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Abstract— Current transmission and distribution system states 
are mostly unobservable to each other, and state estimation is 
separately conducted in the two systems owing to the differences 
in network structures and analytical models. The large-scale 
integration of transmission and active distribution systems calls 
for an effective solution to global state estimation. Unlike existing 
independent state estimation methods on both levels of these 
systems, we propose a decentralized coordinated transmission and 
distribution system state estimation (C-TDSE) method. This 
method enables accurate monitoring of the integrated systems 
with a global reference in a decentralized manner and reconciles 
the mismatches of voltages and powers on boundaries of the 
systems. The comparative analysis on the integrated transmission 
and distribution systems points to improved estimation results 
relative to the independent state estimation methods.  

Index Terms— Decentralized state estimation, integrated 
transmission and distribution systems, phasor measurement units, 
SCADA systems, heterogeneous decomposition 

I. INTRODUCTION 
State estimation as a critical tool converts redundant meter 

readings and other available information into an estimate of 
system states [1]. Historically, transmission system state 
estimation (TSSE) and distribution system state estimation 
(DSSE) have been studied separately as two subjects owing to 
significant differences in network structures and algorithmic 
procedures, and attract substantial works, reviewed as [2].  

Distribution systems are physically coupled with 
transmission systems, forming integrated transmission and 
distribution (T&D) systems. These systems are separately 
managed by transmission system operators (TSOs) and 
distribution system operators (DSOs) [3]. The penetration of 
distributed generators (DGs) poses uncertainties and more 
stringent requirements for system operation [4]. Also, the 
uncertainty introduced to distribution systems may affect their 
top-level transmission grid. This indicates the limitation of this 
siloed system management mechanism, and instead, the T&D 
coordination brings the improvement of operational efficiency 
and economic benefits [6]. However, coordinated T&D state 
estimation for monitoring the integrated systems is difficult to 
run in a centralized manner, as TSOs and DSOs do not share 
the complete system models and measurement data due to 
privacy and storage burdens [1]. Besides, technical difficulties 
persist in centralized estimation methods for these T&D 
systems due to differences in system observability and topology 

structure [3]. Linear state estimators are developed in the 
transmission systems with the installation of phasor 
measurement units (PMUs), which provides global positioning 
system (GPS) synchronization [7], [8]. In comparison, limited 
meters in conventional supervisory control and data acquisition 
(SCADA) systems and pseudo-measurements with low 
accuracy are widely used in current DSSE methods [9]. 

Multi-area state estimation methods are proposed to monitor 
interconnected power systems in a distributed manner. These 
methods are applied to homogeneous systems, e.g., 
transmission and transmission systems [7], [8], [10]–[13]  or 
distribution and distribution systems [14], [15]. For instance, 
[12] introduces a multilevel and hierarchical state estimation 
paradigm, and three major levels in interconnected power 
systems, including local TSSE, multi-area TSSE, and regional 
multi-TSO state estimation are identified. This theoretical 
framework is further elaborated by considering various 
measurement configurations and specific requirements in these 
multi-area systems. At the distribution level, a limited number 
of meters are considered, resulting in poor system observability.  

In interconnected T&D systems, heterogeneous 
decomposition is regarded as an efficient solution to 
coordinated T&D operation.  It evolves a subject of active 
research since [3] develops a master-slave-splitting iterative 
method for solving the global power flow in integrated T&D 
systems. This paper proposes a decentralized coordinated 
transmission and distribution system state estimation (C-TDSE) 
algorithm in integrated T&D systems, considering the 
heterogeneous network structures and meter configurations in 
these systems. The proposed algorithm enables effective 
monitoring of the integrated T&D systems and a reduction of 
the mismatches of state variables at boundary nodes from 
multiple local estimators. The comparative analysis points to 
the improved estimation results relative to these independent 
state estimation methods. Also, such improvement is polished 
by limited data exchange and fast coordination on the 
boundaries of these T&D systems. The main contributions are 
summarized below.  
 The decentralized C-TDSE method obtains the improved 

accuracy and low computational costs by limited 
information interchange in integrated T&D systems.  

 The proposed method reduces the mismatches of powers on 
the boundaries of these systems and coordinates all the 
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voltage phase angles with a global reference. 

II. STATE ESTIMATION AND INTEGRATED T&D SYSTEM  

A. State Estimation Theory 
In standard state estimators [1], the relationship between 

measurements and state variables are depicted as:   
𝒛𝒛 = 𝒉𝒉(𝒙𝒙) + 𝒆𝒆                                     (1) 

where 𝒙𝒙 ∈ ℝ𝑛𝑛×1  denotes the state vector, and 𝒛𝒛 ∈ ℝ𝑚𝑚×1 
denotes the measurement vector; 𝒉𝒉(𝒙𝒙)  is the measurement 
function vector about 𝒙𝒙 ; The measurement error vector 𝒆𝒆 
follows Gaussian distributions as 𝒆𝒆~𝑁𝑁(0, 𝑹𝑹) , where the 
measurement covariance matrix 𝑹𝑹 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[σ1

2, σ2
2, … , σ𝑚𝑚

2 ].  
The estimated state variables are obtained via a weighted 

least square (WLS) criterion that minimizes the sum of 
weighted measurement residuals 𝐽𝐽  as:  

𝒙̂𝒙 = arg min 𝐽𝐽 = arg min 𝒓𝒓𝑇𝑇 𝑾𝑾𝑾𝑾                     (2) 
where the weight matrix 𝑾𝑾  is chosen as the inverse of 𝑹𝑹, and 
 𝒓𝒓 = 𝒛𝒛 − 𝒉𝒉(𝒙𝒙) represents the measurement residual vector. 

Let 𝝏𝝏𝐽𝐽/𝝏𝝏𝝏𝝏 =0, and optimal estimated states are solved 
iteratively by the Gauss-Newton method. The estimation 
procedure terminates until each component of the vector ∆𝒙𝒙 at 
iteration 𝜏𝜏 is sufficiently small, i.e., ∆𝒙𝒙 < 𝜀𝜀:         
𝑯𝑯�𝒙𝒙(𝜏𝜏)�𝑇𝑇 𝑾𝑾𝑾𝑾�𝒙𝒙(𝜏𝜏)�∆𝒙𝒙 = 𝑯𝑯�𝒙𝒙(𝜏𝜏)�𝑇𝑇 𝑾𝑾�𝒛𝒛 − 𝒉𝒉�𝒙𝒙(𝜏𝜏)��   (3) 

𝒙𝒙(𝜏𝜏+1) = 𝒙𝒙(𝜏𝜏) + ∆𝒙𝒙                        (4) 
where 𝑯𝑯�𝒙𝒙(𝜏𝜏)� is the Jacobian matrix with respect to the states 
𝒙𝒙(𝜏𝜏), and 𝑯𝑯�𝒙𝒙(𝜏𝜏)� = 𝝏𝝏𝒉𝒉�𝒙𝒙(𝜏𝜏)�/𝝏𝝏𝒙𝒙(𝜏𝜏).  

The covariance matrix of the estimated states, cov(𝒙̂𝒙) , is 
used to quantify the estimation variances of these states and 
calculated by [12]  

                cov(𝒙̂𝒙) = 𝑮𝑮−1                               (5) 
where 𝒙̂𝒙  is the final estimated state vector until the above 
iterative process terminates, and 𝑮𝑮 = 𝑯𝑯(𝒙̂𝒙)𝑇𝑇 𝑾𝑾𝑾𝑾(𝒙̂𝒙) is the 
gain matrix of this estimator. 

B. Master-slave Structure of Integrated T&D Systems 
Current TSOs and DSOs separately monitor and control the 

system operation via meters installed within their jurisdiction. 
The system states are unobservable to each other as TSSE and 
DSSE algorithms run separately. The master-slave structure for 
integrated T&D systems depicts the system characteristics 
efficiently and thus is widely used [6]. The integrated system is 

divided into a master system, boundary systems, and slave 
systems, shown as Fig. 1. The boundary system is composed of 
the substation between the T&D systems. A transmission 
system includes a master system and boundary systems that are 
connected to distribution systems, while a distribution system 
consists of a slave system and the boundary system connected 
with the transmission system. Three types of nodes are defined: 
 Master Node: A node only belonging to the master system. 
 Boundary Node: A substation node that is connected to 

transmission and distribution systems.  
 Slave Node: A node only belonging to the slave system. 

III. PROPOSED ALGORITHM 
Based on the master-slave structure, we present a C-TDSE 

algorithm for monitoring integrated T&D systems in a 
decentralized manner, including local state estimation phase, 
coordination phase, and update phase.  

A. Local TSSE 
  Transmission systems are assumed observable by only PMU 
measurements, resulting in a linear estimator owing to the 
increasing popularization of PMUs in transmission systems, 
e.g., [7], [8], and [12]. The real and imaginary parts of voltages 
at all nodes are chosen as state variables: 

𝑿𝑿𝑡𝑡 = [𝑉𝑉𝑟𝑟1, … , 𝑉𝑉𝑟𝑟𝑟𝑟 , 𝑉𝑉𝑥𝑥1, … , 𝑉𝑉𝑥𝑥𝑥𝑥]𝑇𝑇             (6)  
where 𝑿𝑿𝑡𝑡 ∈ ℝ2𝑁𝑁×1 and 𝑁𝑁  is the number of all the nodes. 

The measurements consist of the voltage and current phasors 
recorded by PMUs. Also, the local TSSE algorithm depicts the 
relationship between these state variables and measurements as 

𝒛𝒛𝑡𝑡 = 𝒉𝒉𝑡𝑡 �𝒙𝒙𝑀𝑀, 𝒙𝒙1
𝐵𝐵, 𝒙𝒙2

𝐵𝐵, … , 𝒙𝒙𝑓𝑓
𝐵𝐵� + 𝒆𝒆𝑡𝑡         (7) 

where 𝑿𝑿𝑡𝑡 is divided into two groups, 𝒙𝒙𝑀𝑀 and 𝒙𝒙𝑖𝑖
𝐵𝐵 denote 

the states in the master system and the 𝑖𝑖th connected boundary 
system, and 𝑖𝑖 = 1, 2,… , 𝑓𝑓 ; 𝒛𝒛𝑡𝑡 denotes the PMU 
measurements, including the voltage and current phasors and 
𝒛𝒛𝑡𝑡 = �

𝒛𝒛𝑉𝑉
𝒛𝒛𝐼𝐼

�, while 𝒆𝒆𝑡𝑡 denotes the measurement noises. 

We express the measurement function as: 
𝒉𝒉𝑡𝑡(𝑿𝑿𝑡𝑡) = � 𝑰𝑰

𝒀𝒀
� ∙𝑿𝑿𝑡𝑡 = 𝑯𝑯𝑡𝑡𝑿𝑿𝑡𝑡         (8) 

where 𝑰𝑰  denotes the identity matrix relating the voltage phasors 
to the states, and 𝒀𝒀  denotes the system admittance matrix.  

The solution of this linear model is solved by 
𝑿𝑿𝑡𝑡 = (𝑯𝑯𝑡𝑡

𝑇𝑇 𝑾𝑾𝑡𝑡𝑯𝑯𝑡𝑡)−1𝑯𝑯𝑡𝑡
𝑇𝑇 𝑾𝑾𝑡𝑡𝒛𝒛𝑡𝑡             (9) 

Based on (5), the covariance of these estimated variables is 
given by cov�𝑿𝑿�𝑡𝑡� = 𝑮𝑮𝑡𝑡

−1 = (𝑯𝑯𝑡𝑡
𝑇𝑇 𝑾𝑾𝑡𝑡𝑯𝑯𝑡𝑡)−1. 

B. Local DSSE 
SCADA systems are widely used to provide voltage 

magnitude and power measurements in current distribution 
systems. Also, a substation acts as a slack node, and the phase 
angle of this node is set as zero. Voltage magnitudes at all nodes 
and the voltage phase angles except that of the substation node 
are chosen as state variables [9]. Assume that the number of the 
distribution systems is  𝑓𝑓 . The states 𝑿𝑿𝑑𝑑,𝑖𝑖 in the 𝑖𝑖 th 
distribution system are expressed as 

𝑿𝑿𝑑𝑑,𝑖𝑖 = [𝑉𝑉1, 𝑉𝑉2, … , 𝑉𝑉𝑁𝑁𝑖𝑖
, 𝜃𝜃2, 𝜃𝜃3, … , 𝜃𝜃𝑁𝑁𝑖𝑖

]𝑇𝑇     (10) 

 
Fig.1. An integrated T&D system with a master-slave structure [6] 
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where 𝑿𝑿𝑑𝑑,𝑖𝑖 ∈ ℝ(2𝑁𝑁𝑖𝑖−1)×1 , and 𝑁𝑁𝑖𝑖 is the number of nodes in 
the 𝑖𝑖th distribution system, 𝑖𝑖 = 1, 2,… , 𝑓𝑓 . 

The measurement functions are expressed as 

⎩
��
⎨
��
⎧𝒛𝒛𝑑𝑑,1 = 𝒉𝒉𝑑𝑑,1 �𝒙𝒙1

𝐵𝐵′, 𝒙𝒙1
𝑆𝑆� + 𝒆𝒆𝑑𝑑,1

𝒛𝒛𝑑𝑑,2 = 𝒉𝒉𝑑𝑑,2 �𝒙𝒙2
𝐵𝐵′, 𝒙𝒙2

𝑆𝑆� + 𝒆𝒆𝑑𝑑,2
⋮

𝒛𝒛𝑑𝑑,𝑓𝑓 = 𝒉𝒉𝑑𝑑,𝑓𝑓 �𝒙𝒙𝑓𝑓
𝐵𝐵′, 𝒙𝒙𝑓𝑓

𝑆𝑆� + 𝒆𝒆𝑑𝑑,𝑓𝑓

       (11) 

where 𝑿𝑿𝑑𝑑,𝑖𝑖 is divided into two sub-vectors, 𝒙𝒙𝑖𝑖
𝐵𝐵′ and 𝒙𝒙𝑖𝑖

𝑆𝑆, 

which denote the state vectors in the 𝑖𝑖th boundary system and 
its slave distribution system; 𝒆𝒆𝑑𝑑,𝑖𝑖 is the measurement noise 
vector, while  𝒛𝒛𝑑𝑑,𝑖𝑖 and  𝒉𝒉𝑑𝑑,𝑖𝑖 �𝒙𝒙𝑖𝑖

𝐵𝐵′, 𝒙𝒙𝑖𝑖
𝑆𝑆�  denote the 

corresponding measurements and measurement function. 
The measurement vector includes the voltage magnitudes 

and power flows recorded by the SCADA systems and pseudo-
measurements. The detailed formulation of 𝒉𝒉𝑑𝑑,𝑖𝑖 (𝑿𝑿𝑑𝑑,𝑖𝑖) in (11) 
and its Jacobian matrix can be found in [9]. The estimated states 
are obtained by the iterative procedure (3) and (4), where the 
initial state vector is 𝑿𝑿𝑑𝑑,𝑖𝑖

(0) = [𝑉𝑉𝑠𝑠,𝑖𝑖, … , 𝑉𝑉𝑠𝑠,𝑖𝑖, 0,… , 0]𝑇𝑇 , i.e., a flat 
start is used. 𝑉𝑉𝑠𝑠,𝑖𝑖  denotes the voltage magnitude at the 
substation of boundary system 𝑖𝑖. The iterative tolerance is set 
as 𝜀𝜀𝑑𝑑 = 10−4. The covariance matrix of this estimator is given 
by cov�𝑿𝑿�𝑑𝑑,𝑖𝑖� = 𝑮𝑮𝑑𝑑,𝑖𝑖

−1.  

C. Coordination Phase 
A coordination phase in the integrated T&D systems is 

developed to 1) reconcile the mismatches of the estimated states 
at boundary nodes in the local phases, 2) estimate the phase 
angles of these slave systems in coordinated universal time 
(UTC), and 3) further refine the estimated states in the T&D 
systems. In this phase, we choose the state variables of 
boundary system 𝑖𝑖  as  𝒚𝒚𝑖𝑖 = {𝒗𝒗𝑛𝑛, 𝜶𝜶𝑛𝑛} , where 𝒗𝒗𝑛𝑛  and  𝜶𝜶𝑛𝑛 
denote the voltage magnitude  and phase angle vectors at node 
𝑛𝑛, and 𝑛𝑛 ∈ 𝒩𝒩(𝑖𝑖); 𝒩𝒩(𝑖𝑖) denotes the set of boundary node 𝑘𝑘 in 
boundary system 𝑖𝑖 and the nodes connected to this node; 𝒚𝒚𝑖𝑖 ∈
ℝ2𝑀𝑀𝑖𝑖×1, and 𝑀𝑀𝑖𝑖 is the total number of the nodes in 𝒩𝒩(𝑖𝑖). 

The relationship between the state variables and these locally 
estimated states ideally holds in boundary system 𝑖𝑖:   

�
𝑉𝑉𝑟𝑟𝑟𝑟

𝑀𝑀 = 𝒗𝒗𝑛𝑛 cos𝜶𝜶𝑛𝑛      𝑛𝑛 ∈ 𝒩𝒩(𝑖𝑖)
𝑉𝑉𝑥𝑥𝑥𝑥

𝑀𝑀 = 𝒗𝒗𝑛𝑛 sin 𝜶𝜶𝑛𝑛      𝑛𝑛 ∈ 𝒩𝒩(𝑖𝑖)
        (12)   

   𝑉𝑉𝑘𝑘
𝑆𝑆 = 𝒗𝒗𝑛𝑛            𝑛𝑛 = 𝑘𝑘         (13) 

where 𝑉𝑉𝑘𝑘
𝑆𝑆  denotes the estimated voltage magnitude from 

𝒙𝒙𝑖𝑖
𝐵𝐵 in the local DSSE phase, while 𝑉𝑉𝑟𝑟𝑟𝑟

𝑀𝑀 and 𝑉𝑉𝑥𝑥𝑥𝑥
𝑀𝑀 denote the 

real and imaginary parts of the estimated voltage at node 𝑛𝑛 

from 𝒙𝒙𝑖𝑖
𝑀𝑀 and 𝒙𝒙𝑖𝑖

𝐵𝐵′in the local TSSE phase. These estimates 
act as auxiliary measurements in the coordination phase. 

The following power equations hold in boundary system 𝑖𝑖: 

�
𝑃𝑃𝑖𝑖

𝑆𝑆 + 𝑃𝑃𝑖𝑖
𝐵𝐵 = 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 (𝒚𝒚𝑖𝑖)

𝑄𝑄𝑖𝑖
𝑆𝑆 + 𝑄𝑄𝑖𝑖

𝐵𝐵 = 𝑓𝑓𝑄𝑄𝑄𝑄𝑄𝑄 (𝒚𝒚𝑖𝑖)
             (14) 

where  𝑃𝑃𝑖𝑖
𝑆𝑆  and 𝑄𝑄𝑖𝑖

𝑆𝑆  denote the active and reactive powers 
flowing in or out of the substation to the slave system; 𝑃𝑃𝑖𝑖

𝐵𝐵 and 
𝑄𝑄𝑖𝑖

𝐵𝐵  denote the sums of active and reactive power injection 
measurements at the boundary node.  

The active and reactive power flows from the master system 
to the connected slave system via the boundary node 𝑘𝑘  are 
expressed by 
  𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 (𝒚𝒚𝑖𝑖) = ∑ 𝑣𝑣𝑛𝑛𝑣𝑣𝑘𝑘(𝑔𝑔𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛𝑛𝑛)𝑛𝑛∈𝒩𝒩(𝑖𝑖)    (15) 

𝑓𝑓𝑄𝑄𝑄𝑄𝑄𝑄 (𝒚𝒚𝑖𝑖) = ∑ 𝑣𝑣𝑛𝑛𝑣𝑣𝑘𝑘(𝑔𝑔𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛𝑛𝑛)   𝑛𝑛∈𝒩𝒩(𝑖𝑖) (16) 
where  𝛼𝛼𝑛𝑛𝑛𝑛 denotes the phase angle difference between 
boundary node 𝑘𝑘  and node 𝑛𝑛, and 𝛼𝛼𝑛𝑛𝑛𝑛  = 𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑘𝑘 ; 𝑔𝑔𝑛𝑛𝑛𝑛  and 
𝑏𝑏𝑛𝑛𝑛𝑛  represent the real and imaginary parts of the nodal 
admittance between nodes 𝑛𝑛 and 𝑘𝑘 , 𝑛𝑛 ∈ 𝒩𝒩(𝑖𝑖). 

Considering the estimation errors at the local stages and 
measurement noises, a nonlinear estimator is established in 
boundary system 𝑖𝑖: 

𝒛𝒛𝑦𝑦,𝑖𝑖 = 𝒉𝒉(𝒚𝒚𝑖𝑖) + 𝒆𝒆𝑦𝑦,𝑖𝑖                                (17) 
𝝏𝝏𝐽𝐽(𝒚𝒚𝑖𝑖)/𝝏𝝏𝒚𝒚𝑖𝑖 = 𝑯𝑯(𝒚𝒚𝑖𝑖)𝑇𝑇 𝑾𝑾𝑦𝑦,𝑖𝑖�𝒛𝒛𝑦𝑦,𝑖𝑖 − 𝒉𝒉(𝒚𝒚𝑖𝑖)� = 𝟎𝟎         (18) 

where 𝒛𝒛𝑦𝑦,𝑖𝑖 is the measurement vector from the left-hand side 
values of (12)–(14), and 𝒛𝒛𝑦𝑦,𝑖𝑖 ∈ ℝ(2𝑀𝑀𝑖𝑖+3)×1 ;   𝒉𝒉(𝒚𝒚𝑖𝑖)  as the 
measurement functions are calculated from the right-hand side 
of these formulas; 𝒆𝒆𝑦𝑦,𝑖𝑖  is the error vector in the coordinated 
phase, considering the measurement noises and estimation 
errors in local phases; 𝑯𝑯(𝒚𝒚𝑖𝑖) denotes the Jacobian matrix of 𝒚𝒚𝑖𝑖, 
expressed in the block form as 

𝑯𝑯(𝒚𝒚𝑖𝑖) = [𝑯𝑯𝑀𝑀,𝑯𝑯𝑆𝑆, 𝑯𝑯𝐵𝐵]                     (19) 
where 𝑯𝑯𝑀𝑀  and 𝑯𝑯𝑆𝑆 denote the Jacobian matrices of the 
auxiliary measurement functions in (12) and (13), and 𝑯𝑯𝑀𝑀 ∈
ℝ2𝑀𝑀𝑖𝑖×2𝑀𝑀𝑖𝑖 , 𝑯𝑯𝑆𝑆 ∈ ℝ1×2𝑀𝑀𝑖𝑖 ; 𝑯𝑯𝐵𝐵 is the Jacobian matrix of (15) 
and (16). Table Ⅰ lists the elements of these Jacobian matrices. 

The measurement weight matrix 𝑾𝑾𝑦𝑦,𝑖𝑖 in (21) is expressed as 
𝑾𝑾𝑦𝑦,𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾 𝑀𝑀, 𝑾𝑾 𝑆𝑆,𝑾𝑾 𝐵𝐵)                     (20) 

where 𝑾𝑾 𝑀𝑀  and 𝑾𝑾 𝑆𝑆  denote the measurement weights related 
to the boundary node, and their elements come from the 
corresponding diagonal elements of the covariance matrices in 
(5); 𝑾𝑾 𝐵𝐵  denotes the weight matrix on this boundary. 

TABLE Ⅰ 
JACOBIAN ELEMENTS IN THE COORDINATION PHASE 

Jacobian Elements 𝑦𝑦𝑖𝑖 = 𝑣𝑣𝑛𝑛 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑛𝑛 

𝑛𝑛 = 𝑘𝑘  𝑛𝑛 ∈ 𝒩𝒩(𝑖𝑖)\{𝑘𝑘} 𝑛𝑛 = 𝑘𝑘 𝑛𝑛 ∈ 𝒩𝒩(𝑖𝑖)\{𝑘𝑘} 

𝑯𝑯𝑀𝑀  
 𝜕𝜕𝑉𝑉𝑟𝑟𝑟𝑟

𝑀𝑀 𝜕𝜕𝑦𝑦𝑖𝑖⁄  𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛 −𝒗𝒗𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛 

𝜕𝜕𝑉𝑉𝑥𝑥𝑥𝑥
𝑀𝑀 𝜕𝜕𝑦𝑦𝑖𝑖⁄  𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛 𝒗𝒗𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛 

𝑯𝑯𝑆𝑆  𝜕𝜕𝑉𝑉𝑘𝑘
𝑆𝑆 𝜕𝜕𝑦𝑦𝑖𝑖⁄  1 0 0 0 

𝑯𝑯𝐵𝐵 
𝜕𝜕𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 𝜕𝜕𝑦𝑦𝑖𝑖⁄  𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑘𝑘⁄ + 𝑔𝑔𝑛𝑛𝑛𝑛𝑣𝑣𝑘𝑘 𝑣𝑣𝑛𝑛(𝑔𝑔𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛𝑛𝑛) 𝑓𝑓𝑄𝑄𝑀𝑀𝑀𝑀 + 𝑏𝑏𝑛𝑛𝑛𝑛𝒗𝒗𝑘𝑘

2 𝑣𝑣𝑘𝑘𝑣𝑣𝑛𝑛(𝑔𝑔𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛𝑛𝑛) 
𝜕𝜕𝑓𝑓𝑄𝑄𝑄𝑄𝑄𝑄 𝜕𝜕𝑦𝑦𝑖𝑖⁄  𝑓𝑓𝑄𝑄𝑄𝑄𝑄𝑄 𝑣𝑣𝑘𝑘⁄ − 𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑘𝑘 𝑣𝑣𝑛𝑛(𝑔𝑔𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛𝑛𝑛) −𝑓𝑓𝑃𝑃𝑀𝑀𝑀𝑀 + 𝑔𝑔𝑛𝑛𝑛𝑛𝒗𝒗𝑘𝑘

2 𝑣𝑣𝑘𝑘𝑣𝑣𝑛𝑛(−𝑔𝑔𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑛𝑛𝑛𝑛) 
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The estimation results for all the boundary buses are updated 
by (17)–(20) in the coordination phase. In summary, the 
proposed C-TDSE procedure is decomposed into three phases: 

1) Local Estimation Phase: Obtain the local estimation 
results by solving (7) and (12). Then, store the state estimates 
at the nodes in 𝒩𝒩(𝑖𝑖) and the corresponding elements of the 
gain matrices  𝑮𝑮𝑡𝑡  and 𝑮𝑮𝑑𝑑,𝑖𝑖 for coordination. 

2) Coordination Phase: (17) and (18) operate in each 
boundary system, and the initial values of states are chosen as 
the estimates in the local TSSE, i.e., a hot start. The iterative 
tolerance at the coordination stage is set as 𝜀𝜀𝑐𝑐 = 10−8. 

The coordination terminates when ∆𝒚𝒚𝑖𝑖
(𝜏𝜏)  at all boundary 

nodes at iteration 𝜏𝜏 meets 

 �∆𝒚𝒚𝑖𝑖
(𝜏𝜏)�

∞
=  ��

∆𝒗𝒗𝑛𝑛
(𝜏𝜏)

∆𝜶𝜶𝑛𝑛
(𝜏𝜏)��

∞

< 𝜀𝜀𝑐𝑐   𝑖𝑖 ∈ {1,2,… , 𝑓𝑓}  (21) 

3) Update Phase: Feedback the updated boundary states to 
the local DSSE and TSSE algorithms, and the state variables 
are eventually refined based on the hot starts to achieve a more 
accurate estimate for the T&D system. 

The convergence of the proposed method based on the  
heterogeneous decomposition of integrated T&D systems is 
guaranteed, and this proof can be found in [3].  

IV. NUMERICAL RESULTS 
We test the proposed C-TDSE algorithm on an integrated 

T&D system. Illustrated as Fig. 2, the IEEE 30-bus 
transmission system connects with two distribution systems at 
buses 9 and 7, respectively. Also, these boundary nodes are 
connected to the substations of distribution networks. PMUs 
provide 15 voltage and 27 current measurements to achieve a 
high observability for this system. Gaussian noises with zero 
mean and maximum errors 1% of true values and 0.01 radians 

for magnitudes and phase angles are added to all the phasor 
measurements.  

The buses located at substations of the IEEE 34- and 123-bus 
distribution feeders are numbered as 1 and 115 shown in Fig. 3, 
and see more details of these two systems in [9]. The installation 
details of these DGs can be referred to as [16]. All DGs are 
modeled as PQ buses with a constant power factor of 0.9, and 
the DG capacity is 600 kW. The measurement placement 
schemes are shown in Table Ⅲ. The following conditions are 
applied to the maximum errors of measurements:  SCADA 
systems measure voltage magnitudes and powers with the error 
margin up to 2%; pseudo-measurements provide the power 
measurements at loads and DGs, and the maximum errors are 
considered as 30% of the corresponding true values [16]. The 
master-slave-splitting power flow program of integrated T&D 
systems in [3] run for the accuracy check of state estimation. 
All test cases are performed for 200 times of Monte Carlo trials. 

A. Mismatch Reduction in Boundary Systems 
The estimation results of the local TSSE and DSSE 

algorithms are compared with the true values from the 
coordinated power flow calculation of T&D systems. Limited 
to space, Fig. 3 shows the estimated voltages at the boundary 
nodes and parts of master and slave nodes in the test system. 
There are considerable mismatches of voltages at the boundary 
nodes. Due to lack of a global reference from PMUs, the local 
DSSE methods cannot correctly reflect the absolute phase 
angles of the nodal voltages in the slave systems. 

Fig. 4(a) and 4(b) depict the convergence trend of the 
mismatches of powers at boundary nodes in the iterative 
process and the measurement residual in the coordination 
phase. Before the coordination, the mismatches of powers at the 
boundary nodes are shown at the leftmost ends of Fig. 4(a). 
These mismatches, which occur due to estimation errors on 
both levels of local estimation methods in this T&D system, are 
calculated by (14).  It is observed that these residuals and 
mismatches rapidly decrease by the proposed algorithm, which 
is beneficial for TSOs to monitor the power flow directions and 
magnitudes at the boundaries systems. 

1 2 3 4

5

6 7 8 9
10

11

12

13 14

15 16 17 18

19

20
21 22

23

24
25
26

2
7

28

29

30 31

32

33

34

DG

DG
DG

DGD34T30

D34D123

1115

97

 
(a)                                                                     (b) 

Fig.2. Structure diagrams of the integrated T&D systems (a) T30D34D123. 
(b) diagram of the IEEE 34-bus distribution system (D34 in T30D34D123) 
 
 

TABLE Ⅱ 
MEASUREMENT LOCATIONS IN DISTRIBUTION SYSTEMS 

Measurement 
Types 

Placement Locations 
34-bus System 123-bus System 

SCADA  

|𝑉𝑉 | 1, 11, 20, 27 11, 26, 99, 115 

𝑃𝑃 , 𝑄𝑄 
1-2, 4-6, 16-17, 20-

21 

115-1, 1-7, 9-14, 15-16,13-
52, 18-35, 44-45, 57-60, 
76-77, 86-87, 110-112 

Pseudo Meas. all load nodes and DG nodes 
 

 
 

 
Fig.3. Estimation results of parts of voltages by the local DSSE method  
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B. Estimation Accuracy and Computational Performance 
We discuss the estimation accuracy of the proposed method 

in integrated T&D systems. Root mean square errors (RMSEs) 
are used to evaluate the estimation performance [1] in all Monte 
Carlo simulations. The comparison of RMSEs of voltages at the 
boundary nodes is shown in Table Ⅲ, and it should be noted 
that the RMSEs of phase angles are absolute errors. The 
proposed method improves the estimation accuracy at all the 
slave nodes. For instance, the RMSE of the voltage magnitudes 
at the boundary node in the 34-bus feeder decreases from 
0.3380% to 0.1120%. It illustrates that the proposed method 
improves the overall estimation accuracy in the integrated T&D 
systems and accurately estimates the voltage phase angles at 
slave nodes with a global reference.  

The computational performance of the proposed method, in 
terms of average iterations and CPU time, is investigated in 
comparison to the local TSSE and DSSE methods. Table Ⅳ 
lists the CPU time of these algorithms, where the tolerances are 
set as 𝜀𝜀𝑑𝑑 = 10−4 and  𝜀𝜀𝑐𝑐 = 10−8 . The CPU time that the 
additional coordination and update phases take is 1.269 seconds. 
It is concluded that the proposed C-TDSE method has a fast 
converge speed and high computational efficiency.  

V. CONCLUSION  
This paper proposes a decentralized and coordinated state 

estimation method in integrated T&D systems. The proposed 
algorithm enables more accurate monitoring of the integrated 
systems and reduces the mismatches of state variables at the 
boundaries of these systems, compared with individual TSSE 
and DSSE algorithms. In the case of lack of PMUs at the 
distribution level, this method accurately estimates the phase 
angles of the slave distribution systems in UTC. 
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TABLE Ⅲ 
RMSES BEFORE AND AFTER COORDINATION  

Test Systems RMSEs at 
boundary nodes 

Local 
TSSE 

Local 
DSSE C-TDSE 

T30 
D34 

 
D123 

Mag. [%] 0.1171 0.3380 0.1120 
Phase [degree] 0.0641 - 0.0636 

Mag. [%] 0.2641 0.3425 0.1077 
Phase [degree] 0.1565 - 0.0683 

 
TABLE Ⅳ 

COMPUTATION TIME AND NUMBER OF ITERATIONS 
Test System T30D34D123 Average Iter. Time[ms] 

TSSE - 1.92 

Local DSSE D34 3 136.7 
D123 3 1638 

Coordinated Phase D34 3 4.71 
D123 5.78 4.28 

Update Phase D34 2.14 109.7 
D123 1.99 1269 

 
 

 
 

 
(a) 

 
(b) 

Fig.4. (a)  Mismatches of powers at the boundary nodes and (b) 𝐽𝐽(𝒚𝒚𝑖𝑖)  of 
two boundary systems  
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