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Abstract—To take unit commitment (UC) decisions under
uncertain net load, most studies utilize a stochastic UC (SUC)
model that adopts a one-size-fits-all representation of uncertainty.
Disregarding contextual information such as weather forecasts
and temporal information, these models are typically plagued
by a poor out-of-sample performance. To effectively exploit
contextual information, in this paper, we formulate a conditional
SUC problem that is solved given a covariate observation. The
presented problem relies on the true conditional distribution of
net load and so cannot be solved in practice. To approximate its
solution, we put forward a predictive prescription framework,
which leverages a machine learning model to derive weights that
are used in solving a reweighted sample average approxima-
tion problem. In contrast with existing predictive prescription
frameworks, we manipulate the weights that the learning model
delivers based on the specific dataset, present a method to
select pertinent covariates, and tune the hyperparameters of the
framework based on the out-of-sample cost of its policies. We
conduct extensive numerical studies, which lay out the relative
merits of the framework vis-à-vis various benchmarks.

Index Terms—contextual stochastic optimization, unit commit-
ment, ensemble learning

I. INTRODUCTION

Taking unit commitment (UC) decisions under uncertain
net load (i.e., load minus renewable generation) lies at the
cornerstone of ensuring the economical and reliable operation
of systems with deep penetration of renewables. To this end,
grid operators (GOs) typically draw upon contextual informa-
tion (e.g., historical realizations of net load, weather forecasts)
as features to train machine learning (ML) algorithms that
generate point predictions for net load, which are subsequently
utilized in solving a deterministic UC problem. Despite cap-
italizing on contextual information, such an approach fails to
capture the stochastic nature of net load and suffers due to
isolating the ML algorithm from the downstream optimization
problem. On the flip side, the well-touted stochastic optimiza-
tion (SO) models explicitly represent uncertainty by usually
making assumptions on the probability distribution of net
load. Nevertheless, SO models exhibit a poor out-of-sample
performance if the assumed probability distribution is wrong,
and they cannot effectively exploit covariate observations,
resorting to a one-size-fits-all representation of uncertainty.

Recently, a paradigm termed predictive prescriptions
emerged in the operations research literature, which aims to
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address these shortcomings by jointly leveraging supervised
ML algorithms and a conditional SO model. The approach
put forward in [1] trains an ML model to derive weights for
historical observations of the uncertain parameter and uses the
weights in solving a reweighted sample average approximation
(SAA) problem. Predictive prescription frameworks found
applications in power systems as well [2]–[4]. The study in [2]
seeks to maximize the profit of a renewable resource trading in
the day-ahead market by training trees with a task-based loss,
whereas [3] leverages linear regression models to determine
the renewable generation forecasts that lead to UC decisions
with minimal total cost.

In this paper, we initially map out in Section II a conditional
SO formulation for taking UC decisions under uncertain net
load given a covariate observation. In Section III, we put
forward a predictive prescription framework, which leverages
the random forest (RF) algorithm to derive weights that are
used in solving a reweighted SAA problem. Section III further
lays out three principal contributions of this paper. First, we
put forth a method that manipulates the weights derived from
the RF algorithm based on the size and the information-
richness of the dataset. Second, we present an approach to
tuning the hyperparameters of the framework based on the
out-of-sample cost of its prescriptions. Finally, we suggest a
method for pinpointing the pertinent covariates of net load. In
Section IV, we demonstrate the application of the framework
using data harvested from the California Independent System
Operator (CAISO) grid and investigate its out-of-sample and
computational performance. Section V concludes the paper.

II. PROBLEM DESCRIPTION

We start out with the analytical description of the problem.

A. Analytical underpinnings

We study the UC problem under the uncertainty in net load,
solved by the GO at an hourly granularity for a scheduling
horizon of 24 hours. The study period for each day d is denoted
by the set Hd := {h : h = 1, ..., 24}, where the term h is the
index for each hourly period. We denote by Yd ∈ Y ⊆ Rdy
the uncertain net load across all system buses and all 24 hours
in Hd, and we represent its observation by Yd = yd. Assume
that the GO has at its disposal historical observations on net
load for D days. Define the set D := {d : d = 1, . . . , D}.

Typically, it is not possible to precisely set forth the
probability distribution of net load Yd or provide a perfectly
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accurate forecast for the materialized net load levels Yd = yd.
Nevertheless, there is a broad array of contextual informa-
tion that could prove useful to these ends. For instance,
temperature, solar irradiance, and wind speed measurements,
temporal information such as the month of the year and
the day of the week, as well as lagged observations on net
load may have a direct bearing on the net load realization
Yd = yd. Our framework capitalizes on the observations
of these covariates in assessing the uncertainty in net load.
Note that such covariates are precisely the features that are
leveraged in developing ML models so as to forecast net
load. We express by Xd ∈ X ⊆ Rdx the random covariate
associated with Yd and denote its observation by Xd = xd.
We expound upon the candidate covariates drawn upon in our
framework in Section IV.
B. Conditional stochastic unit commitment problem

The contextual information associated with net load can be
effectively exploited in a conditional stochastic programming
framework in taking UC decisions after observing the contex-
tual information X = x̄. If it were possible to know the true,
underlying conditional distribution of the net load Y given
X = x̄, we could formulate the following “gold standard”
conditional stochastic unit commitment (CSUC) problem:

min
z∈Z

E
[
C(z;Y )|X = x̄] := ηTz + E

[
Q(z;Y )|X = x̄

]
(1)

where
Q(z; ȳ) := min

ζ
cTζ (2)

subject to Wζ ≤ b− Tz −Mȳ. (3)

The CSUC problem is a two-stage conditional SO problem
with a mixed-integer linear programming formulation. The
objective (1) of the first-stage problem is to minimize the
commitment and startup costs plus the expected dispatch and
load curtailment costs. The first-stage decisions comprise the
binary commitment, startup, and shutdown variables and are
represented by z. The set Z denotes the feasible region of the
first-stage decisions, which is defined by the logical constraints
that relate the commitment, startup, and shutdown variables as
well as the minimum uptime and downtime constraints.

For a specific vector of first-stage decisions z and materi-
alized net load values Y = ȳ, the value function Q(z; ȳ) is
evaluated by solving the second-stage problem (2)–(3) with the
objective (2) to minimize the dispatch costs and the penalty
cost due to load curtailment. The second-stage variables are
denoted by ζ and are composed of the power dispatch levels
of generators and the curtailed load for all hours h ∈Hd. We
succinctly represent in (3) the power generation and ramping
limits for generators as well as the transmission constraints
using injection shift factors based on the DC power flow
model, wherein W , T , and M are constant matrices and b
is the right-hand-side vector of all second-stage constraints.

Note that the CSUC formulation draws upon the true
conditional distribution of Y |X = x̄, which cannot be
known, thus rendering CSUC solely a hypothetical, ideal
formulation. Nevertheless, GOs have data on the historical

realizations of random net load and the associated covariates.
The predictive prescription framework introduced in Section
III utilizes these observations to construct the training set
SD := {(xd, yd)}Dd=1, which is used to solve a surrogate
problem for CSUC.

III. PROPOSED FRAMEWORK

We next introduce our predictive prescription framework.
A. Surrogate problem formulation

The principal objective of the proposed framework is to
approximate as close as possible the optimal CSUC solution
after observing X = x̄. Motivated by [1], we approximate the
CSUC problem by the reweighted SAA problem

w − CSUC : ẑD(x̄) ∈ arg min
z∈Z

D∑
d=1

ωD,d(x̄)C(z; yd), (4)

where ωD,d(x̄), ∀d ∈ D , are weight functions obtained from
the training set that adjust the influence of each historical
observation on the objective function of the reweighted SAA
problem (4). In [1], the authors derive the weights ωD,d(x̄)
by directly using ML algorithms and spell out how different
ML algorithms can be leveraged to that end. In the proposed
framework, we draw upon the RF model in conjunction with
a nonlinear function to derive the weights.
B. Evaluation of the empirical weights

We start off by training the RF model to predict the net
load in the next 24 hours, for which we use the covariate
observations in SD as features and the net load values in SD

as labels. Next, for each new covariate observation X = x̄, we
use the trained RF model to quantify the similarity between
the new observation and each historical observation in SD.

To quantify the similarity between observations, we record
the leaf that the new observation x̄ is mapped into in each tree
of the RF and subsequently identify the historical covariate
observations that fall into the same leaf node with x̄. Central
to our approach is to assign the weight for observation xd, that
is, ωD,d(x̄), based on the number of trees in which xd and x̄
are assigned to the same leaf node. To this end, Bertsimas and
Kallus [1] propose that the weight for xd increase linearly
with the number of trees in which x̄ and xd fall into the
same leaf node, normalized by the total number of covariate
observations assigned to the same leaf node with x̄, which
yields the empirical weights

ω̂D,d(x̄) =
1

T

T∑
τ=1

I
[
xd ∈ X τl(x̄)

]∣∣{d′ : xd′ ∈ X τl(x̄)

}∣∣ , (5)

where T denotes the number of trees in the forest, I(·) the
indicator function, and X τl(x̄) the set of covariate observations
assigned to the same leaf with x̄.

C. Deriving the final weights

Existing approaches in the literature plug the empirical
weights ω̂D,d(x̄) into the w − CSUC problem without taking
into account the size or the prescriptive content of the train-
ing set. Nevertheless, the empirical weights obtained with a



small training set and/or a training set with little informative
content may fail to afford an accurate characterization of the
similarity between observations. In contrast, we can utilize
a particular historical observation with greater confidence, if
it were deemed to be similar to a new observation under
a large training set with high prescriptive power. As such,
we introduce the function ϕ

(
ω̂D,d(x̄); ξ,D

)
:= ω̂D,d(x̄)

D
ξ ,

which serves to manipulate the empirical weights based on
the training set size D and the weight modification parameter
ξ. The parameter ξ could be viewed as a proxy for the
information richness and the prescriptive power of the training
set. As ξ decreases and D increases, ϕ(·) amplifies the weights
of the data points that are assessed to be strongly similar to
a new observation and brings down the empirical weights of
the points that are markedly dissimilar to a new observation.
Further, for a small D and a large ξ, ϕ(·) smoothens any
significantly high and low weight value and brings the weights
toward a uniform level. Clearly, a key challenge to this end is
to hone in on a judicious value of ξ. To this end, we treat ξ as
a hyperparameter of the overall framework and set its value
by assessing its influence on a separate validation set.
D. Task-based hyperparameter tuning

The proper tuning of an ML model’s hyperparameters could
play a drastic role in its performance. The classical approach to
hyperparameter tuning is to assess the performance of an ML
under different hyperparameter values based on a statistical
loss function. In our framework, however, a specific selection
of RF hyperparameter values may bring forth a lower pre-
diction error without leading to UC decisions that drive down
the total out-of-sample cost, which punctuates the need to tune
the RF model’s hyperparameters based on the ultimate task for
which it is trained. As such, we treat the hyperparameters of
the RF model as those of the overall framework and set their
values based on the total out-of-sample cost of the optimal
policy ẑD(x̄) obtained with different hyperparameter values.

At the outset, we use grid search to exhaustively generate
candidate values for the hyperparameters reported in Table I.
Next, we construct a separate validation set containing pairs
of covariate and net load observations VD̄ := {(x̄i, ȳi)}D̄i=1.
We use each covariate observation x̄i to compute the opti-
mal policy ẑD(x̄i) and subsequently the out-of-sample cost
C(ẑD(x̄i); ȳi) obtained under the actual net load observation
ȳi. For each set of candidate hyperparameter values, we com-
pute the total out-of-sample cost over the validation set, i.e.,∑D̄
i=1 C(ẑD(x̄i); ȳi). Ultimately, we pick the hyperparameter

values that deliver the lowest total out-of-sample cost.

TABLE I
HYPERPARAMETERS

hyperparameter candidate values

max tree depth 3, 6, 10

number of features considered √
dx, (0.3)dx, (0.6)dx

for node splitting

weight modification parameter ξ D
10

, D
4

, D, 4D, 10D

E. Selection of the covariates

A key thrust of the framework is to pinpoint information-
rich covariates that aid in effectively grasping the uncertainty
in net load. While there is plethora of factors that can
potentially influence a net load realization, ruling out the
covariates that afford little or no information can help the
trained RF model better assess the similarity between covariate
observations, thereby yielding final weights that reduce the
out-of-sample costs. Further, working with fewer covariates
allows for expediting the training and testing of the RF model.

To identify the covariates, we employ a hybrid approach
comprising a filter and a wrapper feature selection method.
We denote the support of the initial set of candidate covariates
by X r ⊆ Rdxr . We start out by computing the Pearson
correlation coefficient (PCC) for each candidate covariate and
the net load observation, which measures the linear correlation
between two variables. The PCC attains values between −1
and 1, with 1 (resp. −1) indicating a complete positive (resp.
negative) correlation and 0 signifying that the correlation
is immaterial. Customarily, when the absolute value of the
PCC is greater than or equal to 0.6, it is interpreted as the
variables being strongly correlated with one another [5]. As
such, we rule out all candidate features that yield a PCC value
between 0.6 and −0.6 and obtain dxp covariates supported
on the set X p ⊆ Rdxp . Note that PCC measures only the
linear correlation between the variables, and it does not assess
how the covariates integrate with the utilized ML model.
As a remedy, we additionally implement recursive feature
elimination (RFE), which is a wrapper method that takes an
ML model as a parameter. RFE trains the selected ML model
with the initial set of features, ranks the features on the basis of
their importance, and recursively eliminates the least important
features until the desired number of features is reached. We
run RFE with the RF model and ultimately obtain the final set
of covariates with support X f ⊆ Rdxf .

IV. NUMERICAL EXPERIMENTS

We next demonstrate the application of the proposed frame-
work in a real-life setting.

A. Datasets and covariate selection

In our experiments, we draw upon the net load values
recorded in the CAISO grid between June 1, 2018 and August
31, 2019 [6]. We use the measurements recorded in the first
year (i.e., June 1, 2018–May 31, 2019) to construct the training
sets. As set forth below, we vary the size of the training set
in different experiments so as to assess its influence on the
performance of the methods. Nevertheless, to compare their
performance on a consistent basis, we use the same validation
set and the same test set in all experiments. Specifically,
we utilize the measurements recorded in June 2019 as the
validation set and the measurements recorded from July 1 to
August 31, 2019 as the test set. We use the IEEE 14-bus
system in the experiments, which has 5 generators with an
aggregate capacity of 765.31 MW. We scale the net load values



so that the highest net load value is equal to the 90% of the
aggregate capacity of the generators.

To select the covariates for PV and wind generation, we
assess the spatial distribution of PV and wind installations
with their respective capacities across California, and we
accordingly select locations from which we harvest data on
global horizontal irradiance (GHI) and wind speed (magnitude
and direction). We study the total population and population
density of the counties of California and identify locations
from which we use temperature measurements so as to capture
the influence of temperature on system load.1 We leverage as
candidate covariates the GHI, wind speed, and temperature
measurements reported by the National Renewable Energy
Laboratory [7] for the selected locations in the past 24 hours.
We further use as candidate covariates 24 lagged realizations
of net load, as well as the 24 lagged realizations of the daily,
weekly, and monthly moving average of net load. Finally, we
define categorical variables to indicate whether a day falls on a
weekend and on a public holiday and use one-hot encoding for
their representation. We ultimately obtain dxr = 440 candidate
covariates and follow the covariate selection method presented
in Section III-D to derive dxf = 25 covariates.

B. Benchmarks
To highlight the relative merits of the proposed framework,

we draw upon different decision-making methods to obtain
alternative policies and investigate their performance. One
such method is the naive stochastic unit commitment (NSUC)
model, which treats the net load observations in the training
set as equiprobable scenarios and disregards the covariate
observation X = x̄, stated as

NSUC : min
z∈Z

1

D

D∑
d=1

C(z; yd). (6)

We solve the following reweighted SAA problem using the
empirical weights as suggested in [1] so to investigate the
impact of the transforming the weights:

ew − CSUC : min
z∈Z

D∑
d=1

ω̂D,d(x̄)C(z; yd). (7)

We further use the point forecast of the trained RF model, i.e.,
f̂RFD (x̄), in solving the following deterministic UC problem:

PFUC : min
z∈Z

C(z; f̂RFD (x̄)). (8)

To obtain the minimum out-of-sample cost that could be ide-
ally attained, we solve the following ideal UC (IUC) problem,
which has a perfect foresight of the net load observation ȳ:

IUC : min
z∈Z

C(z; ȳ). (9)

C. Results
We conduct the experiments on a 64 GB-RAM computer

containing an Apple M1 Max chip with 10-core CPU. We

1We provide the data and the source code of the simulations in the online
companion to this paper located in https://github.com/oyurdakul/isgtna23.

build the RF models and select the covariates under Python
using scikit-learn 1.1.2. To model the UC instances, we extend
the UnitCommitment.jl package [8] to the two-stage
stochastic setting, and we solve all UC problems under Julia
1.6.1 with Gurobi 9.5.0 as the solver. The penalty cost for load
curtailment is set at $10, 000/MWh in all experiments.

We initially construct the training set with the first 100
observations, i.e., D = 100. We use the validation set to tune
the hyperparameters of the proposed predictive prescription
framework (indicated as w − CSUC) as well as those of the
PFUC and ew − CSUC methods. To assess how the methods
perform out-of-sample, we use the measurements in the test
set to determine how each method would have committed the
generators for the corresponding days in the test set, then we
observe the actual net load levels that had materialized, and
ultimately use the resulting total cost and the mean unserved
energy (MUE) to score the performance of each method. In
Table II, we report for each method the average of the total
cost and the MUE computed over all 62 observations in the
test set. We separately tabulate the MUE results in addition to
the total cost as the latter may greatly vary with the choice of
the penalty cost for load curtailment.

TABLE II
OUT-OF-SAMPLE COSTS AND MUE LEVELS

method total cost ($) MUE (MWh)

IUC 380089.8 0.0

w − CSUC 401377.3 0.0

ew − CSUC 414566.0 0.0

NSUC 416429.5 0.0

PFUC 453638.1 7.2

The results in Table II make clear the monetary benefits that
can be reaped by implementing w − CSUC, which delivers
the lowest total cost among all methods except the perfect-
foresight policy, yielding a total cost that is higher by 3.86%
than IUC. We highlight that the lower cost under w − CSUC in
comparison with that under the runner-up method ew − CSUC
provides an empirical justification for manipulating the empiri-
cal weights before using them in solving the reweighted SAA
problem. The NSUC method fails to outperform w − CSUC
and comes at the heels of ew − CSUC, which we ascribe
to NSUC utilizing equiprobable scenarios without taking the
covariate observations into account. The results further make
evident the shortcomings of drawing upon deterministic fore-
casts and ignoring the stochastic nature of net load in solving
the UC problem, as the policies under PFUC deliver the
highest total cost and necessitate involuntary load curtailment.

In certain practical applications, we may fail to collect a
large number of observations that can be used in constructing
the training set. Coincidentally, working with a larger training
set requires solving the w − CSUC problem with a greater
number of scenarios, which drives up the computational bur-
den. As such, we assess the performance of each method
under different values of D. In doing so, we keep all the
hyperparameters except ξ constant at the values determined

https://github.com/oyurdakul/isgtna23
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Fig. 1. Out-of-sample performances. In 1a, solid lines indicate the mean values over the 62 observations in the test set, and shaded regions show only
one-tenth of the standard deviations around the mean values in order to avoid excessive overlap between shaded regions. 1b depicts the total cost and the
computation time for obtaining the weights ωD,d(x̄) under each set of features.

for D = 100 and use grid search to tune the value of ξ on
the validation set. Fig. 1a visualizes the total cost delivered
by each method, and it illustrates for the proposed framework
the value of ξ determined through grid search and the time to
solve the w − CSUC problem so as to obtain the policy ẑD(x̄).

The plots in Fig. 1a echo the order of performance in Table
II, as across most values of D, the policies of w − CSUC beat
ew − CSUC, which in turn outperforms NSUC. Note that the
policies under PFUC exhibit the worst out-of-sample perfor-
mance for most investigated training set sizes. We further point
out that the total costs obtained under the proposed framework
are tightly clustered around their mean values and less spread
out compared with the benchmark methods.

We remark upon the tight coupling between the training set
size, the solution time, and the out-of-sample cost. Increasing
D from 10 to 100 markedly improves (decreases) the out-
of-sample performance of w − CSUC, albeit a diminishing
return as D grows from 50 to 100. We also observe that
the out-of-sample performance saturates around D = 100 and
sporadically deteriorates (increases) as D grows beyond 100,
during which the solution time precipitously increases.

One can draw from Fig. 1a valuable insights into the value
of ξ determined via grid search. Most notably, the empirical
weights are amplified and suppressed the most under D = 365,
signifying an information-rich training set. This observation
drives home that training the RF model using a full year’s
data enables an accurate characterization of the similarity
between observations. Note that, the empirical weights for
D ∈ {50, 100, 200, 300} are also boosted and attenuated,
though not as much as for D = 365, whereas those for
D ∈ {10, 20} are used as is, indicating that amplifying and
suppressing the empirical weights obtained with such small
datasets is not warranted.

We next investigate the influence of the covariate selection
method laid out in Section III-E on the out-of-sample perfor-
mance and the computation time. To this end, we repeat the
experiments for D = 100 under the set covariates supported
in X r and X p. We tune the hyperparameters for each set
of covariates using the validation set and leverage the test
to compute the out-of-sample performances. For each set of
covariates, we measure the time for computing the weights
ωD,d(x̄) over 30 simulation runs, which is comprised of the

time for training the RF model and that for evaluating the
weight for all observations in the test set. Fig. 1b bears out
the relative merits of the proposed covariate selection method,
which notches a 3.90% reduction in the average time for
evaluating the weights ωD,d(x̄) vis-à-vis those under the initial
set of features without compromising on the out-of-sample
performance.

V. CONCLUSION

In this paper, we worked out a predictive prescription frame-
work that jointly leverages the random forest (RF) algorithm
with a conditional stochastic optimization model so as to take
unit commitment decisions under uncertain net load. We put
forth a method to manipulate the empirical weights derived
from the RF model based on the size and the prescriptive
power of the training set, and we suggest a hybrid method
to select pertinent covariates for net load. By treating the
hyperparameters of the RF model as those of the overall
framework, we tune them based on the ultimate task for which
the framework is developed, that is, bringing forth a lower
out-of-sample cost. The extensive numerical studies conducted
illustrate the capabilities of the framework in reducing not
only the out-of-sample cost and load curtailment, but also the
computation time compared with various benchmarks.
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