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Abstract—Protection equipment is used to prevent damage to
induction motor loads by isolating them from power systems in
the event of severe faults. Modeling the response of induction
motor loads and their protection is vital for power system
planning and operation, especially in understanding system’s
dynamic performance and stability after a fault occurs. Induction
motors are usually equipped with several types of protection
with different operation mechanisms, making it challenging to
develop adequate yet not overly complex protection models
and determine their parameters for aggregate induction motor
models. This paper proposes an optimization-based nonlinear
regression framework to determine protection model parameters
for aggregate induction motor loads in commercial buildings.
Using a mathematical abstraction, the task of determining a
suitable set of parameters for the protection model in composite
load models is formulated as a nonlinear regression problem.
Numerical examples are provided to illustrate the application of
the framework. Sensitivity studies are presented to demonstrate
the impact of lack of available motor load information on the
accuracy of the protection models.

Index Terms—Composite load model, induction motor, protec-
tion model, nonlinear regression.

I. INTRODUCTION

Traditionally distribution systems loads have been modeled
as lumped constant impedance (Z), constant current (I), or
constant power (P) loads (abbreviated as ZIP) in transmission
systems studies. Some early efforts towards detailed load mod-
eling resulted in the component-based load models using load
class and composition data [2], and the ”interim” load model
[3]. However, such load models were found to be inadequate
to represent the Fault-Induced Delayed Voltage Recovery
(FIDVR) phenomenon [4], [7] which are of increasing concern
for the safe and secure operation of power system networks
[6]. The fact that FIDVR events are not well represented in
power system studies has fueled several efforts in recent years
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towards the development of a ”composite load model” [1],
[5], focusing in particular on loads with a high penetration
of induction motors. A composite load model for dynamic
simulations has been developed [5], and used in both planning
and operation in Western Electricity Coordinating Council
(WECC) in United States. There are four types of electric
motors in the WECC composite load model - 1) motor A:
three phase (3φ) induction motors that operate under constant
torque. Examples of such motors include air-conditioners and
refrigerators in large commercial buildings; 2) motor B: 3φ
induction motors with high inertia, operating under speed-
dependent torque. Examples include fan motors in residential
and commercial buildings; 3) motor C: 3φ induction motors
with low inertia, operating under speed-dependent torque.
Examples include pump motors in commercial buildings; and
4) motor D: 1φ induction motors. Examples include residential
and small-commercial air-conditioners and heat pumps.

Due to the diversity and complexity of protection schemes
in induction motor loads [10], developing adequate aggregate
protection models and setting proper parameters is a complex
and challenging task. The fractions of the motor loads in
the composite load model vary based on different regions,
seasons and day types. In addition, for different building
types, the motor types vary significantly with corresponding
protection schemes [8]. Therefore, a composite protection
model is needed to aggregate the performance of the protection
of all the motor loads in the composite load model. Recent
works have looked into the composite protection behavior of
residential and commercial building motor loads [10]–[13]. In
[11], the authors presented a methodology to generate com-
posite protection profiles for different commercial buildings
in representative cities across different climate zones. Using
integrated transmission and distribution dynamic co-simulation
with detailed models of motor loads and associated protection
schemes, the authors showed in [10] that the aggregate pro-
tection response of motor loads of different types can vary
significantly, which were not adequately captured or reflected
by the existing protection in WECC composite load model.

While the composite protection behavior of motor loads can
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be complex and time-varying, there is a need to simplify this
model for easier integration into higher-level (transmission
systems) simulation programs. Moreover, even though the
distribution networks are seeing an increased deployment
of advanced sensors and meters, it is reasonably expected
that motor load fractions will likely be unknown, with their
estimates being available with associated estimation errors.
This paper uses a recently introduced mathematical abstraction
(in [15]) to represent the protection profiles, and proposes a
nonlinear regression problem to obtain a suitable simplified
model of the composite protection profile. Section II of this
paper introduces a mathematical abstraction of the protection
schemes. Section III presents the nonlinear regression problem
to obtain the parameters of a suitably simplified composite
protection scheme. Illustrative results on the application of the
framework are presented in Section IV, along with a study of
the accuracy of the protection model under various uncertainty
scenarios. The article is concluded in Section V.

II. PROTECTIONS: MATHEMATICAL MODELING

Motors are typically protected by multiple devices, such as
relays, contactors, thermal protection, etc. During a fault, as
the voltage drops below a certain limit for longer than a certain
duration, multiple protection mechanisms could be triggered
to trip the associated motor load. Fig. 1 illustrates how an
aggregate motor load may respond during a voltage event due
to the various protection schemes activated over the duration
of the fault (Note that Fig. 1 ignores the motor dynamics, but
focuses only on the effect of the protection). Understanding the
behavior of motor loads under the action of different protection
schemes is of paramount importance.
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Fig. 1: Typical load tripping profile.

Modeling protection schemes, in general, is a challenging
task. The protection equipment present in different motors
vary widely in their operating parameters (i.e. tripping and
reconnection behavior). Furthermore, the response parameters
of a protection device may not be static, and can also depend
on factors such as the loading on the motor (e.g. fully loaded
motors will likely trip earlier than lightly loaded motors),
which may in turn depend on conditions such as the outside
air temperature, occupancy of a buildings, etc. In this paper,
we adopt the mathematical model of the protection schemes
introduced recently [15], which determines, given a certain
fault, if the protection would be tripped or if it would remain
in the operational region based on some static trip conditions.

A. Modeling Protection schemes

Definition 1: [15] Trip-zone for a given protection scheme-i,
denoted by T i , is defined as the set of pairs of voltage levels
at fault (vf ) and the fault duration values (tf ) such that the
protection-i is tripped if and only if (τf , vf ) ∈ T i , i.e.

(τf , vf ) ∈ T i ⇐⇒ protection-i is tripped.

Each protection scheme can be modeled mathematically in
the form of a discrete-valued function f i : R2

≥0 7→ {0, 1}
defined as follows:

f i(τf , vf ) =

{
0, (τf , vf ) ∈ T i
1, otherwise (1)

where the value of the function is 0 whenever the protection
is tripped (i.e. the motor is disconnected from the network),
and 1 when the protection has not been tripped (i.e. the motor
is still connected to the network). Note that the shape of the
trip-zone is different for different protections.

Remark 1: In this work, we focus only on the tripping of
the protection and not on the reconnection event.
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Fig. 2: Examples of a protection diagram for the protection
scheme P1-P4-P5. Black region denotes the trip-zone..

Motor protection schemes commonly found in commercial
buildings in United States can be categorized into five different
types, each of which is characterized by a range of voltage
deviations and durations for tripping after the fault - 1)
electronic relays (P1), 2) current overload relays (P2), 3)
thermal protection (P3), 4) contactors (P4) and 5) building
management system (P5). For more details readers are referred
to [8], [11]. Most often the motors are protected not by a single
mechanism, but by a combination of the different protection
schemes, in a series combination. In a series combination of
protections, each protection needs to be in operational state
in order for the motor to be connected to the network. Let us
consider some protection-k which is a series combination of
protection-i and protection-j . Then the following holds:

T k = T i ∪ T j , (2a)

(or, equivalently) fk(τf , vf ) = f i(τf , vf ) · f j(τf , vf ), (2b)

i.e. the trip-zone of a series combination is a union of the
trip-zones of each of the protections in the combination. In
other words, the motor is disconnected from the network
whenever any of the protections in the series combination trips.
Fig. 2, adopted from [15], shows an example of the protection
diagram for the series combination P1-P4-P5.



B. Generating Composite Protection

Different induction motors are protected by various (series
combinations of) protection schemes. Let us denote the set of
all available (series) combinations of protection schemes by

P : set of all available protection combinations .

such that each member of the set P is unique. Composite
protection modeling is about constructing a reduced order
protection model that can predict the fractions of total motor-
load tripped during a fault.

Definition 2: [15] The composite protection scheme of a
collection of motors served by (combinations of) protection
schemes belonging to the set P can be mathematically mod-
eled in the form of the (discrete-valued) function F : R2

≥0 7→
[0, 1] defined as follows:

F (τf , vf ) =
∑
i∈P

πi f i(τf , vf ) (3)

where πi ∈ [0, 1] is the fraction of the motor-load served by
protection-i , i.e.

∑
i∈P π

i = 1. Henceforth F is referred to as
the ‘composite protection function’.

Remark 2: Note that the fractions of the motor-load served
by a particular protection type is a time-varying quantity. Thus
the composite protection function will also be time-varying.
For the purpose of this work, we do not explicitly model the
time variability, while noting that the approach extends to the
time-variable composite protection functions as well.
F takes discrete values between 0 and 1 , with the value

of 0 referring to all the motor-loads are disconnected, while
the value of 1 refers to all motor-loads being connected. In
recent work [11], the authors presented a methodology to
approximate the motor-load fractions (πi) for each protection
combination based on typical commercial buildings’ (hourly)
energy consumption profiles, in different climate-zones. Com-
posite protection schemes can be used to predict the fractions
of motor-loads that will be tripped during a fault (interested
readers are referred to Example 1 in [15]).

III. COMPOSITE PROTECTION MODELING

Fig. 3: Simplified model of the composite protection scheme.

The composite protection scheme can be quite complex
with rather arbitrarily shaped trip-zones. While such detailed
models can be quite useful for understanding the behavior in
the distribution networks, these are not very easy to integrate
with composite transmission-distribution studies. A simplified

model with reduced complexity appears to be necessary, which
approximates the detailed composite protection model as best
as possible. Readers are referred to WECC composite load
modeling efforts ( [5], and related works) for more details. In
this paper, our goal is to approximate the composite protection
model using the simplified form as follows (Fig. 3):

F̂ (τf , vf ) := π̂1 F̂1(τf , vf ) + π̂2 F̂2(τf , vf ) (4a)

∀i∈{1, 2}: F̂i(τf , vf ) :=

{
0, τf ≥ τ∗i & vf ≤ v∗i
1, otherwise (4b)

1= π̂1 + π̂2 . (4c)

Here F̂1 (F̂2) denotes the protection scheme that serves π̂1 (π̂2)
fraction of motor-loads, with a trip-zone that is parameterized
by a trip-voltage v∗1 (v∗2) and trip-duration τ∗1 (τ∗2 ). The goal
is to find the parameters

Φ = {π̂1, τ
∗
1 , v
∗
1 , π̂2, τ

∗
2 , v
∗
2} (5)

such that the simplified protection scheme F̂ in (4) approxi-
mates the true protection scheme F in (3). We set up a non-
linear regression problem to find the parameters Φ that gives
the best approximation (F̂ ) of the true composite protection
(F ). This is done in the following steps:

1) Randomly select N points from the (τf , vf )-space and
note down the values of the true composite protection
function F at those points (from (3)). Let us denote these
points by (τ jf , v

j
f ) and the corresponding value of F as

yj = F (τ jf , v
j
f ) , for each j ∈ {1, 2, . . . , N} .

2) Construct the cost function as

J(Φ) :=
1

2N

N∑
j=1

(
F̂ (τ jf , v

j
f )− yj

)2

(6)

3) Solve the following optimization problem:

min
Φ

J(Φ) (7a)

s.t. v∗i ∈ [0, 100] , τ∗i ∈ [0, 5] ∀i ∈ {1, 2}, (7b)
π̂1 + π̂2 = 1 . (7c)

Note that the optimization problem (7) cannot be solved
directly in the present form, since it involves functions (F̂1,2)
that are described in conditional forms (4). We overcome this
problem by using logistic functions to model the protection
functions F̂1,2 . Logistic functions h : R 7→ [0, 1] are approxi-
mations of step functions and are defined as follows:

(logistic) h(x;α) :=
1

1 + exp(−αx)
(8)

where α > 0 is a steepness parameter related to the slope of
the function at x = 0 . The functions F̂1,2 are approximated
using logistic functions as follows:

F̂i(τf , vf ) = 1− h(τf − τ∗i ;ατ ) (1− h(vf − v∗i ;αv)) (9)

for each i ∈ {1, 2} , for some chosen ατ , αv > 0 . The
optimization problem (7) is solved via IPOPT [14] using the
logistic functional representation of F̂1,2 in (9).



Ideally, one would like to solve (7) with as many data
points as possible (large N ), however, due to computational
limitations N has to be reasonably small. Thus the data
points need to be selected judiciously so that the approxima-
tion is sufficiently accurate. Typically, the protection function
changes value rapidly when τf is near 0 s. Moreover, during
faults vf is typically close to 50 %. Therefore we select the
data points by assigning some weights w(·) ∈ [0, 1] to every
point on the (τf , vf )-axis as follows:

w(τf , vf ) = 1−
(
1− e−βττf

) (
1− e−βv(vf−50)

)
,

for some βτ , βv > 0 , and selecting N points randomly from
all points that have larger than a chosen weight.

MAE) Finally, we measure the accuracy of the approxima-
tion using the following mean absolute error (metric:

(MAE) ε :=
1

M

M∑
k=1

∣∣∣F̂ (τkf , v
k
f )− F (τkf , v

k
f )
∣∣∣ (10)

where the M (�N ) points (τkf , v
k
f ) are selected randomly (and

separately from the data points used in (7)) using, say, Latin
hypercube sampling technique from the (τf , vf )-space.

IV. NUMERICAL RESULTS

Fig. 4: Simplified composite protection for Example 1 in [15].

We apply the aforementioned optimization framework to
the problem in Example 1 of [15], to obtain the simplified
composite protection diagram. The result is shown in Fig. 4,
where the top plot shows the selected data-points for (7)
and the bottom plot shows the resulting simplified protection
scheme with a mean absolute approximation error (ε) of
0.05. However, in practice, the information needed for the
optimization problem are often unknown. As such the accuracy
of the simplified model is dependent on the accuracy of those
information. We evaluate the performance of the simplified
model under uncertainties in the motor-load fractions. Fig. 6
shows the MAE statistics when we allow all the motor-load
fractions corresponding to protection schemes P1, P2, P3, P5

and P1-P4-P5 to have varied level of uncertainties modeled as
below:

πactual = (1 + γ)πoptimization ,

i.e. the fraction used in optimization is different from the actual
one. Value of γ is varied between ±10% to ±80% . The mean
MAE value and its 75% confidence interval increases as the
uncertainty goes higher. The probability distributions of MAE
for uncertainty levels ±20% and ±50% are shown to further
illustrate this observation. Fig. 7 shows the mean MAE values
when the uncertainties are introduced to only the motor-load
fractions corresponding to protections P2 and P1-P4-P5 (while
other motor-loads fractions being unperturbed).

Next we consider the test-cases developed in [12]. In partic-
ular, we apply the optimization framework to obtain simplified
composite protection functions for motor loads in a hotel, large
retail, medium retail, school, warehouse and supermarket. The
protection schemes and the associated motor-load fractions
used in the study are listed in Table I . Note that, out of
a total of 31 possible combinations of protection schemes,
only seven were found in the buildings considered (based on
the study done in [8], [11]). The optimization problem was
run separately for the motor types A, B, C and D to obtain
their simplified composite protection schemes. The results
are shown in Fig. 5 (due to similarity between the protection
schemes of motor A and B, only A is shown in the plot). In
this particular case, it turned out that the π̂1 = 0 for all the
motors (but not expected in general, e.g. Fig. 4).

TABLE I: Test-case Protection Parameters

P π (for motors A, B, C & D)
P3 {0.00, 0.00, 0.00, 0.08}

P2-P4 {0.09, 0.08, 0.00, 0.00}
P3-P4 {0.08, 0.00, 0.00, 0.20}
P2-P5 {0.00, 0.00, 1.00, 0.00}

P1-P4-P5 {0.25, 0.21, 0.00, 0.00}
P2-P4-P5 {0.58, 0.69, 0.00, 0.00}
P3-P4-P5 {0.00, 0.02, 0.00, 0.72}

V. CONCLUSIONS AND FUTURE WORK

There is a need for high-fidelity composite load protection
models for induction motor loads to better represent the
aggregate dynamic behavior of distribution systems in the
transmission system dynamic simulations and studies. This
work builds on recent developments on the composite pro-
tection modeling, to propose an optimization framework to
generate simplified composite protection schemes. Introducing
a mathematical abstraction of the protection schemes, a nonlin-
ear regression problem is formulated to suitably approximate
complex protection schemes in a simple parametric form.
Numerical results are presented to illustrate the application of
the framework. Future studies will focus on validation of the
simplified models through detailed transmission-distribution
co-simulations, as well as on the sensitivity of the solution
to uncertainties in load compositions.
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Fig. 5: True and simplified composite protection schemes for the test-case in [12]. Load fractions are listed in Table I.

Fig. 6: Mean absolute error (MAE) statistics under uncertain-
ties in motor-load fractions for Example 1 of [15].
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