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Risk-Informed Condition Evaluation of
Solar-centered Energy Generation and Distribution
Networks through Bayesian Learning and Inference

Dimitrios Pylorof Humberto E. Garcia Rojan Bhattarai

Abstract—We develop a methodology based on Bayesian infer-
ence over Probabilistic Graphical Models (PGMs) to understand
and quantify risk in solar-centered grids using targeted measure-
ments and learned system behavior. Being non-prescriptive but,
rather, able to infer system behavior and, ultimately, address risk
queries from data, our machine learning-type paradigm is tai-
lored for diverse topologies and threat scenarios often associated
with distributed energy generation and photovoltaic distributed
energy resources (PV-DERs) in particular. We describe algorith-
mic processes for: (i) learning the structure of PGMs that result
from attack-prone PV-DER-proliferated distribution systems,
(ii) quantifying cause-effect relationships, and (iii) evaluating
risk queries based on diverse evidence. The contributions are
illustrated on a residential grid subject to output impairment
attacks on its PV-DER infrastructure.

Index Terms—Photovoltaic systems, Power grids, Risk analysis,
Probabilistic graphical models, Bayes methods, Machine learning.

I. INTRODUCTION

Present and forthcoming energy landscapes, consisting of
numerous and diverse distributed energy resources (DERs),
necessitate increased situational awareness and understanding.
We indicatively refer to the general problem statements for
contemporary grid challenges in the recent National Academy
of Engineering study [1], and to [2] for an example effort
to building situational awareness capabilities from distributed
measurements. Although DERs and related devices (e.g., in-
verters, storage) are inherently tied to green energy sources,
and their ongoing proliferation is not only welcome by stake-
holders but also a high-priority global objective, the presence
of DERs introduces numerous opportunities for multi-modal
faults and/or adversarial behavior to enter the system, affect
its operation, and potentially impair critical infrastructure that
depends on seamless and reliable power delivery.

Contributing to the trend of building situational aware-
ness and understanding for nontrivial grid phenomena, as
well as alongside other recent and contemporary efforts to
leverage machine learning and related techniques for smart
grid applications [3]–[5], we use contemporary methods for
Bayesian learning and inference over probabilistic graphical
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models (PGMs) to evaluate the condition of solar-centered
grids consisting of numerous DERs and loads, with particular
focus here on inferring risks of losing power at critical
loads, or with emphasis on another probabilistic metric of
interest for some particular mission. As critical loads we
define electricity customers providing essential services (e.g.,
hospitals, emergency response, water treatment plants), the
operation of which can be jeopardized by the volatility of
distributed and/or solar-centered power generation. A concep-
tual illustration of the problem’s logic is illustrated by Fig.
1. Among other benefits summarized in Section V, our PGM-
based methodology allows for efficient learning of cause-effect
relationships with synthesized and/or operational data, as well
as intuitively produces effective topologies and dispatchable
analytics of great potential benefit in modern grids.

The learning part of the presented algorithm consists of
using datasets, collected from simulations (e.g., from Digital
Twins) and/or from real operations, that relate key events
of interest, chosen via engineering judgement (i.e., health
estimation for PV-DERs, voltage measurements across distri-
bution systems, environmental and network conditions, status
of critical loads). Cause-effect relationships between events are
learned automatically from preprocessed data using Bayesian
structure learning algorithms resulting in what we refer to as
the effective topology, conceptually illustrated by Fig. 2. Sub-
sequently, cause-effect relationships are further characterized
by quantifying conditional probability tables from the same
dataset. Finally, the resulting object, having absorbed knowl-
edge on the effective topology and CPTs, is used operationally
to perform inference queries on any combination of events
of interest using any available evidence, including insightful
omnidirectional queries as illustrated by Fig. 3.

Whereas in [6] PGM techniques are used to infer outage
locations in distribution grids based on historically-recorded
multisource information, but, explicitly, not real-time DER-
specific events and potential faults and/or attacks, we follow
an orthogonal approach motivated by accelerating PV-DER
proliferation, trends in data analytics, and the need for greater
visibility and fidelity. More aligned with the novel premise of
digital twins, where perpetually-updated models are used to
operationally mimic complex real assets (in our case, a solar-
centered grid), we base our inference engine on grid-wide
data driven by DER-specific physics and other phenomena in
anticipation of greater penetration of DER-embedded health
and state estimation (including Behind-the-Meter techniques),
IoT-type networks, and analytics capabilities that will enable
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Fig. 1: Conceptual illustration of a forward type of analysis for a solar-centered distributed grid, where input events of interest drive processes that ultimately
lead to assessments regarding mission-critical final outcomes.

DER-specific inputs, among other diverse evidence, to our
learned inference models.

Notation: The probability of event A is denoted by P (A);
the probability of A conditioned on event B is denoted by
P (A|B). A graph with vertices V and edges E ⊆ {(i, j) :
(i, j) ∈ V 2, i ̸= j} is denoted by G = (V,E). A graph G =
(V,E) is undirected if, for all i, j ∈ V , the statement (i, j) ∈
E (i.e., edge from i to j) implies (j, i) ∈ E; otherwise, G
is directed. A graph G = (V,E) is a Directed Acyclic Graph
(DAG) if G is a directed graph and no path starting from any
i∗ ∈ V forms a cycle by including i∗ more than once.

II. PGMS AND BAYESIAN METHODS

A Directed Acyclic Graph (DAG) G = (X,E), defined
on events X = {x1, . . . , xn}, accompanied with the global
distribution Θ of X , and where each xi ∈ X is conditioned
only on events xj such that (xj , xi) ∈ E, except for xi which
have no incoming edges, constitutes a Probabilistic Graphical
Model (PGM), which we hereby denote as B = (G,Θ). When
X consists of discrete-valued events that follow a multinomial
distribution (e.g., Xi = {low,medium,high}), Θ can be
conveniently expressed by a set of Conditional Probability
Tables, which relate local discrete-valued distributions for each
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Fig. 2: Identification of effective topologies showing (strong) cause-effect
relationships in a solar-centered distributed grid.

xi to values of parent nodes, except for events xi with no
incoming edges, which follow multinomial distributions that
are not conditioned on any other event.

From the preceding description, it is evident that PGMs
equip a problem with a rich structure reminiscent of diagnostic
or prognostic workflows, the conceptual distinction between
which is up to the interpretation assigned to events in X .
In addition, the PGM-based structure allows for easy and
systematic identification not only of direct, qualitative cause-
effect relationships among parent and children events, but also
indirect effects among sibling events sharing a common parent.

In a fully specified PGM B = (G,Θ), one can calculate
the probability for any event to attain a particular value,
using information from G and Θ. We call such information
prior. Moving from all “input” events and along the edges
E renders such calculations trivial (e.g., one just multiplies
CPT elements). Increasingly more tedious calculations allow
reasoning on any logical combination of events based on the
prior. Fusing the prior with actual measurements or evidence
(i.e., to narrow down, in a way, the probabilistic behavior of
the system and condition it to events we already know have
occurred) and allowing evidence and query targets across the
PGM leads us to inference problems:

Problem 1. (Bayesian inference on PGMs) Given, for subsets
of events from X , evidence Y = ∪i∈Z{Xi = yi} and a query
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Fig. 3: Example of omnidirectional inference, where information from sibling
(e.g., L1, L2) and other nodes is used to condition events of interest (here: S1,
Cp, Lr). Information about an adjacent load can help condition probabilities
for loads for which no information is available. Also, observations throughout
the network can help diagnose conditions at input events.
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Q = ∪j∈W{Xj = qj}, where Z,W ⊆ X , calculate:

P (Q|Y) = (P (Y|Q)P (Q)) /P (Y). (1)

In principle, Bayesian inference queries can be addressed by
repeated use of Bayes formula (i.e., Eq. (1)) across the PGM.
Nevertheless, this exact inference approach scales unfavorably,
from a computational viewpoint. Approximate inference based
on Monte Carlo methods is known to be more effective in
practice for PGMs of realistically useful size and complexity.

Even if one can construct a PGM with expert knowledge
and/or with first principles modelling, it is often the case
that a problem’s PGM-like structure is only suspected but
not completely known. Bayesian inference principles, fused
with conditional independence tests and various combinatorial
algorithms, enable the construction of candidate structures
(i.e., the DAG G = (X,E)) from data.

Problem 2. (Structure learning for PGMs) For a given set
of events X , let D be a dataset containing realizations of X ,
and Eforced, Eforbidden ⊆

{
(Xi, Xj) : (Xi, Xj) ∈ X2, i ̸= j

}
be sets of edges. Find the graph G = (X,E) which solves:

max
G=(X,E)

P (G|D)

s.t. G is DAG, Eforced ⊆ E, Eforbidden ∩ E = ∅,

where Eforced and Eforbidden are edges that must and cannot,
respectively, be in E.

The DAG specification and constraints Eforced ⊆ E,
Eforbidden ∩ E = ∅ define a set of admissible structures for
the sought-after graph G = (X,E); all free parameters are
then chosen to maximize the objective P (G|D), that is, the
probability that graph G resulted from dataset D. Structure
learning methods can be divided to constraint-based, score-
based, and hybrid algorithms. The relative performance (incl.
correctness, speed, scalability) of each class of algorithms
depends on the particular problem setup [7].

Problem 3. (Parameter learning for PGMs) For a given
X and DAG G = (X,E), let D be a dataset containing
realizations of X . Find the distribution Θ which solves:

max
Θ

P (Θ|G,D).

Admissible Θ can be constructed by considering the set of
local CPTs for each node, according to parent nodes indicated
by the DAG G resulting from the solution of Problem 2.
Then, the sought-after global distribution is obtained as the
maximizer of the objective P (Θ|G,D), that is, the probability
the resulting distribution resulted from dataset D and DAG G.

Various libraries exist to perform Bayesian inference and
learning tasks on PGMs. We indicatively refer to bnlearn
[8]–[10] in R, and to the PyMC3 Python package [11].

III. SOLAR-CENTERED DISTRIBUTION SYSTEM MODEL

We consider a distribution network topology consisting of
93 one- and 49 three-phase PV-DERs, with individual capac-
ities taking values in {60, 180, 500, 1000, 10.26} kW, 2520
collection nodes, 1138 loads, and one substation. The topology
is illustrated by Fig. 4. The substation is assumed to be of
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Fig. 4: Topology of the solar-centered distribution system considered in this
work, consisting of 142 PV-DERs organized in 6 fleets, 2520 collection nodes,
1138 loads of which 6 are designated as critical loads, and 1 substation.

finite capacity, so that disturbances in PV-DERs can propagate
and cause a measurable effect on the network. Six particular
loads distributed across the topology are designated as critical
loads. Each critical load is assumed to be equipped with a
protection system (e.g., a low-voltage protection scheme) that
will automatically shut off its power depending on the voltage
levels collected from nearby collection nodes. The –possibly
stochastic– behavior of each particular critical load is unique
to itself, to better promote the premise of heterogeneity in the
network. PV-DERs are logically organized in 6 fleets: A, B, C,
D, E, and F reflecting both locality and logical (e.g., ownership
and/or management) aspects.

All PV-DERs are vulnerable to output-impairment attacks,
which can be thought to be of malicious, accidental, and/or
wear-and-tear nature. Such attacks are modeled to act on the
output power of each PV-DER given its individual characteris-
tics (e.g., capacity, geometry) for particular environmental con-
ditions (e.g., irradiance, temperature) and setpoint information.
Given the finite capacity of the substation and the presence
of numerous other network elements, significant attacks can
cause voltage violations throughout the distribution system.
The propagation of voltage violations and the probabilistic
localization of loss of power events given individual DER
health are highly nontrivial phenomena that we address with
the proposed algorithm. Each PV-DER fleet is equipped with
the capability to assess its own health under output-impairment
attacks in terms of the ratio of actually generated to nominal
total (i.e., fleet-wide) power, given fleet characteristics, envi-
ronmental conditions, and setpoint information.

To streamline the presentation, it is hereafter assumed that:
(i) PV-DERs are in maximum setpoint tracking mode and (ii)
solar irradiance varies between 80% and 100% of its maximum
value for the particular locale. It is further assumed that (iii)
grid conditions (e.g., power demand) correspond to a busy
day. Assumptions (i), (ii), and (iii) enable us to focus on the
propagation of attacks through the distribution system and on
their effect on particular critical loads, as the environment and
the grid correspond to stationary events.
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IV. RICE: RISK-INFORMED CONDITION EVALUATION

Steps of RICE are outlined next and illustrated by Fig. 5.

A. Data source
Similarly to typical supervised statistical machine learning

workflows, RICE requires datasets from where it will learn
not only the probabilistic behavior but also the influence
structure of the underlying system. We define the dataset Dc

as a collection of N instantiations of random variables which
correspond to a (nonstrict) superset of the sought-after PGM’s
events. At this stage, the dataset can contain both continuous
(e.g., real numbers) and discrete (e.g., True/False) values.

It is envisioned that the primary source of such datasets
for the class of problems of interest will be simulations of
adequate coverage and fidelity. For the system of Section III,
such simulations were performed by appropriately augmenting
OpenDSS models of the topology to capture effects of output-
impairment attacks. Dataset variables cover aggregate DER
fleet health (real values in the [0, 1] interval), normalized
voltage violation at each of the collection nodes (real values,
referenced to nominal voltages under perfect PV-DER health),
and loss of power information at each identified critical load
(True/False). For each of the N = 10, 000 runs, DER
health was sampled from the uniform random distribution,
whereas the response of downstream topology elements was
obtained from the augmented, OpenDSS-based simulation.
None of the intermediate probability density/mass functions
were explicitly specified; rather, they were implicitly deter-
mined by the grid elements and grid at-large dynamics.

B. Preparation
1) Collection node grouping: As expected in any electrical

network, adjacent collection nodes will have similar values
during transients and steady-state conditions. This can jeop-
ardize our goals to learn effective topologies and, ultimately,
PGMs from observations, since cause-effect relationships be-
come obscure (e.g., a particular critical load may appear to
have tens or hundred of parent nodes). To retain the discrim-
inating abilities of related algorithms, we group collection
nodes by examining pairwise correlation coefficients of the
respective dataset values1. In what follows, any two collection

1Given two N -dimensional observation vectors A = {Ai, . . . , AN}, B =
{B1, . . . , BN} with means µA, µB , and standard deviations σA, σB , we
use the following form of the Pearson correlation coefficient:

nodes with data yielding a correlation coefficient greater than
or equal to 0.98 were grouped together, resulting in a new
fictitious collection node, with numerical values for voltage
violation picked arbitrarily from any of the grouped nodes.

2) Event discretization and labelling: Values for DER
health events were discretized into 7 levels of uniform size.
Labels were assigned incrementally, as shown in Table I.
Values for each voltage violation event were discretized into
ℓ = 8 levels designed to contain an equal number of dataset
cases; we denote the respective partition scheme by P(Dc, ℓ).

3) Topology assumptions: We populate Eforbidden with all
edges that would render DER-related events neighbors, thus
enforcing the assumption that PV-DERs are independent and
do not affect each other directly. Similarly, we forbid direct
connections between loads and collection nodes. In addition,
we add edges to Eforbidden that render DER-related events
sources (i.e., without incoming edges), and load-related events
as roots, to dictate a prognostic PGM. Eforced is left empty.

C. PGM learning

1) Structure learning: Equipped with the discrete dataset
Dd, a collection of events X , and any assumptions on the
topology, we proceed and solve Problem 2 from Section II.
It was found that, for the scale of problems similar to that
of Section III, score-based structure learning algorithms (e.g.,
Hill Climbing, Tabu Search) performed well and seemingly
better than constraint-based and hybrid algorithms.

The learned structure G = (X,E) for the system of
Section III, as obtained by the Tabu Search implementation
of bnlearn [8], is illustrated by Fig. 6.

2) Parameter learning: Given the learned structure G =
(X,E), we proceed and solve Problem 3 from Section II with
a Bayesian parameter fit for the global distribution Θ over the
dataset Dd, resulting in the learned PGM B = (G,Θ).

D. Operational use

We consider different inference queries on the learned PGM
B = (G,Θ), which we evaluate with Monte Carlo sampling-
based approximate Bayesian inference.

■ Baseline query - uniform health: Numerical results
for the probability to (independently) lose power at each of

ρ(A,B) := 1
N−1

∑N
i=1

(
Ai−µA

σA

)(
Bi−µB

σB

)
.

Dataset Dc (continuous/mixed) Probabilistic Graphical Model learning
k x1 x2 x3 ...
1 0.21 7.2 T
2 0.84 8.9 F

...

Preparation
• Data-driven collection

node grouping
• Event discretization

& labelling
• Assumption formulation

(i.e., Eforced, Eforbidden)

Structure
learning

Parameter
learning

Bayesian
inference

B = (G,Θ)

Monte Carlo methods

effective DAG topology G = (X,E)

learned PGM B = (G,Θ)events X , assumptions, discrete dataset Dd evidence Y query Q

risk = RB (Q|Y)

operational useconstruction / update of risk assessment tool

(Sec. IV-A)

(Sec. IV-B)

(Sec. IV-C1) (Sec. IV-C2)

(Sec. IV-D)

Fig. 5: Steps and main workflow of RICE (Risk-Informed Condition Evaluation).
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Critical uniform PV-DER fleet physical health levels L1 ... L7
load L1 (poor PV-DER health) L2 L3 L4 L5 L6 L7 (excellent PV-DER health)
1 0.319 0.224 0.149 0.021 0.005 0.001 0.000

2 0.466 0.322 0.227 0.093 0.069 0.013 0.001

3 0.496 0.363 0.276 0.157 0.052 0.010 0.000

4 0.492 0.387 0.237 0.163 0.082 0.013 0.001

5 0.762 0.585 0.429 0.338 0.197 0.103 0.011

6 0.389 0.272 0.144 0.084 0.016 0.002 0.000

TABLE I: Probability to lose power at each critical load 1, . . . , 6, for PV-DER fleet health hi ≡ H varying uniformly for i ∈ {A, . . . ,F} across 7 discrete
levels partitioning uniformly the [0, 1] interval: {L1: H ∈ [0, 0.143), L2: H ∈ [0.143, 0.286), . . . , L6: H ∈ [0.714, 0.857), L7: H ∈ [0.857, 1]}.

the critical loads, as health of all PV-DER fleets is varying
uniformly, are given in Table I.

■ Case I (QI|YI): [QI] Lose power at critical load 5
when [YI] Fleet C is at health level 2 and other fleets (A,
B, D, E, F) are at level 4. � response: P (QI|YI) = 0.47
(notice apparent consistency with regards to Table I).

■ Case II (QI|YII): [QI] when [YII] Fleet C is at health
level 1 and all other fleets are at health level 2. � response:
P (QI|YII) = 0.71 (notice apparent consistency with regards
to Table I and expected deterioration compared to Case I).

■ Case III (QIII|YII): [QIII] Lose power at critical load
1, when [YII]. � response: P (QIII|YII) = 0.27.

■ Case IV (QI AND QIII|YII): � response:
P (QI AND QIII|YII) = 0.22 (as expected from probability
laws for non-mutually exclusive events).

■ Case V (QIII AND NOT QI|YII): � response:
P (QIII AND NOT QI|YII) = 0.07 (i.e., it is an unlikely
event to have power in one load and not in another when
both depend on the same voltage node group).

Each individual query was completed in 1 second or less, on
a system with a 2.3 GHz CPU and 64 GB RAM. However, it is
strongly expected that the Monte Carlo methods for addressing
inference queries do not need that computational horsepower
and can easily be embedded on low-power hardware.

C grid conditions (fixed)E environmental factors (fixed)

Fleet A Fleet B Fleet C Fleet D Fleet E Fleet F

VA VB VC VD VE VF VG VH VI

CL1 CL2 CL3 CL4 CL5 CL6

{NO loss of power | loss of power}

{Health level 1 | . . . | Health level 7}

P
(D

c
,ℓ
)

Fig. 6: Network structure or effective topology learned for the model of Section
III. Comparing against Figure 4 shows that PV-DER fleets near the substation
have no actual effect on voltage levels associated with critical loads. Also,
given the particular connectivity among collection nodes and many of them
moving closely together (according to their groups), PV-DER fleet effects
on critical loads are lumped together, creating interesting structures that are
influenced by the topology, capacities, load behavior, and other factors.

V. CONCLUSION

We presented RICE, an algorithm and associated method-
ology based on Bayesian learning on PGMs to assess risk
in attack prone solar-centered distributed grids. It is worth

noting that graphical model learning is fundamentally different
than fitting neural networks or other function approximators
in a typical statistical learning context, even if workflows
appear to have some similarity. Whereas a neural network
can be configured to approximate certain aspects of distri-
butions, it cannot, typically, be equipped with the flexible
reasoning power to address diverse and, as referred to above,
omnidirectional inference queries, without a priori constructed
separate approximators for each query of interest. It is equally
worth noting that the proposed methodology and its envisioned
extensions go well beyond targeted or large-scale sensitivity
analyses, given the built-in capabilities to understand and
quantify underlying structures and cause-effect relationships,
as well as the dispatchability of the resulting analytics and the
associated value to operators and grid stakeholders.

Future work is expected to focus on multi-modal attacks
(e.g., physical and cyber), transient phenomena (as opposed to
purely quasi-steady state case considered here), consideration
of more variables (e.g., environmental, grid conditions, that
were fixed herein), and scalability analyses.
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[4] Y. Weng, R. Negi, and M. D. Ilić, “Graphical model for state estimation
in electric power systems,” in 2013 IEEE International Conference on
Smart Grid Communications (SmartGridComm), 2013, pp. 103–108.

[5] W. Jiang and H. Tang, “Distribution line parameter estimation consid-
ering dynamic operating states with a probabilistic graphical model,”
International Journal of Electrical Power & Energy Systems, vol. 121,
p. 106133, 2020.

[6] Y. Yuan, K. Dehghanpour, Z. Wang, and F. Bu, “Multisource data
fusion outage location in distribution systems via probabilistic graphical
models,” IEEE Transactions on Smart Grid, vol. 13, no. 2, pp. 1357–
1371, 2022.

[7] M. Scutari, C. E. Graafland, and J. M. Gutiérrez, “Who learns better
Bayesian network structures: Accuracy and speed of structure learning
algorithms,” International Journal of Approximate Reasoning, vol. 115,
pp. 235–253, 2019.

[8] M. Scutari, “Learning Bayesian networks with the bnlearn R package,”
Journal of Statistical Software, vol. 35, no. 3, pp. 1–22, 2010.

[9] ——, “Bayesian network constraint-based structure learning algorithms:
Parallel and optimized implementations in the bnlearn R package,”
Journal of Statistical Software, vol. 77, no. 2, pp. 1–20, 2017.

[10] M. Scutari and J.-B. Denis, Bayesian Networks with Examples in R,
2nd ed. Boca Raton: Chapman and Hall, 2022.

[11] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic program-
ming in Python using PyMC3,” PeerJ Comput. Sci., vol. 2, p. e55, 2016.

Page 5 of 5


