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Uncertainty-aware photovoltaic generation
estimation through fusion of physics with harmonics

information using Bayesian neural networks
Dimitrios Pylorof Humberto E. Garcia

Abstract—We develop an aggregate photovoltaic generation
estimation methodology that uses diverse inputs and can reason
on its current input-dependent predictive uncertainty. Named PV-
PHEst, for PhotoVoltaic Physics- & Harmonics-driven Estimator,
the resulting tool is intelligently weighing and fusing information
carried by the output of physics models, harmonics, and line
sensors, using Bayesian neural networks and related techniques
aimed at solving machine learning problems with intrinsic
uncertainty quantification. As each of the three input classes
carries heterogeneous information that only sheds light on one
facet of the estimation problem but its value can diminish in the
face of diverse grid phenomena, PV-PHEst with its estimation
and uncertainty reasoning capabilities perform a nontrivial and
potentially mission-critical task of value to grid operators.

Index Terms—Photovoltaic systems, Analytics, Machine learn-
ing, Uncertainty quantification, Bayesian methods

I. INTRODUCTION

Massively distributed energy generation within distribution
grids, as typically achieved nowadays using solar photovoltaic
distributed energy resources (PV-DERs), is key to achieving
energy resiliency and self-sufficiency at the community level,
as well as to reaching pressing renewable energy penetration
objectives. Nevertheless, solar energy generation tends to be
volatile, and the distributed structure of solar-heavy grids com-
plicates significantly the task of managing power flows and
ensuring stable grid operation, often by controlling additional,
possibly non-solar energy resources. To perform such mission-
critical control, grid operators need visibility on real-time solar
generation of their grids. As over-instrumenting the grid with
DER- (and customer-)specific sensors is often unfeasible due
to cost, communication burden, and privacy reasons, solar
generation needs to be estimated and predicted with whatever
information sources may be available, and algorithmic tech-
niques addressing the so-called solar disaggregation problem.

Assuming, unrealistically, perfect information about an
area’s PV infrastructure (including panel geometry and other

D. Pylorof and H. E. Garcia are with the Systems Science & Engineering
Division of the U.S. Department of Energy Idaho National Laboratory, Idaho
Falls, ID 83415, USA.
Corresponding author: H. E. Garcia (humberto.garcia@inl.gov).

The work presented herein was funded in part by Project PV-NOW of
the U.S. Department of Energy Office of Electricity through Contract No.
DE-AC07-05ID14517. Neither the United States Government nor any agency
thereof, nor Contractor, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any
agency or Contractor thereof.

equipment characteristics for all distributed installations), real-
time environment sensing, and physics models of adequate
fidelity leads to a trivial yet infeasible solution to the problem,
where PV generation is analytically calculated for each and
every prosumer in the focus area. Conversely, assuming signifi-
cant real-time grid instrumentation (to include all consumption
and centralized generation of electricity) leads to another ana-
lytically trivial but practically infeasible solution to the prob-
lem, where one balances power flows using information from
all centralized power plants and/or substations, prosumers,
and consumers of electricity. In between the aforedescribed
extreme scenarios, the technical community has been devoting
significant efforts to solve the solar disaggregation problem
under various permutations of sensing, analytical, and statisti-
cal tools. We indicatively refer to [1], where a game-theoretic
approach is used in solar disaggregation by including fully-
instrumented prosumers in the mix and reasoning on their
correlations with non-instrumented prosumers, to [2], where
a utility-in-the-loop approach offers greater attention to the
issues of privacy and distributed learning, to [3], where PV and
non-PV customers are statistically correlated via their diurnal-
nocturnal loads to the end of inferring PV-equipped prosumer
behavior, to the more statistical, unsupervised approach of [4],
and ultimately, to the more data-driven approach of [5] with
particular focus on prosumer heterogeneity.

In this paper, we develop PV-PHEst (PhotoVoltaic Physics-
& Harmonics-driven Estimator), a novel PV generation es-
timation capability capable to reason on the uncertainty of
its output, and to fuse and enhance the value of judiciously
selected yet disparate information sources. PV-PHEst is us-
ing multi-modal input consisting of: (a) uncertain, model-
based information, as those that would be available for a
massively distributed grid of heterogeneous prosumers (whose
installation parameters cannot be perfectly determined and
maintained) and (b) line sensor measurements and their har-
monic decomposition. Harmonic distortion carries information
relatable to PV generation, but it can be contaminated by the
dynamic operation of other harmonics-inducing sources. Mod-
els carry invaluable, albeit inaccurate information. PV-PHEst
performs its fusion task by means of training and then using
operationally a machine learning regressor based on Bayesian
neural networks. As shown via numerical evaluations, PV-
PHEst is able to amplify the value of either information source,
producing disaggregation outputs with quantified uncertainty
of use to grid stakeholders, even under significant uncertainty
and grid disturbances.
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Fig. 1: Electrical and logical architecture for PV-PHEst design, development, evaluation, and deployment.

II. PRELIMINARIES

A. Physics models

Energy conversion processes in photovoltaic equipment,
as well as effects of materials, environmental aspects, and
other physical and/or chemical phenomena are nowadays
well understood and modeled in sufficient fidelity for many
applications by inclusive libraries such as pvlib [6]. In the
modeling paradigm of interest for the present work, pvlib
is employed for a particular locale and PV installation with
specific geometry and capacity data to calculate irradiance-
type quantities, cell temperatures given ambient conditions,
and, ultimately, PV-produced DC power. Corrections to irra-
diance quantities for the presence of clouds are implemented
according to [7]. It is key to be cognizant of two types of
modeling errors, which both contribute to aleatoric uncertainty
in the sought-after PV generation estimate: (a) even mature and
well-studied models introduce errors; (b) the input conditions
to any such models may not correspond to ground truth. To
illustrate, it is rather difficult to capture with enough accuracy
the geometry and equipment characteristics for PVs in all
prosumers across a certain area of interest and to keep such
information up-to-date, not to mention location-specific short-
fuse phenomena such as shading from trees and degradation
from dust; any model’s original accuracy will thus decrease.
Nevertheless, information from dispatchable (i.e., executable
online and potentially embeddable on field hardware) models
is still valuable, even under significant modeling uncertainty.
PV-PHEst demonstrates the added value when operationally
imperfect models are intelligently fused with information-rich

signals collected from few line sensors. We denote the poten-
tially uncertain parameters for any physics model describing
the PV generation in the focus area by p ∈ P, where P is
the compact value set where elements of p are assumed to be
constrained, assuming deterministically bounded uncertainty.
Without significant changes, one could alternatively consider
a more general stochastic case for p.

B. Harmonics generation and contamination

DC sources, as are PV solar panels and batteries, are
typically connected to the AC part of the grid via an inverter.
Due to their operating principles, inverters produce imperfect
sine waves containing additional frequencies other than the
fundamental and resulting in the phenomenon of harmonic
distortion [8]. Inductive and capacitive loads as well as other
elements across the grid also cause harmonic distortion, albeit
possibly at different levels of power per frequency compared to
inverters. To promote grid stability, various standards impose
bounds on both power at individual frequencies and the total
harmonic distortion, per single grid element, as well as for
the grid at large [9], [10]. Even if harmonic distortion is
generally considered to be a stability-threatening nuisance
for the grid, it is an inevitable phenomenon, which, in the
case of harmonic distortion caused by PV-related inverters,
can carry -nonetheless- useful information on the amount of
DC power an inverter is converting to AC, since distortion
levels on particular frequencies for varying inverter output
follow algorithmically identifiable patterns, evidenced in Sec-
tion V. In view of our disaggregation objective and the use
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of information-carrying harmonics by PV-PHEst, we refer to
non-PV-related (e.g., induced by loads or the grid) harmonics
as contaminants acting as a disturbance to our PV power
estimation objective, alongside modeling uncertainty.

C. UQ-equipped regression with Bayesian neural networks

Machine learning regression is a staple in supervised statis-
tical learning, where a model is constructed from a dataset,
containing input/output pairs, to be able to predict outputs
from (potentially unseen before) inputs drawn from the same
distribution where the dataset originated. Regression models
can be constructed using numerous traditional and emerging
techniques, ranging from least squares to kernel methods,
Gaussian processes, to various approaches based on neural
networks. Regardless of the discriminatory capabilities of the
model and any other traits of interest (e.g., generalization,
computational efficiency, robustness), any regressor in realistic
circumstances will exhibit uncertainty, which can be broadly
understood as: (a) model (or epistemic) uncertainty, related to
the regressor’s (in)ability to approximate knowledge encapsu-
lated in the dataset (e.g., where the regressor’s structure cannot
fit to the sought-after mapping), and (b) data (or aleatoric)
uncertainty, related to ambiguities in the dataset (e.g., where
similar inputs seem to lead to dissimilar outputs). In our work
and regression task, we employ Bayesian neural networks
(BNNs) [11], which fit distributions to their unknowns during
training and are designed to produce input-dependent expected
values and standard deviations as output to any given input
when used operationally as regressors. We refer to UQ360
[12] and to TensorFlow Probability [13] as indicative
BNN-inclusive machine learning libraries [14].

III. AGGREGATE MODELING & DEMO TOPOLOGY

To illustrate the significant uncertainty in PV generation
models that can manifest in grids that are neither over-
instrumented nor over-documented, we consider an aggregate
modeling approach where a particular focus area with 400
kW installed capacity is split evenly into south-facing (i = 1)
and southeast-facing (i = 2) capacity. Even if the (even)
distribution is fixed in our high-fidelity simulators (as would
be fixed, at least over reasonable amounts of time, also in re-
ality), having operational uncertainty over both the respective
distribution C = {c1, c2} and the total capacity itself (e.g.,
±10 ∼ 20%) can cause significant errors in the output of
models such as pvlib, at any given time during the day,
and on top of any errors caused by instrumentation noise
or other discrepancies between modeled and ground truth (or
real-life) physics. On top of the two individually aggregating
PV and storage assemblies, the considered topology consists
of local loads with time-varying inductive and capacitive
(and, thus, harmonics-inducing) components, a distribution
system with necessary elements, a central load, again, with
inductive/capacitive components, and a connection to the grid.
Two line sensors measuring current and voltage, as well as
performing a harmonic decomposition are installed close to
the individually aggregating PV and storage assemblies and

the grid, respectively. It is also assumed that (noisy) environ-
mental measurements are available for the focus area. The
demonstration topology, illustrating the aggregate modeling
approach, grid elements, and instrumentation, is summarized
by Figure 1.

Even if our modeling approach has been motivated by
the aforedescribed aspects and particular focus on operational
deployment constraints in locales where precise PV installa-
tion details may not be easy to obtain and maintain, using
individually aggregating PV assemblies with uncertainty in
capacities is not binding for the development and deployment
of PV-PHEst. It is envisioned that any uncertain physics model
(no matter where the uncertainty comes from) can be fused
with contaminated harmonics signatures to weigh and amplify
the value of information carried by each source.

IV. SOLUTION ARCHITECTURE AND WORKFLOWS

PV-PHEst fits the demonstration topology or any deploy-
ment target as illustrated in Figure 1 by receiving inputs
from: (a) dispatchable PV physics models (e.g., pvlib run-
ning with an approximate description of the focus area and
environmental measurements), and (b) a limited number of
line sensors providing current and voltage measurements and
their corresponding harmonic decompositions. The technical
objective for PV-PHEst is to understand the relation between
ground truths for PV generation (unknown and unseen as PV-
PHEst operates) and values of input features that correspond to
said ground truths. After capturing such knowledge, PV-PHEst
reasons on the likelihood of PV-generation using inputs (a) and
(b). An offline training phase is conducted to create applicable
datasets and equip PV-PHEst with the required experience,
either prior to any deployment or whenever changes to the
focus area occur. Afterwards, PV-PHEst is used operationally
by providing real-time inputs (a) and (b) to the trained BNN
and obtaining an estimated PV generation distribution in terms
of the expected value and standard deviation. The respective
workflows are illustrated in Figure 2.

V. NUMERICAL EVALUATION

In the context of the present work, storage was present
in the topology but not changing its operational mode (e.g.,
from charging to discharging). The ground truth model was
developed and simulated in MATLAB/Simulink with Sim-
scape Electrical, using physics elements from pvlib, with
ground truth parameters p∗ ∈ P unknown to downstream
modules, including PV-PHEst, except for the bounds described
P corresponding to 0.9 ≤ c1 ≤ 1.2 and 0.8 ≤ c2 ≤ 1.15, and
zero-mean instrumentation noise up to ±5%. Further physics
model uncertainty was artificially injected in parts of the oper-
ational regime (e.g., low temperatures, low irradiance decrease
accuracy of physics model). A variant of the pvlib model
is used operationally, with parameters p′ ∈ P (i.e., within the
assumed value set but not equal to ground truth values p∗).
Two evaluations are performed, for moderate and significant
disturbances, where harmonic distortion from the grid and each
load are up to 40% and 100%, respectively, of the levels
given in IEEE Std. P519. In each evaluation, a dataset of
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12, 000 cases from the simulated demonstration topology is
collected, while creating input features by sampling uniformly
from P. This dataset is then randomly split into a training and
test set of 8, 400 and 3, 600 cases, respectively. PH-PHEst is
then configured, with a single hidden layer of 20 nodes using
UQ360, and a BNN with weights following a horseshoe prior
distribution, subsequently trained with the Adam optimizer
using a learning rate of 0.005 for 3, 000 epochs and a batch
size of 100 samples per update. Validation results on the
(unseen during PV-PHEst construction) test set for each of
the two evaluations are tabulated in Table I, and illustrated in
Figure 3. In each evaluation, we compare error performance on
unseen data among Baseline B1: a BNN synthesized only with
line sensor (incl. harmonics) inputs, i.e., PV-PHEst “without”
physics; Baseline B2: raw output of physics models; Baseline
B3: a BNN attempting to adjust physics models across the
operational regime, i.e., PV-PHEst “without” line sensors; and
PV-PHEst. It is evident that regardless of the uncertainty
of either information source, the intelligent fusion provided
by PV-PHEst offers a more accurate and valuable output,
even in the highly-disturbed scenario where B1 deteriorates
significantly (in the presence of more harmonics contaminants)
yet the underlying signatures are still useful to PV-PHEst
in conjunction with physics model outputs. The distributions
of PV-PHEst’s understanding of uncertainty throughout the
12, 000 case datasets, in terms of BNN-computed standard
deviation, are illustrated in Figure 4 for the two evaluations.
One can observe that PV-PHEst appears to be self-aware of
the higher uncertainty in Evaluation 2. Finally, PV power es-
timation results with uncertainty quantification, as they would
have been provided to a grid operator, are illustrated in Figure
5 for two different inputs.

VI. CONCLUSION & FUTURE WORK

We presented PV-PHEst, a BNN-based approach to the
solar disaggregation problem. PV-PHEst can amplify the value
of diverse information sources consisting of (limited) line
sensors covering a focus area, the corresponding harmonics
decompositions, and approximate physics models. Future work
will focus on incorporating appropriate load modeling as a
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third information source modality, and progressive hardware-
in-the-loop evaluations with actual line sensors.
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