loads [6]. There are few studies 
focused on the household sector [7]. In most of the proposed 
methods, customers’ common welfare, utility costs, efficient 
operation, the cost of required communication infrastructure, 
and the probability of cyber-attack are neglected and generally 
focuses on only a single objective [8]. Some load control 
strategies for shedding household appliances [9] and several 
scheduling methods for mitigating residential power 
consumption [10]-[12] have been proposed in the past. 

However, this study proposes an intelligent and flexible 
algorithm for DRM considering the combined source of 
energy, including electricity provided by the utility and rooftop 
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installed residential photovoltaic (PV) system. The main 
contribution of this paper is the development of a scheduling 
algorithm (multi-objective optimization with NAR-NN) to 
minimize the electricity bill and customer’s discomfort 
considering the operational dynamics of non-schedulable loads 
and electricity price variation. To avoid consumer's 
discomfort, a scheduling algorithm is applied, using historical 
data of the consumer's habits and PV generation forecasts. 

II. PROBLEM STATEMENT 

The residential demand management problem is a non-
linear programming problem aimed at minimizing power 
consumption and customers discomfort subject to some 
constraints. 

A. Power Consumption Minimization 

   Residential loads based on the power consumption 
pattern   are categorized into two types:  

• Fixed loads: whose power consumption and usage time 
cannot be modified (e.g., TV, refrigerator). It is assumed 
that the algorithm does not have any control on these loads.  

• Shiftable loads: whose power consumption can be shifted 
to a different source or time slot to operate on its own power 
consumption pattern (e.g. air conditioner, washing 
machine, and dishwasher). 

The goal is to schedules the consumption of each shiftable 
device to minimize the difference between the load 
consumption curve and the objective curve. Load shifting for 
power consumption minimization can be mathematically 
formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐽(t, p) = |𝑃𝐶
𝑡 − 𝑃𝑂

𝑡 |2 (1) 

B. Discomfort minimization 

       One of the main advantages of the proposed algorithm is 

to model load demand patterns based on the customers’ 

lifestyle so that their discomfort can be minimized. The 

following minimization problem considering different 

weights (𝑤𝑠, 𝑘𝑠) is defined to minimize the customer 

discomfort: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑𝑤𝑠𝑑𝑠 + 𝑘𝑠𝐷𝑠

𝑠∈𝑆

 (2) 

C. Constraint  

       The minimization problem is subject to the following 

constraints: 

1. The number of devices shifted cannot be a negative value. 

𝑠𝑖
𝑡, 𝑓𝑗

𝑡 , 𝑠𝑘
𝑡 > 0  ∀ 𝑖, 𝑗, 𝑘 (3) 

2. The number of shiftable devices cannot be more than the 

number of devices available for control at each time step. 

∑ 𝑠𝑘
𝑡

𝛾

𝑘=1

≤ 𝐷𝑐 
 

(4) 

3. Each shiftable devices is allowed to work in a specific time 

slot. 

∑ 𝑥𝑛
𝑠

𝑇𝐴𝑝𝑝
𝐸𝑛𝑠−𝑇𝐴𝑝𝑝+1

𝑛=𝑇𝐴𝑝𝑝
𝑆𝑡𝑎𝑟𝑡

= 1      ∀   𝑠 ∈ 𝑆 

 

(5) 

III. INCENTIVE-BASED DEMAND RESPONSE OPTIMIZATION 

(IDRO) 

The proposed IDRO algorithm provides an opportunity to 

the consumers to voluntarily participate in the DRM. This 

algorithm considers the combined sources of energy provided 

by the grid and rooftop installed PV to implement DRM. As it 

was mentioned in previous section, loads are divided into fixed 

and shiftable ones. Each load can determine their permitted 

time used for shifting as the input of the algorithm. According 

to the schedules provided by the consumers, IDRO can decide 

whether their consumption is supplied through the grid or PV. 

This algorithm has several steps which are explained in this 

section. 

A. Methodology  

Artificial neural network (ANN) is a well-known data 
processing algorithm to model non-linear systems. It works 
efficiently particularly when there are complex non-linear 
relationships between system input and output. 

 In this paper, a feed-forward neural network with 
Levenberg–Marquardt (LM) training algorithm is chosen for 
training the Nonlinear Auto-Regressive Neural Network 
(NAR-NN). According to the Fig. 1, the total consumption 
pattern for each hour of day during different months 
significantly varies. 

 

Fig. 1. Example of load consumption during different months of a year. 

Therefore, in this network, different weight is assigned to 
historical data during a specific month/week of the year for 
each appliance. Historical data (network input) are used to 
predict the load consumption ahead of the time (network 
output). A hidden is a layer in between the input layers and 
output layers, where neurons receive a set of weighted inputs 
and generate an output using an activation function. The neural 
network architecture used in this work is given in Figure 2. 

 

Fig. 2. NAR-NN basic scheme 

The relationship between input and output of NA-RNN can 
be written as: 



𝑉 (𝑡) = ℎ(𝑉(𝑡 − 1),  𝑉(𝑡 − 2),  … ,  𝑉(𝑡 − 𝑡𝑑)) + 𝑒(𝑡)  (6) 

where 𝑒(𝑡) is the error between real value and predicted value 
and 𝑡𝑑 is the size of data set. 

B. Objective Curve 

Objective curve is inversely proportional to the electricity 
market prices. In offline mode, the objective curve is calculated 
based on the historical data and customers’ preferences one 
day ahead. In online mode, the objective curve is updated every 
30 minutes based on the real-time pricing and customer load 
consumption during the day. The objective is to shift the usage 
to 1) off-peak hours with a lower price, 2) energy generated by 
the solar cell, if available. An example of Real-Time Pricing 
(RTP) and solar cell energy generation is depicted in Fig. 3. 

 

Fig. 3. Example of real-time pricing and solar cell energy generation 

during the day. 

To have the lowest possible consumption during peak 
hours, the maximum permitted load is defined as follows: 

𝑃𝑂
𝑡  = {

  

                       

𝑃𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑
𝑚𝑎𝑥                  𝑖𝑓    ∑ 𝑃̅𝑜𝑓𝑓 < Lmin 

𝑡∈𝑇𝑜

𝑃𝑝
𝑡                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

(7) 

To find the relationship between consumption at peak hours 

and off-peak hours RA is used in the proposed algorithm. The 

following relationship between the consumption in peak hours 

and off-peak hours is derived based on RA. 

  𝑃𝑝
𝑚𝑎𝑥  = ∑ ∑ 𝛼𝑖,𝑗  𝑃̅𝑜𝑓𝑓,𝑖

𝑧
𝑗=0  

𝑦
𝑖=0 + 𝛽

where 𝛼, 𝛽, 𝑦 and 𝑧 are constants calculated using RA. 

C. Load Consumption Optimization 

The proposed algorithm determines the operation time of 
the shiftable loads and the type of the energy source (Solar cells 
or grid). This method is tested and verified using 300 case 
studies (household). For this purpose, each day is divided into 
48 time slots of 30 minutes. The right-hand side matrix in (9), 
which is obtained by multiplying the power consumption 
matrix (𝑃𝐶𝑀𝑚∗48) and binary matrix for solar cell usage (𝐵48∗1 
), shows whether in the time slot H the shiftable loads is 
supplied by solar cell or grid. It should be noted 𝐵𝐻 is a binary 
value which shows it solar cell in time slot H is in use or not 
(10). 

[

𝑃𝑠ℎ1

1 ⋯ 𝑃𝑠ℎ1

48

⋮ ⋱ ⋮
𝑃𝑠ℎ𝑚

1 ⋯ 𝑃𝑠ℎ𝑚

48
] × [

𝐵1

⋮
𝐵48

] = [

∑ 𝑃𝑠ℎ1

𝐻48
𝐻=1 𝐵𝐻

⋮
∑ 𝑃𝑠ℎ𝑚

𝐻48
𝐻=1 𝐵𝐻

]                             (9) 

 

𝐵𝐻 = {
1      𝑖𝑓: 𝑇𝐵 − 𝑇𝑃𝑒𝑎𝑘

𝑆𝑡𝑎𝑟𝑡 > 𝑀𝑎𝑥{𝑇𝐴𝑝𝑝}, 𝑃𝐵𝑆𝐿
𝐻 > ∑ 𝑃𝑠ℎ𝑖

𝐻𝑚
𝑖=1

0                                          𝑒𝑙𝑠𝑒                                           


  

The maximum acceptable shift in each time slot determined 

by the consumers can be written as: 

CP=[
𝐶𝑃1

1 ⋯ 𝐶𝑃1
48

⋮ ⋱ ⋮
𝐶𝑃𝑚

1 ⋯ 𝐶𝑃𝑚
48

]                                                                (11) 

Then, considering costumer preferences matrix (11) and 
operation time slots of the device i (ℎ𝐴𝑝𝑝𝑖

) applying them in 

(9) the following equation is derived: 

[

𝑃𝑠ℎ1

1 ⋯ 𝑃𝑠ℎ1

48

⋮ ⋱ ⋮
𝑃𝑠ℎ𝑚

1 ⋯ 𝑃𝑠ℎ𝑚

48
] × [

𝐵1

⋮
𝐵48

] =

[
 
 
 ∑ 𝑃𝑠ℎ1

𝐻+𝐶𝑃1
ℎ─ℎ𝐴𝑝𝑝148

𝐻=1 𝐵𝐻

⋮

∑ 𝑃𝑠ℎ𝑚

𝐻+𝐶𝑃𝑚
ℎ ─ℎ𝐴𝑝𝑝𝑚48

𝐻=1 𝐵𝐻]
 
 
 

            (12) 

It should be noted in (12): 

𝐻 + 𝐶𝑃𝑚
ℎ─ℎ𝐴𝑝𝑝𝑚

> 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠                                      (13)                                                      

Eventually, for the whole consumption in each time slot we 
can write: 

 [
𝑃𝐴𝑙𝑙

1  
⋮

𝑃𝐴𝑙𝑙
48

] = [
∑ 𝑃𝑖

1𝑚
𝑖=1 𝐵1

⋮
∑ 𝑃𝑖

48𝑚
𝑖=1 𝐵48

]                                                               (14) 

   Fig. 4 shows the flowchart of the proposed IDRO. 

 

𝒕 ∈ [𝑻𝒑𝒆𝒂𝒌𝒊

𝑺𝒕𝒂𝒓𝒕 , 𝑻𝒑𝒆𝒂𝒌𝒊

𝑬𝒏𝒅 ] 

 

 𝑻𝑩 − 𝑻𝑷𝒆𝒂𝒌
𝑺𝒕𝒂𝒓𝒕 > 𝑴𝒂𝒙{𝑻𝑨𝒑𝒑} ? 

𝑷𝑩𝑺𝑳
𝑯 > ∑𝑷𝒔𝒉𝒊

𝑯

𝒎

𝒊=𝟏

 ? 

Start

Collect data & Calculate 

 𝑃𝐶
𝑡  and  𝑃𝑂

𝑡  

Load time and 

customer preference

Feed all shiftable loads 

from solar energy 

 

𝑷𝑩𝑺𝑳
𝑯 ≠ 𝟎 

Feed all loads 

from grid

End

Set the time slot 

number at start time

NoYes

YesYes

No

No

Feed all shiftable loads 

from solar energy 

𝑩𝑯 = 𝟏 

 

Fig. 4. Overall flowchart of the proposed IDRO method 



IV. CASE STUDIES AND RESULTS 

 The average results for 300 household consumers are 
presented in this section. MATLAB® software is used for data 
analysis. Fig. 5 shows the proposed energy management 
platform. In this study, air conditioner, dishwasher, laundry 
machine, iron, etc. are considered as shiftable loads and a 
refrigerator and one lamp are included as fixed loads.  

 

Fig. 5. IDRO energy management platform. 

A. Data acquisition 

The input data for the period of one year is collected every 
two months from Hamedan province Electricity Distribution 
Company. In fact, the domestic consumption data of 300 
consumers along with their hourly generation of a 1 Kw of a 
solar cell is used as input data. 

B. Training, Test, and Validation 

For the training purpose, Levenbrg-Marquardt is applied to 
using 6132 data out of 8760 (70 percent) and for each test and 
validation purpose, a set of 1314 (15 percent) data is chosen 
randomly out of the whole data. The data is processed to 
predict the load curve and PV generation rate for each day 
using three layers (input, output and hidden, containing 24, 1 
and 10 neurons, respectively). Different number are tested and 
the best performance is obtained with 10 neurons. The training 
procedure automatically stops when there is no significant 
change in Mean Squared Error (MSE). Fig. 6 demonstrates the 
training procedure accomplished by Levenberg–Marquardt 
backpropagation algorithm converged after 12 epochs. As it 
can be observed, there is no increase after (stability) and before 
(overshoot) convergence. Moreover, in the test and validation 
procedure, errors decrease until the Epoch 12. 

 

Fig. 6. Training performance graph. 

   Fig. 7 displays the error autocorrelation index. For a perfect 
prediction model, there should be at most one nonzero value of 
the autocorrelation function, and it should occur at zero lag. 
This metric indicate that there is no  correlation between data. 
It also determines the presence of correlation between the 
values of variables which are based on associated aspects. As 
can be seen in the Fig. 7, in the proposed model, the 

correlations, except for the one at zero lag, fall approximately 
within the 95% confidence limits which confirms the accuracy 
of the model. 

 

Fig. 7. Error Autocorrelation 

A typical day-ahead prediction load consumption and PV 
generation are carried out using NAR-NN and the results are 
depicted in Fig. 8. As can be seen, the predicted load 
consumption and the predicted PV generation track the real 
ones with an acceptable precision. It should be mentioned that 
the PV generation prediction for the considered region 
provided in [13] verifies the obtained result. 

 

Fig. 8. Predicted Load Consumption and PV generation 

C. Load reduction during peak hours 

      The load profile for a household, before and after IDRO 

implementation and the PV generation are depicted in Fig. 9. 

As shown in the figure, using the proposed method, the load 

profile is leveled off and the consumption is distributed during 

the day. In addition, the average power consumption, for all 

case studies in each period is depicted in Fig. 10. As shown, 

the consumption rate reduced by almost 19%. 

 

 
Fig. 9. Load profiles and PV generation 

 

Fig. 10. Average energy consumption in a year. 

D. Load factor improvement 

Fig. 11 shows the average power factor improvement using 
the proposed IDRO method. It clearly indicates that this 
method improves the power factor by %11-%17 during the 
different period of the year. It should be noted that if the 



proposed method is implemented properly and on a large scale, 
it can save a huge amount of energy.  

 

Fig. 11. Overall power factor improvement. 

E. Bill reduction 

     The customers’ bills for all case studies during six time 
intervals in a year are calculated. Fig. 12 shows the average 
reduction in the customers’ bills for all case studies. The results 
show that this average amount is reduced by 56%. The tariff 
rate used in this work is also reported on [14].  

 

Fig. 12. Average cost reduction using the IDRO algorithm for all case studies. 

V. CONCLUSION 

In this paper, a new residential load management algorithm 
based on multi-objective optimization combined with NAR-
NN is proposed. One of the main advantages of the proposed 
algorithm is its flexibility which models load demand patterns 
based on the lifestyles of the customers. The algorithm does 
not attempt to reduce the consumption but tries to provide an 
optimal pattern for the peak hours considering the consumption 
behavior for each specific consumer. The results show an 
average of 19% consumption reduction on peak hours and up 
to 17% load factor improvement. It consequently reduced the 
customers’ bills by almost 56%. 

The proposed method can be easily implemented in a small 
electronic device at a minimum cost. Moreover,  in contrast 
with the existing method which requires major changes in 
different home appliances, the proposed device can be 
separately added to the appliances at minimum cost and with 
the same accuracy. It is also possible to adapt the device's 
scheduling with new conditions if the peak load hours are 
changed. 
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