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Abstract—Distributed photovoltaic (PV) generation often oc-
curs “behind the meter”: a grid operator can only observe the
net load, which is the sum of the gross load and distributed
PV generation. This lack of observability poses a challenge
to system operation at both bulk level and distribution level.
The lack of real-time or near-future disaggregated estimates of
gross load and PV generation will lead to over scheduling of
energy production and regulation reserves, reliability constraints
violations, wear and tear of controller devices, and potentially
cascading failures of a system. In this paper we propose the use
of a Bayesian Structural Time Series (BSTS) model with local
solar irradiance measurements to disaggregate the summed PV
generation and gross load signals at a downstream measurement
site. BSTSs are a highly expressive model class that blends
classic time series models with the powerful Bayesian state space
estimation framework. Disaggregation is done probabilistically,
which automatically quantifies the uncertainties of the estimated
PV generation and gross load consumption. Depending on the
data availability in real-time, it can be used to disaggragate PV
and gross load at customer site, or can be used at the feeder
level. In this paper, we focus on solving the problem at feeder
level. We compare the performance of a BSTS model as well
as a handful of state-of-the-art methods on a Pecan Street AMI
dataset, using the National Solar Radiation Database (NSRDB)
to estimate local irradiance.

I. INTRODUCTION

In the last decade distributed photovoltaic (PV) generation
has become a significant source of renewable energy, and
its adoption is projected to continue growing for the next
several decades [1]. Increased penetration of distributed PV
poses new challenges to the operation and control of dis-
tribution power grids, which are frequently compounded by
the fact that these resources are typically unobserved [2]–
[4]. Most of distributed PV systems are located behind-the-
meter on customer premises, where utilities do not have direct
access to their output but only net load measurements. Real-
time estimation of the behind-the-meter PV generation is
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crucial to improving the situational awareness and reducing
the uncertainties of distributed PV generation in distribution
systems. By disaggregating PV generation from net-metered
measurements, distribution system operators can improve the
forecasting accuracy of net load, reduce the reserve deploy-
ment, and optimize the voltage profile.

To this end, a number of methods have been proposed to
disaggregate net load measurements into PV generation and
gross load components at several scales. These methods can be
divided into supervised disaggregation and unsupervised ap-
proached. Supervised methods use labelled, pre-disaggregated
data to perform disaggregation [5]–[7], while unsupervised
methods use only the aggregate signal, structural knowledge
of the system (eg. panel configurations), and environmental
measurements (eg. solar irradiance or temperature) [8]–[10].
More recently, [11] proposed using a “synthetic” PV generator
model combined with a Hidden Markov regression model for
gross load to perform disaggregation at the household-level.
Similarly, [12] also used a synthetic PV generator model as
a component of a probabilistic, load forecasting pipeline for
disaggregation at the regional level. Notably, while the forecast
is probabilistic, the disaggregation itself is not.

In this paper, we introduce a probabilistic model whose
structure mimics well-understood time series models, and
for which high-performing fitting algorithms already exist:
Bayesian Structural Time Series (BSTS) [13]. In this ap-
proach we construct a synthetic state space model, which is
designed so that the model has a structural similarity to classic
time series models (eg. the AR/I/MA class of models). This
methodology fundamentally differs from the aforementioned
unsupervised approaches by providing probabilistic estimation
of PV generation and gross load consumption. Instead of pro-
ducing a deterministic or “point” estimate of the disaggregated
signals, the BSTS model defines a joint probability density
function (PDF) over the gross load and PV generation at each
time point, and the dispersion and covariance structure of the
joint PDF automatically quantifies the uncertainties associated
with the disaggregated PV and load signals.

In addition to quantifying uncertainty, the BSTS model has
the advantage of being robust to noise in the input data.
The underlying methodology of BSTS disaggregation is to
consider all possible disaggregated signal shapes, and weight
them according to their plausibility with the model covariates
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and net load data. The BSTS approach will therefore only
make significant changes to its estimates of PV and gross load
when the input data exhibit a change large enough to alter the
plausibility of a substantial range of potential disaggregations,
reflecting real changes in the system.

These features of the BSTS approach can improve the
efficiency of distribution system operations. The joint PDF
produced by the BSTS model provides real-time bounds for
gross load and PV generation, and also accounts for correlation
in the errors between the two quantities, allowing the operator
to more precisely determine necessary reserve deployment.
Furthermore, robustness in the disaggregation estimate helps
prevent the operator from taking unnecessary control actions
due to noise in the data. These unique advantages contribute
to the novelty of our proposed method.

II. DATA

AMI data from Pecan Street Inc. Dataport was used to
assess the performance of our disaggregation model. This
data includes household-level power usage and PV generation
data at a 1-minute time resolution for 123 houses in the
Mueller neighborhood of Austin, TX. We test our proposed
method on 7 days in January and August, 2017. As our model
relies on local measurements of solar irradiance and ambient
temperature to disaggregate PV generation (quantities highly
correlated with PV and gross load), we supplemented the
Pecan Street data with data from the National Solar Radiation
Database (NSRDB). The NSRDB provides irradiance and
climate data (temperature, humidity, etc.) at a 30-minute time
resolution and a 4 km2 spatial resolution. To create a synthetic
distribution feeder, we summed the household-level Pecan
Street time series data, and then downsampled the sum to
30-minute resolution, matching the NSRDB data. We did not
include line loss or other grid effects in this feeder model.

III. DISAGGREGATION MODEL

A. Structural Time Series Model

Let Pt denote the observed, feeder-level net power con-
sumption at time t, St denote the downstream, distributed
PV generation, and Lt denote the gross load consumption.
In addition, we denote the solar irradiance metric as φt, and
the 1×m gross load covariate vector as Xt (see III-B below
for an explanation of the temperature covariates). We model
these quantities as evolving as follows:

St = βtφt + ε
(s)
t

βt = βt−1 + ε
(β)
t

Lt = Xtγ + Lt−1 + ε
(l)
t

Pt = St + Lt

(1)

where the random terms ε(·)t ∼ N(0, σ2
· ), which in the case of

the terms ε(s)t and ε
(l)
t represents evolution in the gross load

and PV generation not explained by their respective covariates.

Since the right-hand side of Eq. (1) is linear in the state
variables, we can define a “synthetic” state variable yt =
[St, βt, Lt, 1]T and then rewrite (1) into a state space model:

yt = Zt(γ)yt−1 + ωt

Pt = Ayt
(2)

where:

AT = [1, 0, 1, 0]

Zt(γ) =


0, φt, 0, 0
0, 1, 0, 0
0, 0, 1, Xtγ
0, 0, 0, 1

 (3)

ωt = [ε
(s)
t , ε

(β)
t , ε

(l)
t , 0]T

In addition to specifying the model structure as in (1) or (2),
the Bayesian approach also requires setting prior distributions
over all unknown parameters. We use the following priors:

S1 ∼ N(µS ,Σ
2
s)

β1 ∼ N(0,Σ2
β)

L1 ∼ N(µL,Σl)

γ ∼ N(0,Σγ)

(4)

There are several options to handle the unknown Σ2
· in

(4), as well as the σ2
· and from (1). The package used here,

bsts for the R statistical computing language, assigns them
empirically-derived inverse-gamma priors and then estimates
them simultaneously with the other unknown parameters [14].
However, for simplicity of presentation we will treat them as
simply known.

B. Load Model
We model the relationship between gross load and tem-

perature using a lagged temperature model, which reflects
that load commitments are often not due to instantaneous
ambient temperature. Furthermore, model performance using
lagged temperature demonstrated improvements over other
temperature models used in previous model iterations, which
for brevity are not discussed here [15]. To determine the
appropriate temperature lags we randomly designated one
day in both August and January as training data, and the
remaining six days as testing data. All performance metrics
were averaged over all such partitions of training and test data.

Given training temperature data T̃t and gross load L̃t,
temperature lags were determined using the cross-correlation
function:

CC(k) = F−1
[
F [T̃ ]∗(ω)F [L̃](ω)

]
(k) (5)

Where F is the Fourier transform. All timepoints k1, ..., km
corresponding to local maxima of |CC(k)| were selected as
lags for our model. Define the k-lag operator by:

Lk(Tt) =

{
0, t < k

Tt−k, t ≥ k
Then the covariate vector Xt was defined as:

Xt = [Lk1(Tt), ..., Lkm(Tt)]
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C. Model Fitting

Let y = [y1, ..., yt]
T and P = [P1, ..., Pt]

T (with similar
vectors defined for all other times series). Given the priors in
(4), we can now write the joint posterior distribution over the
state space:

Pr[y, γ|P ] ∝ L(P ;y, γ)π[y, γ]

Pr[S,L,β, δ, γ|P ] ∝ N(µS ,Σ
2
s)N(0,Σ2

β)N(µL,Σ
2
l )×

N(0,Σ2
γ)× (6)

n∏
t=1

[N(βtφt, σ
2
S)N(βt−1, σ

2
β)×

N(XT
t γ + Lt−1, σ

2
L)]

To estimate the disaggregated S and L we marginalize over
the state variables β and γ:

[S,L|P ] =

∫
[S,L,β, γ|P ]dβdδdγ

A point estimate of the disaggregated PV generation and true
load can then be obtained by taking the expectation of the
joint posterior over S and L:

(Ŝ, L̂) = E[S,L|P ][S,L]

Uncertainty in this point estimate is represented by the dis-
persion of [S,L|P ] about the expectation. While there are a
number of measures of dispersion, the most straightforward
choice for this purpose (and the one we will use) is the p%
probability region centered at the mode of [S,L,β, δ, γ|P ]
(ie. the p% quantile region).

In practice, the functional form of Eq. (6) is too complex
to handle analytically. We therefore use Markov Chain Monte
Carlo (MCMC) to sample from it, and use the empirical statis-
tics of the samples (mean, quantiles, etc.) as approximations
of the true quantities. Given the model (2), we can perform
MCMC using a generalization of the Kalman smoother [13],
[16].

IV. RESULTS

A. Model Comparisons

We compared the performance of our model to five other
state-of-the-art methods for disaggregation which use opti-
mization approaches. We tested the Contextually Supervised
Generation Estimation (CSGE) model [8], as well as the four
models proposed in [9], which we will refer to as Models
A-D (reflecting their labels in the original source). Multiple
versions of CSGE have been proposed, however due to data
availability constraints we implemented an older iteration
found in [17]. Full descriptions of these models can be found
in their corresponding citations.

To fit the BSTS model we iterated the sampling algorithm
for N = 105 iterations, using the bsts package for the
R statistical computing language. Burn-in length was esti-
mated automatically by bsts. Fitting the comparison models
was performed with the CVXOPT and the SciPy Optimize

packages for Python. All fitting was performed on a laptop
computer (Intel Core i5-4300U with 16GB of RAM). Posterior
sampling for the BSTS model took approximately 6 minutes
and 38 seconds, while fitting the CSGE model took .7 seconds,
and fitting Models A-D took .08 to 82.1 seconds.

We compare the performance of the six models under
consideration using the relative Root Mean Square Error
(rRMSE). For an estimate x̂t being compared to true values
xt, this is defined:

rRMSE =

√
1
N

N∑
t=1

(x̂t − xt)2

maxt(|xt|)
(7)

Each model’s performance estimating PV generation and gross
load is listed in Table I. For our proposed method, rRMSE
has been averaged over all training/testing partitions. We see
that the BSTS method achieves significantly lower rRMSE
than other state-of-the-art methods, and that therefore on
average it estimates PV and gross load more closely than
the optimization methods. While in January the BSTS model
performs only slightly better than CSGE at estimating true PV,
it performs substantially better at estimating gross load than
any other method.

In addition to these metrics, which are valid for all con-
sidered models, we also assess the performance of the BSTS
estimates using metrics which are only defined for probabilis-
tic estimates. Specifically, we look at the Prediction Interval
Coverage Probability (PICP) [18], which is defined as:

PICP =
1

N

T∑
t=1

1t (8)

where 1t is an indicator variable which is 1 when the target
variable is within the bounds of the prediction interval (in
this case the 95% quantile of the posterior density), and 0
otherwise. Since our model assumes that PV generation is
strongly determined by GHI, when GHI=0 the prediction in-
terval collapses and so PICP for these times will not accurately
reflect model performance. We therefore calculated PICP using
all time-points, as well as using only time-points where GHI

TABLE I
DISAGGREGATION PERFORMANCE FOR JANUARY AND AUGUST DATASETS

Model St rRMSE (Jan) St rRMSE (Aug)
BSTS 5.37% 9.74%
CSGE 6.75% 22.36%

Model A 11.54% 15.93%
Model B 10.41% 15.80%
Model C 10.52% 18.54%
Model D 12.07% 15.70%

Lt rRMSE (Jan) Lt rRMSE (Aug)
BSTS 11.77% 9.40%
CSGE 18.43% 21.53%

Model A 24.88% 15.25%
Model B 24.48% 15.17%
Model C 24.01% 30.07%
Model D 26.02% 15.04%
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TABLE II
BSTS CALIBRATION AND PRECISION BY TARGET VARIABLE

Metric St (Jan) Lt (Jan) St (Aug) Lt (Aug)
PICP 24.41% 78.08% 44.96% 85.50%

PICP, daytime 53.41% 52.84% 77.30% 76.40%
PINAW 5.89% 21.15% 15.29% 20.74%

> 0 (ie. the daytime), which gives a better picture of model
accuracy.

While the PICP is determined by prediction accuracy, it
also depends on the choice of prediction interval width. By
choosing an especially wide interval, PICP can be increased,
without a concurrent increase in model performance. We there-
fore pair it with the Prediction Interval Normalized Average
Width (PINAW), which measures the interval width of our
estimates. It is defined:

PINAW =
1

NW

T∑
t=1

(Ut − Lt) (9)

where W is the range of the target variable, and Ut and Lt
are the prediction upper and lower bounds at time t. When
the PICP is near 1 (high accuracy) and the PINAW is near 0
(high precision) it implies that the probabilistic algorithm is
performing very well.

The performance of the BSTS model in terms of these
probabilistic metrics is given in Table II. The daytime PICP
indicates that our 95% prediction intervals contain the true
value only about 50-75% of the time, despite being wide
relative to the scale of the data. This suggests that our model
is overconfident, which is a common problem with Kalman
Filters when the underlying model doesn’t fully capture the
true dynamics of the data. Indeed we see that this problem
is worse for the January data, where the load model seems
structurally unable to capture an unusual mid-day reduction
in gross load (as shown in Fig. 1). We expect that further
developing our model to more faithfully track load dynamics,
for example by leveraging reactive power measurements, could
yield improvement in this area.

V. DISCUSSION

The BSTS model generally performed quite well relative
to the benchmark comparisons (Table I), however there were
some cases where no model performed well. Figs. 1 and 2
show disaggregated signal estimates from the BSTS and CSGE
models for a day where both models struggled to accurately
estimate true load. This appears to be due to a sudden decrease
in load which occurred mid-day several times in the January
dataset that was not captured by the covariates used in either
model. This unexpected drop leads to different behaviors in
both the BSTS and CSGE models, which highlight some of
the core differences between the BSTS approach and the other
optimization approaches.

In Fig. 2 we see that the estimates produced by CSGE
exhibit large, unfounded swings during the middle of the day.
This is likely because the surface of the loss function used by
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Fig. 1. BSTS estimated PV generation and gross load for one day in the
January dataset. Gray ribbon indicates 95% credible interval.
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Fig. 2. CSGE estimated PV generation and gross load for one day in the
January datase

CSGE is relatively flat near its minimum and so its argmin is
not a good estimate, as there are many solutions near it which
perform almost identically; the CSGE model is “indifferent”
between a range of possible disaggregations. The flatness of
the loss function is likely exacerbated by the drop in gross load
being inconsistent with the model (although similar problems
occurred on days where the drop was not present). On the
other hand, the BSTS estimate does not exhibit this erratic
behavior. Instead, the model represents its indifference with
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increasing uncertainty (visible in the gray confidence band in
Fig. 1), and since the posterior expectaion averages over this
uncertainty, the resulting L̂ in the BSTS model is better-fitting
and less volatile.

Another feature of the BSTS model which contributes to its
performance is that it allows the βt term to evolve in time in a
systematic way. This is a unique feature of the BSTS approach,
and it allows our model to overcome deficits in the GHI data,
which does not always correlate well with PV generation due
to the discrepancy in spatiotemporal resolution between the
NSRDB and the Pecan Street dataset, as well as the absence
of PV generation site configuration data (the PV cell zenith and
azimuth at each generating site). While we employed a fairly
simple model of the coefficient’s evolution, more sophisticated
models are possible accounting for seasonalities in the solar
site generating capacity. Similar models can be constructed
for other covariates, depending on the particular needs of the
dataset, for example allowing the power factor to have time-
dependence in a model which includes reactive power.

While our developed BSTS method performs well, relative
to other methods, it also faces some challenges. In Table II
we see that our model is somewhat overconfident, suggesting
the our model is unable to capture some dynamics in the PV
generation and gross load. Furthermore, the MCMC algorithm
used to fit the BSTS model had a higher computational cost
than any of the models based on optimization. Although
our model was fit within the time resolution of the data,
shorter timescales may prove challenging. Fitting time can
be reduced by running multiple sampling chains over several
nodes. Furthermore, the comparison in fitting time is not
perfect as the BSTS model also produces uncertainty estimates
“for free”. Estimating uncertainty in an optimization approach
requires, such as bootstrapping, which adds computational cost
not reflected in their implementation here.

VI. CONCLUSION

In this paper we have analyzed the efficacy of Bayesian
Structural Time Series for probabilistically disaggregating
consumer load and PV generation at the feeder-level. Using
Pecan Street Inc. AMI data we demonstrated that our proposed
method performs better than other state-of-the art PV disaggre-
gation models, particularly in the August dataset. In addition
to accurately estimating the component signals, the novelty
in our approach is that it also quantifies the uncertainty in
the estimates. We also show that it has more favorable failure
modes, behaving less erratically when the problem is weakly-
constrained. The work presented here suggests a number of
ways to develop the BSTS model further. Estimation accuracy
of disaggregated PV generation and gross load can be achieved
by employing more sophisticated load models, and fitting time
can be reduced through a more sophisticated implementation
of the sampling algorithms. This framework can also be
extended to estimate generation and load at the household
level, although this would likely require higher resolution
irradiance and environmental data. Finally, given forecasts of
the relevant covariates, the BSTS approach can be extended

to provide probabilistic forecasts, both of the net load as well
as of the disaggregated, behind-the-meter PV generation.
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