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Abstract—Due to the lack of sufficient online measurements for
distribution system observability, pseudo-measurements from short-term
load or distributed renewable energy resources (DERs) forecasting are
used. However, the accuracy of them is low and thus significantly
limits the performance of distribution system state estimation (DSSE).
In this paper, a robust DSSE that integrates multi-source measurement
data is proposed. Specifically, the historical low-voltage (LV) side smart
meters are used to forecast load and DERs injections via the support
vector machine (SVM) with optimally tuned parameters. By contrast, the
online smart meters at LV side are utilized to derive equivalent power
injections at the MV/LV transformers, yielding more accurate pseudo-
measurements compared to the forecasted injections. Furthermore, to
deal with bad data caused by communication loss, instrumental errors
and cyber attacks, robust DSSE that relies on generalized maximum-
likelihood (GM)-estimation criterion is developed. The projection statis-
tics are developed to adjust the weights of each measurement, leading to
better balance between pseudo- and real-time measurements. Numerical
results conducted on modified IEEE 33-bus system with DG integration
demonstrate the effectiveness and robustness of the proposed method.

Index Terms—Distribution system state estimation, machine learning,
pseudo measurement, real-time measurement, smart meter.

I. INTRODUCTION

W ITH the increasing integration of renewable energy, load
characteristics become highly stochastic, thus posing a great

challenge for power distribution systems monitoring and control. As
one of the fundamental functions in the distribution management
system (DMS), distribution system state estimation (DSSE) is able
to provide reliable and accurate data for DMS applications, such
as outage management, loss reduction, demand response, etc [1]–
[3]. However, low measurement redundancy of distribution network
often prevents the operator from estimating all state variables, i.e.,
the voltage magnitude and angle at each bus [4]. To improve the
system observability, pseudo-measurements derived from histori-
cal data or other indicators are usually advocated [3]. But those
pseudo-measurements have lower accuracy than real-time measure-
ments, which would degrade the DSSE performance. On the other
hand, given the limited budget on deploying new sensors, pseudo-
measurements have to be used.

To model pseudo-measurements, several methods have been pro-
posed in the literature. In [5], the errors of pseudo-measurements were
assumed to be much greater than those of real-time measurements. In
[6], various distribution functions (Weibull, normal, Erlang, and beta)
have been applied to fit the group domestic loads. As a result, they
proposed the beta distribution function. However, the beta distribution
cannot be used for the weighted least squares (WLS) based DSSE.
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A similar research effort was reported by Ghosh et al. [7] in DSSE
problem, where they validated various models such as normal, log-
normal, and beta distribution through chi-square goodness of fit test.
In [8], two methods to model pseudo-measurements were proposed.
One was based on analyzing the correlation between real-time mea-
surements taken at substations and load pseudo-measurements, while
in another approach the accuracy of the load pseudo-measurements
was improved through Gaussian Mixture Models (GMM). Simulation
results showed that both methods had similar performance. The GMM
was further investigated in [9], [10] to produce pseudo-measurements
for DSSE. In [11], an artificial neural network (ANN) algorithm
was adopted to generate pseudo-measurements to compensate the
missing real-time measurements during contingent events. However,
a prior knowledge of the real-time measurements is required. Thanks
to the wide-area installations of smart meters at the LV side of the
distribution systems [12], sufficient historical load and DERs data are
available for better pseudo-measurements modelings [13]. In [14],
the smart meters were used together with the online measurements
for MV DSSE. The impacts of smart meter data aggregation on the
MV DSSE was investigated in [15]. However, the data quality issues
associated with smart meters have not been addressed and there is
still a grand challenge of how to combine smart meter and traditional
measurements effectively for improving state estimation accuracy.

In this paper, a robust DSSE for the MV network is proposed
that integrates multi-source measurement data from smart meters,
supervisory control and data acquisition (SCADA) and pseudo-
measurements. In particular, the historical aggregated smart meter
data are utilized by the machine learning method, i.e., support
vector machine (SVM) for short-term load and DERs injection
forecasting. These forecasts are taken as pseudo-measurements. On
the other hand, the online smart meters at LV side are utilized to
derive equivalent power injections at the MV/LV transformers. Upon
the availability of three types of data, the projection statistics are
developed to detect data quality issues and then adjust the weights
of each measurement. Finally, the generalized maximum-likelihood
(GM)-estimator is presented to filter out measurement errors and
suppress the influences of bad data and model uncertainties.

The remainder of this paper is organized as follows. Section
II describes the problem formulation. In Section III, the proposed
robust DSSE is shown in detail. Section IV shows and discusses the
numerical results and finally Section V concludes the paper.

II. PROBLEM FORMULATION

For an distribution system with n-buses, the relationship between
the measurement vector z ∈ Rm and the state vector x ∈ Rn (i.e.,
voltage magnitudes and angles) can be described as follows [16]:

z = h(x) + e, (1)

where h(·) ∈ Rm×n is the vector of measurement functions;
e ∈ Rm is a random measurement error vector assumed to be
distributed with zero mean and covariance matrix R. To obtain
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Fig. 1. Framework of the proposed robust DSSE.

state estimation, iterative WLS criterion [16] is adopted to solve the
following objective function

x̂ = arg min
x

[z − h (x)]TR−1 [z − h (x)] , (2)

with the most basic form of iteration updates

x̂k+1 = x̂k + ∆k, k = 1, 2, ..., (3)

∆k = (HTR−1H)−1HTR−1(z − h(x̂k )), (4)

where H = ∂h/∂x|x=x̂k is the Jacobin matrix. The algorithm
converges once ∆k becomes smaller than a pre-specified tolerance
threshold.

Due to the limited number of real-time measurements in the
distribution system, pseudo-measurements from short-term load fore-
casting are typically added to z for measurement redundancy im-
provement. However, their accuracies are much lower than the online
SCADA measurements, leading to degraded DSSE performance.
With the wide-area deployment of smart meters, its usage with
SCADA measurements provides an alternative way of enhancing
DSSE. It should be noted that smart meters are usually used for
short-term load forecasting [13] to obtain pseudo-measurements. As
the smart meters have better accuracy and spatial resolutions than
the historical load data from load survey, modeling, etc., it indeed
improves the quality of pseudo-measurements. However, the benefits
of online smart meters are not fully explored. In addition, the smart
meter readings may be subject to cyber attacks, electricity theft and
communication issues, yielding incorrect values. To address these
issues, a robust DSSE that integrates both historical and online smart
meters with SCADA measurements is proposed.

III. PROPOSED ROBUST DSSE

The framework of the proposed robust DSSE is displayed in Fig.
1. It consists of four major blocks, namely the use of aggregated
historical smart meters for generating MV pseudo-measurements via
machine learning; the derivation of measurements from online smart
meters for the MV/LV transformers; the robust state estimation using
pseudo-measurements, derived online measurements from smart me-
ters and real-time SCADA measurements, and the closed feedback
loop for updating historical LV smart meters.

A. Pseudo-Measurements Modeling

Although a lot of smart meters have been installed, they are
typically deployed at the LV network. The smart meters are able
to provide power consumption and voltage magnitude reading every
15min. Since the behaviors of each customers are full of randomness,
it is challenging to predict load profiles at the LV network. However,
if all customers along the downside of MV/LV transformers are
aggregated together, the load profiles would be much smoother as
seen at the MV level. Motivated by this, we propose to aggregate
customers’ power measurements so as to obtain the loading informa-
tion at the MV/LV transformers. These historical data are recorded
and will be used as the inputs for training the forecasting model via

the SVM. Note that SVM is a widely used machine learning tool
for data classification and regression [17]. In this paper, the support
vector regression (SVR) is adopted for the load time series prediction.
Specifically, given training data (x1, y1), ..., (xl, yl), where xi are
inputs and yi are their associated output values, SVR solves the
following optimization problem:

f = min
w,b,ξ,ξ∗

1
2
wTw + C

l∑
i=1

(ξi + ξ∗i )

s.t. yi −
(
wTφ (xi) + b

)
≤ ε+ ξi(

wTφ (xi) + b
)
− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., l

(5)

where xi is mapped to a higher dimensional space by the kernel
function φ and will be set as Gaussian radial basis function, i.e.,
φ (xi) = exp

(
− ‖x−xi‖

2

2σ2

)
, where σ is a tuning parameter; ξi is

the upper training error (ξ∗i is the lower) subject to the ε-insensitive
tube

∣∣y − (wTφ (x) + b
)∣∣ ≤ ε. C and ε are parameters that control

the regression quality and the width of the tube. The constraints
in (5) indicate that we should put most data (xi, yi) in the tube∣∣y − (wTφ (x) + b

)∣∣ ≤ ε. If xi does not fall into the tube, there is
an error ξi or ξ∗i that should be minimized in the objective function.

The appealing feature of SVR is that it avoids under-fitting
and over-fitting the training data by minimizing the training error

C
l∑
i=1

(ξi + ξ∗i ) as well as the regularization term 1
2
wTw. For tradi-

tional least square regression, ε is always set to 0 and the data is not
mapped into higher dimensional spaces. Thus, SVR is a more general
and flexible treatment on regression problems. As is well-known that
the choices of the kernel parameter σ and the control parameter C
would affect the prediction results, the intelligent stochastic searching
method, i.e., particle swarm optimization is used to tune them.

Once the regression model is learnt from the historical data, the
forecasted MV load/DERs real and reactive power injections for the
ith bus can be obtained, i.e., P̃MV

i and Q̃MV
i . The forecasting error

covariance matrices are R̃p and R̃q , respectively.

B. MV/LV Transformer Measurement Derivations

It is worth pointing out that the loads in similar geographical areas
usually exhibit temporal and spatial correlations. These are captured
by the SVR-based short-term load forecasting. However, besides
the statistical information in the historical smart meters, there are
system state information contained in the real-time smart meters that
have not been used yet. By using the smart meter data aggregation
strategy, the online real and reactive power consumptions at the
LV side of the ith MV/LV transformers can be estimated, yielding
P̂LVi and Q̂LVi , respectively. Then, the estimated equivalent MV/LV
transformer power injections P̂MV

i and Q̂MV
i can be derived via the

following equations:

P̂MV
i = P̂LVi + P 0

i + P si (

∣∣∣ŜLVi ∣∣∣/
S0
i
)2, (6)

Q̂MV
i = Q̂LVi +Q0

i +Qsi (

∣∣∣ŜLVi ∣∣∣/
S0
i
)2, (7)

where ŜLVi is the aggregated complex load power of LV customers
measured by smart meters; P 0

i and Q0
i are the active and reactive

power of the transformer when there is no load connected, respec-
tively; P si and Qsi are the short-circuit active and reactive power of
the transformers, respectively; S0

i is the rated apparent power of the
transformer. As P̂LVi , Q̂LVi and ŜLVi contain errors, they will be
propagated to the derived P̂MV

i and Q̂MV
i . Furthermore, it is found

from (6)-(7) that the errors are in nonlinear relationship. To this end,
the unscented transformation-based method proposed in our previous
work [18] is advocated to calculate the covariance matrices of P̂MV

i

and Q̂MV
i , yielding R̂p and R̂q , respectively.
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By resorting to equations (6)-(7), many derived power measure-
ments from online smart meters can be obtained. As the real-
time smart meters better reflect the system operating conditions,
the derived power measurements will yield better accuracy than
the pseudo-measurements. Furthermore, thanks to the widespread
installation of smart meters, a large number of such derived equivalent
power measurements can be obtained. Thus, a system with higher
measurement redundancy is expected allowing us to improve estima-
tion accuracy as well as design robust estimators against bad data.

C. Robust DSSE and Historical LV Data Updating

In practice, the real-time measurements are always subject to
various types of errors caused by many different reasons, such
as communication issues, cyber attacks, instrumental errors, etc.
If these errors are large, bad data occur. On the other hand, if
there are changes on system operation conditions due to topology
errors, sudden load/DERs injections, the pseudo-measurements from
short-term forecasting that are close to the event locations are no
longer reliable. Therefore, robust DSSE is required. In this paper,
we develop the robust DSSE based on the generalized maximum-
likelihood (GM)-estimation criterion. Its objective function is:

J(x) =

m+2p+2q∑
i=1

ω2
i ρ(rSi), (8)

where p and q are the number of load/DERs buses; ωi is the weight
aimed at bounding the influence of bad data, including vertical
outliers and bad leverage points; ρ(·) denotes the Huber cost function
[19]; rSi = ri/σiωi is the standardized residual; ri = zi−hi(x̂); σi
is the standard deviation of ith measurement, which is the square-root
of the diagonal element of R = block[R R̃p R̃q R̂p R̂q]. block
means augmenting the matrices in a diagonal manner.

The calculation of ωi is as follows: let the pseudo-measurement
vector z̃ = [(P̃MV )T (Q̃MV )T ]T , the derived measurement vector
ẑ = [(P̂MV )T (Q̂MV )T ]T and the online SCADA measurement
vector zs, yielding z = [z̃T ẑT zTs ]T . There are two bad
data scenarios we need to deal with, namely the incorrect pseudo-
measurements due to the change of system operating conditions and
the incorrect online smart meters and SCADA measurements. If it
is the former case, some of the forecasted measurements will not be
consistent with the online measurements. To check that, the projection
statistics (PSs) [19] are applied to the following innovation matrix

N = [z̃ − ẑ z̃′ − ẑ′], (9)

where z̃′ and ẑ′ represent the forecasted measurements and online
measurements at the previous time instants. Then, if the PS value of
the ith element satisfies PSi > χ2

2,0.975, it is declared as a bad data.
The choice of threshold χ2

2,0.975 is because the PS values follow a
chi-squares distribution [19]. After that, the weight of the ith pseudo-
measurement is modified as follows:

$i = min
(
1, χ2

2,0.975

/
PS2

i

)
, i = 1, ..., p+ q (10)

It should be noted that the incorrect online smart meters and SCADA
measurements can happen as well. To deal with that, PSs are applied
to the Jacobian matrix [Hẑ Hzs ] associated to ẑ and zs. If the PS
value of the jth element satisfies PSj > χ2

k,0.975, it is confirmed
to be a bad data, where k is the number of non-zero entry for the
jth row of [Hẑ Hzs ]. Note that the sparse version of PSs should be
used here as most elements of the Jacobian matrix are zeros. After
that, the weight associated with the jth measurement will be changed
as follows:

$j = min
(
1, χ2

k,0.975

/
PS2

j

)
, j = p+q+1, ...,m+2p+2q, (11)

Once the weights of all measurements are determined, the next
step is to solve (8), whose minimum should satisfy the following
equation:

∂J (x)

∂x
=

m+2p+2q∑
i=1

−ciωi
σi

ψ (rSi) = 0, (12)

where cTi is the ith column vector of the Jacobian matrix H;
ψ (rSi) = ∂ρ (rSi) /∂rSi . We multiply and divide both sides of
(12) by rSi , yielding

HTR
−1

Q (z − h(x)) = 0, (13)

where q (rSi) = ψ (rSi) /rSi and Q = diag (q (rSi)). By taking
the first-order Taylor series expansion of h(x) about x̂` and using
the iteratively reweighted least squares (IRLS) algorithm, we get the
following iterative form:

∆x̂(`) =
(
HTR

−1
Q(`)H

)−1

HTR
−1

Q(`)(z − h(x̂`)), (14)

where ` is the iteration counter. The algorithm converges if
‖∆x̂(`)‖∞ ≤ 10−3.

Once the state estimates are obtained, they can be substituted into
the measurement function to estimate the derived measurements at the
MV/LV transformers. Based on the relationship between the derived
measurements and online smart meters, more accurate smart meters
can be estimated. They are stored and will be used for regression
model training by SVM in the next time. Therefore, better pseudo-
measurements can be expected.

IV. NUMERICAL RESULTS

To validate the performance of the proposed robust DSSE, ex-
tensive simulations are carried out on the IEEE 33-bus system,
whose distribution line data and loads can be found in [20]. 8
distributed generations (DGs) are integrated into this system and
they are modeled as power injections. Their locations are at buses
5, 9, 12, 15, 18, 22, 29 and 33, respectively. Each DG produces
80% real and reactive power of the load it is connected to. The
DSSE is updated every 15 min, which is consistent with the smart
meter scan rate. The SCADA measurements are updated every 5 min
and only those SCADA measurements that have same time stamps
as the smart meters are used. The online SCADA measurements
include the voltage magnitude at bus 1, the real and reactive power
injections at buses 4, 5, 8, 11, 14, 17, 20, 23, 26, 29, and 32,
and the real and reactive power flows on lines 2-3, 2-19, 6-7, 6-
26, 10-11, 14-15, 16-17, 17-18, 24-25, 27-28, 30-31 and 32-33.
The true operating conditions of the distribution system, i.e., voltage
magnitudes and angles are obtained from the load flow calculations
based on the backward/forward sweep method. All buses except for
the reference bus 1, the buses 8, 9, 12, 15, 21, 22, 25, 29 and
33 have MV/LV transformers. The smart meters at the LV side
are aggregated for short-term load forecasting and the derivation of
equivalent transformer injections. For the SCADA measurements, the
added noise of voltage magnitude measurements is assumed to be
Gaussian white noise with a 0.5% standard deviation, while those of
the power injection and power flow measurements are assumed to be
Gaussian white noise with a 1% standard deviation. For the LV smart
meters, the added noise is assumed to be Gaussian white noise with
a 3% standard deviation. All the tests are performed on a PC with
Intel Core i5, 2.50 GHz, 8GB of RAM.

A. Case 1: Steady-State Operation Condition

In this scenario, the load and DG profiles with low degrees of
stochasticity are used. Therefore, the system is operating under
steady-state conditions. The historical smart meter data that contain
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Fig. 2. Diagram of the IEEE 33-bus system with DERs.
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Fig. 3. Case 1: estimated bus voltage angles under normal operation condition.

100 points for each MV/LV transformers are utilized for short-term
load forecasting while the 101th measurements are used for testing.
With the SVR method tuned by the PSO, the root mean square
error of load forecasting is about 5.2%. Therefore, the standard
deviation of the added noise for pseudo-measurement is set as 5%
with some uncertainties as we could not get the true error. Only
the estimated bus voltage angles are shown in Fig. 3 due to the
space limitation. It can be found from the figure that as the pseudo-
measurements are of reasonably good accuracy, all methods are able
to achieve high statistical efficiency of estimating the voltage angles.
The buses with relatively large errors are those that are close to DGs.
This is expected as the randomness and uncertainties of DGs cause
difficulties in getting accurate short-term forecasts. On the other hand,
since the online smart meters have better accuracy than the pseudo-
measurements, the derived equivalent power injections at the MV/LV
transformers are also better. As a result, the proposed robust DSSE
achieves better results than the other two methods.

B. Case 2: High Degree of Stochasticity of DGs

The test conditions are similar to Case 1 except for that the DGs are
of high degree of stochasticity. In particular, the uncertainties of the
DGs are assumed to be 20% simulated by Gaussian distribution. By
using the PSO-tuned SVR method, the root mean square error of load
forecasting is about 22.5%. To this end, the standard deviation of the
added noise for pseudo-measurement is set as 20%. Figs. 4-5 display
the estimated voltage magnitudes and angles of all buses, respectively.
As expected, due to the high degree of stochasticity of DGs, those
load forecasts that are close to DG buses have high uncertainties,
yielding poor pseudo-measurements. These uncertainties are further
propagated to the state estimates, causing large biases. Due to
the lack of robustness, the traditional WLS method obtains the
worst state estimates. By contrast, with the projection statistics as
well as the GM-estimation criterion, the uncertainties of pseudo-
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Fig. 4. Case 2: estimated bus voltage magnitudes with high degree of
stochasticity of DGs.
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Fig. 5. Case 2: estimated bus voltage angles with high degree of stochasticity
of DGs.

measurements can be mitigated slightly, yielding better estimates
than the WLS. Note that the distribution system does not have good
level of measurement redundancy and therefore the robustness of
the estimator is limited. This can be validated by comparing the
results with our proposed robust DSSE. The smart meters are used to
derive equivalent power injections at the MV/LV transformers. These
measurements are of less than 5% uncertainties, which are much more
accurate than the pseudo-measurements. By combining them with the
real-time SCADA measurements, we can find that the influences of
the DG uncertainties have been significantly mitigated. The errors
of the estimates are acceptable. Note that the accuracy of the robust
DSSE depends heavily on the quality of smart meters and SCADA
measurements. In fact, the low quality pseudo-measurements have
cause negative impacts to the results. However, we still have to use
them for helping us detect and identify bad data. There is a trade-off
between robustness and measurement redundancy improvement by
the pseudo-measurements.

C. Case 3: Occurrence of Bad Data

Due to communication issues and sudden DG injection changes,
the power injection measurements P9, P11 and P16 are corrupted with
gross errors. In particular, the received measurements are 4 times
of their original values. Note that P9, P11 and P16 represent the
forecasted value, the online SCADA measurement and the derived
measurement from smart meters, respectively. The purpose is to cover
the scenario that all three types of measurements can have bad data.
Figs. 6-7 show the estimated voltage magnitudes and angles of all
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Fig. 6. Case 3: estimated bus voltage magnitudes when measurements P9,
P11 and P16 are corrupted with gross errors.
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Fig. 7. Case 3: estimated bus voltage angles when measurements P9, P11

and P16 are corrupted with gross errors.

buses in the presence of bad data, respectively. It can be observed
from the results that as WLS lacks of robustness to bad data, its
estimation results are significantly biased. It is interesting to note
that unlike the transmission system, where the voltage angles have
much stronger correlation with power injections than that of the
voltage magnitudes, both the voltage magnitudes and angles have
high correlations with the power injections in the distribution system.
This is due to the high R/X ratio. As a result, we can find from the
figures that because of incorrect power injections, both the estimated
voltage magnitudes and angles have large errors. By contrast, thanks
to the robustness, the GM-estimator that uses pseudo-measurements is
able to suppress the influence of bad data. The results are still biased
as the pseudo-measurements are not of high quality, which restrict
the capability of the GM-estimator. On the other hand, the use of
derived measurements from smart meters at the MV/LV transformers
allows the GM-estimator greatly bound the negative effects of bad
data, yielding slightly biased state estimates.

Finally, for all three cases, the computing times of the proposed
robust DSSE are less than 0.4s while that of the WLS is 0.1s. It is
expected that WLS is faster than the robust DSSE but it lacks of
robustness to bad data and yields lower accuracy. It should be noted
that the computing time of each method is affected by the size of the
distribution system. Thus, for very large-scale distribution system,
a distributed implementation or parallel computing techniques are
useful. We will investigate that in our future work.

V. CONCLUSION

This paper presents a robust DSSE for the MV network with the
consideration of multiple data sources, including SCADA measure-
ments, historical and online smart meters. Specifically, the historical
aggregated smart meters are used by the SVR for short-term load
forecasting to generate pseudo-measurements. The feedback loop
updating of smart meters from the robust estimation is also presented
to enhance the quality of the historical data. To further improve
the system measurement redundancy with online measurements, we
utilize the real-time smart meters at LV side to derive equivalent
power injections at the MV/LV transformers. The projection statistics
are extended and used together with the GM-estimator to detect and
suppress the influence of bad data and model uncertainties. Numerical
results conducted on modified IEEE 33-bus system demonstrate the
effectiveness and robustness of the proposed method.
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