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Abstract—A predictive mechanism is proposed in order to
reduce price volatility linked to large fluctuations from de-
mand and renewable energy generation in competitive electricity
markets. The market participants are modelled as price-elastic
units, price-inelastic units, and storage operators. The distributed
control algorithm determines prices over a time horizon through
a negotiation procedure in order to maximize social welfare
while satisfying network constraints. A simple flow allocation
method is used to assign responsibility for constraint violations
on the network to individual units and a control rule is then
used to adjust nodal prices accordingly. Such a framework is
appropriate for the inclusion of aggregated household appliances
or other ‘virtual’ market participants realized through smart grid
infrastructure. Results are examined in detail for a 4-bus network
and then success is demonstrated for a densely-populated 39-bus
network. Formal convergence requirements are given under a
restricted subset of the demonstrated conditions. The scheme is
shown to allow storage to reduce price volatility in the presence
of fluctuating demand.

Index Terms—Price-based control, model predictive control,
dual decomposition, wind power, power flow allocation, electricity
pricing, nodal pricing, locational marginal pricing

I. INTRODUCTION

Since the liberalization of electricity markets, the simple top

down approach to power dispatch has been sacrificed for one

in which operators compete to provide the most cost-efficient

power. Under such a system an auction takes place in advance

for every time slot of the following day in order to determine

a scheduled price per MWh. However since this auction has

become heavily distorted in some countries by the preferential

treatment of an increasing contribution of wind power, the

current system increasingly fails to provide a sensible clearing

price. Other factors leading to price spikes include higher-

than-expected demand and unscheduled supply outages [1].

Importantly, the increasing use of wind power has also meant

a larger use of operating reserves to deal with the power

variation [2]. This means larger operating margins have to be

set aside in conventional generators, which adds expense and

reduces efficiency in terms of emissions per MWh.

The optimal dispatch problem has been studied since the

mid-20th century by grid operators, and much standard liter-

ature on the subject exists [3], [4]. Control of the network by

price signals has been studied since the work of Schweppe et

al. in 1980 [5]. Glavitsch and Alvarado [6], [7] have studied
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grid control using price mechanisms and points out that while

it may be possible to infer convex cost functions of generators

on the network, and therefore solve a central quadratic pro-

gram to derive optimal nodal prices, time varying costs and

shut-down/start-up events represent a major problem. This is

because all plants have costs associated with maintenance and

large changes in output which cannot be factored into a central

price controller; indeed it is those smaller generators used to

match peaks while the price is fluctuating most who are most

concerned with when to start up or shut down.

There has been recent interest in decentralizing the optimal

dispatch problem; [8] gives an account of the recent literature.

The dispatch problem is an optimization with a separable

cost function but with coupling constraints beween the nodes

due to the need to satisfy each load and respect line flow

limits. The solution can be approached using primal or dual

decomposition. The problem with the primal decomposition

approach is that it leads to setting power outputs from each

generator to satisfy loads. Furthermore if we were to attempt

a subgradient technique we would have to rely on Lagrange

multipliers to be returned from the local optimizations, which

in a market populated by selfish agents is not realistic. Neither

of these aspects are desirable in a competitive, price-based

environment.

More appropriately, dual decomposition (Lagrangian re-

laxation), where prices (Lagrange multipliers) are updated

based on constraint violation until feasibility is reached, as

demonstrated by [9]. Wang et al. [10] showed how a sched-

uled unit commitment problem could be solved by iterating

price and schedule updates, however the number of Lagrange

multipliers in the decomposition meant that the individual

market participants were made to perform obscure or non-

intuitive optimizations; this is a practical detraction from such

a scheme.

For real-time control (on the minutes-seconds scale), a sim-

pler strategy is required. Jokić et al. [11] have studied dynamic

optimal dispatch and designed a continuous-time decentralized

linear complementarity controller to satisfy power demands

and line constraints, and proved convergence to the optimal

solution under strong assumptions. They took minimization

of total costs to price-sensitive units as the objective, on the

grounds that this can be interpreted as a maximization of

social welfare [12]. The limitation however was that in practice

relying on real-time frequency droop as a control signal

assumes sufficient total machine inertia that grid synchronism

is not lost during the control action; no guarantees are made

in this respect. The scheme also employs a model in which
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frequency drops are local; it would be necessary for a real

control formulation to take the global system frequency as an

input to the controller.

The scheme in this paper is presented as an alternative

strategy to real-time price-based frequency control, with the

assumption that reserve services correcting frequency on very

short timescales would remain. It aims to match the price-

sensitive power with the predicted amount of price-insensitive

power at each step over a receding horizon, while respecting

all network constraints. Time steps are on the order of minutes.

At every time step, the negotiation scheme results in a new

generation schedule exploiting the latest predictions, with the

assumption that inelastic loads and supplies can be predicted

well. The optimization action at a single time step of such

a scheme is described in this paper, with implications for

receding horizon control to be explored in future work.

II. SYSTEM MODEL

A. Network

The lines in the electrical network are assumed to have small

resistance in comparison to their inductance. Consequently, a

network of lines connecting n nodes is defined here solely

by a per-unit susceptance matrix Σ ∈ S
n
+. Each element σij

is the susceptance of the line connecting node i to node j.

σij = 0 implies nodes i and j are not connected directly,

although all nodes are at least connected via lines to other

nodes. There are no unpopulated leaf nodes on the network

graph. Relative phase angles between buses are assumed to

be small. Under these assumptions there are no line losses,

voltages are constant across the network, and the per-unit

power flow in steady state in the direction i to j is given

by:

Pij = σij(δj − δi) (1)

where δi is the phase angle at node i. Under this assumption,

given a set of power injections due to generators and a

matching set of loads, the real power flow can be determined

uniquely from Σ, see [13] for details. Reactive power transfers

are outside the scope of this paper.

B. Networked units

Many diverse consumers and producers are connected to

real electricity networks, as shown in Fig. 1. In this study,

we assume that they can be modelled using the three unit

types described mathematically below, either singly or in

combination. In this scheme, units do not consider their effects

on the network, but provide selfish optimizations for their

planned power draw or outputs given prices resulting from

a negotiation.

Price-elastic: These units can be generators or consumers,

and participant i performs an optimization of the following

form over a time horizon of T steps:

min
pi

Je
i (pi)−λ

T
i pi :=

T
∑

k=1

[

J̃i(pik)+αi(∆pik)
2−λikpik

]

(2a)

s. t. p
i
≤ pik ≤ pi, ∀k = 1, . . . , T, (2b)

∆p
i
≤ ∆pik ≤ ∆pi, ∀k = 1, . . . , T. (2c)

price
controller

elastic load & storage unit controller

inelastic load prediction

unidirectional communication channel
bidirectional communication channel

Fig. 1. Network supporting a diverse population of consumers and producers.
The conventional generators will be price-elastic, wind farms may be inelastic,
and households may have both inelastic and elastic demand components.

pi := [pi1 . . . piT ]
T is the vector of power outputs at each

time step, and λi := [λi1 . . . λiT ]
T is the price schedule

over the horizon, which is given for each optimization, with

λik the price per unit of electrical energy, scaled for the

length of the time step used. J̃i(·) is the static cost function

of the participant; here we assume that the cost can be

represented adequately by a quadratic function, i.e. J̃i(p) :=
ai+ bip+

1
2cip

2. For generators this comprises fuel and other

variable costs, and for consumers this represents the utility of

the power consumed. Real power pik is defined as positive

when injected into the grid. αi is a penalty for changes power

output, which are represented by ∆pik := pik − pi[k−1]. The

power at the time the optimization is performed is pi0. p
i

and ∆p
i

are the (negative) lower bounds on power output

and change in power output respectively, and pi and ∆pi are

upper bounds. Scheduling decisions, such as shut-down/start-

up or load shifting, are outside the scope of this study. Here

me elastic units are present.

Price-inelastic: These units have a predicted power pro-

file p̂l := [p̂l1 . . . p̂lT ]
T that cannot be influenced by price.

Examples include inelastic demand and any wind power not

taking part in active pricing mechanisms. Flows out of the

grid are defined as positive. Since their power profile cannot

be changed it is not meaningful to define a cost function for

them. Here mi inelastic units are present. Until convergence

to p̂l, values of these flows are denoted p̃l := [p̃l1 . . . p̃lT ]
T.

Storage: In general the aim of operating storage is to profit

from selling power at a higher price than that for which it has

been bought. The optimization of the storage level schedule

for such a unit i is formulated as follows:

min
si

J s
i (si) + λ

T
i∆si :=

T
∑

k=1

γi(sik − smid
i )2 + λik∆sik (3a)

s. t. p
i
≤ sik − si[k−1] ≤ pi ∀k = 1, . . . , T, (3b)

si ≤ sik ≤ si ∀k = 1, . . . , T − 1, (3c)

siT = si0. (3d)
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where si := [si1 . . . siT ]
T is the vector of storage levels for

the unit over the horizon, ∆sik := sik−si[k−1], γi is a penalty

for deviating from the midpoint smid
i of the storage’s capacity,

p
i

and pi are as above, and si and si are the storage limits.

The storage level at the time the optimization is performed

is si0, and the last constraint ensures that storage is not

simply emptied at the end of the horizon: although this would

maximize income over this time horizon, it would only do so at

the expense of future income after time step T . Depending on

the characteristics of the storage unit, modifications to the form

given may be appropriate; the form given here is assumed for

simplicity. In any case the optimization should return a power

output profile from the optimal storage vector si found, given

(according to the price-elastic sign convention) by:

pik = −∆sik = si[k−1] − sik (4)

Here ms storage units are present. Note that storage and price-

elastic units perform differing optimizations but in each case

return a vector of power outputs given a vector of prices.

C. Global optimization

The global objective of the scheme to be solved using the

algorithm is, over a time horizon of T intervals, to minimize

total cost while satisfying power balance and network flow

constraints:

min
p1,...,pme+ms

me
∑

i=1

Je
i (pi) +

ms
∑

i=1

J s
i (pi) (5a)

s. t. P e ≤ Pek ≤ P e, ∀e ∈ E , ∀k = 1, . . . , T, (5b)
me+ms
∑

i=1

pik =

mi
∑

l=1

p̂lk, ∀k = 1, . . . , T, (5c)

p̃lk = p̂lk, l = 1, . . . ,mi, ∀k = 1, . . . , T (5d)

where E := {(i, j) : σij 6= 0}, so that Pek is the appropriate

flow Pij as defined in (1) at time step k. P e and P e are the

lower and upper limits for real power flow in line e ∈ E ; for

symmetrical bi-directional lines P e = −P e. Condition (5d)

matches the power drawn by each price-inelastic unit to its

predicted value, as explained in section III. Note the abuse of

notation for cleanness, which groups the me elastic generators

in summations alongside the ms storage units.

The aim is to set prices λi such that the power outputs

pi minimize the cost function under the profit-maximization

strategies of the participants. If the Lagrangian of this problem

were written out and separated, the task would be to find a

set of prices that approximate the combination of optimal La-

grange multipliers arising from the constraints, and therefore

give optimal ‘selfish’ behaviour for each participant.

III. CONTROL SCHEME

A. Summary of the negotiation procedure

The negotiation contains six processes, which are illustrated

in Fig. 2.

1) Price initialization (price controller): An initial set of

nodal prices λ0 := λi(0) for the time horizon is passed

to each participant on node i.

2) Local optimization (price-sensitive units): Given their

current price vector at round j, denoted λi(j), price-

elastic units and storage operators perform local optimiza-

tions and commit to an optimal power schedule pi. This

is a draft schedule that is refined as prices are adjusted in

later negotiation rounds, but at each iteration pi should

be a feasible output commitment, such that if there are

no further price changes the output will be exactly pi.

3) Power flow computation: Flows are determined, either

centrally using the procedure in [13], or in a distributed

manner, see the Appendix. Mismatches are accommo-

dated until convergence by sharing the mismatch between

the inelastic generators or loads on the network. This can

be done proportionally (equal percentage mismatch):

p̃lk(j) = p̂lk +
|p̂lk|

∑mi

i=1 |p̂ik|

(

me+ms
∑

i=1

pik(j)−
mi
∑

i=1

p̂ik(j)

)

(6)

or equally (equal absolute mismatch):

p̃lk(j) = p̂lk +
1

mi

(

me+ms
∑

i=1

pik(j)−
mi
∑

i=1

p̂ik(j)

)

(7)

with little difference in performance.

4) Responsibility assignment (price controller): Imbalance

responsibilities φi,lk(j) ≥ 0 and line limit violations

responsibilities Φi,ek(j) ≥ 0 are allocated to the price-

elastic and storage units on the network, using an algo-

rithm due to Bialek [14]. Such an algorithm requires only

an assumption of thorough power mixing at each node,

and therefore does not discriminate against any partici-

pant. Details are given in section III-B. Assignment gives

a set of Φi,ek(j) and φi,lk(j) such that at negotiation

stage j:

me+ms
∑

i=1

φi,lk(j) = 1, ∀(l, k) where plk 6= p̂lk, (8)

me+ms
∑

i=1

Φi,ek(j) = 1,

∀(e, k) where (Pek > P e) ∨ (Pek < P e). (9)

5) Price updates (price controller): According to the results

of steps 3 and 4, price feedback is sent to each participant

according to the line overflows and load mismatches it

has caused, for each time period k:

λik(j + 1) := λik(j)

+

mi
∑

l=1

κL(p̂lk, p̃lk(j), φi,lk(j))

+
∑

e∈E

κE(Pek(j), P e, P e,Φi,ek(j)) (10)

where κL : R × R × R+ → R and κE : R × R × R ×
R+ → R. p̂lk is the predicted inelastic load at node l
and time k, and φi,lk(j) is the fractional contribution of

elastic unit i to this load at negotiation round j. Φi,ek(j)
is the fractional contribution of unit i to flow Pek(j). The

forms chosen for the functions κL(·, ·, ·) and κE(·, ·, ·, ·)
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are discussed in the examples of section V. Convergence

results are given in section IV-A.

6) Convergence check (price controller): The new price

vector λi(j + 1) is sent to each elastic participant; in-

crement j and return to step 2 unless the constraints (5b)

and (5c) have been satisfied. Although the inequalities

(5b) are satisfied in a finite number of steps, the power

matches are reached asymptotically, so a tolerance ε is

chosen for the convergence check:
∣

∣

∣

∣

plk(j)

p̂lk
− 1

∣

∣

∣

∣

≤ ε, l = 1, . . . ,mi, k = 1, . . . , T (11)

Qualitatively, the negotiation penalizes those at the wrong end

of a congested line with lower prices, and generators receive

lowered prices should there still be too much power scheduled

to the loads. If the negotiation starts from relatively high initial

prices, for example, more expensive generators will reduce

their power output as the price is driven down, and the process

converges to prices encouraging an efficient satisfaction of the

loads. Through the scheduling action, storage units are able

to perform arbitrage over price differentials as they emerge,

thereby reducing price volatility.

While trying to maximize social welfare as defined in (5a),

the scheme assumes no cooperation between producers or

consumers, and only easily-verifiable information is required

from them. We do, however, assume that participants can

easily calculate their power schedule based on a set of prices

over a discrete-time horizon, and that deviation from such an

agreed schedule would be prevented by sufficient penalties. We

also assume that price-inelastic power flows can be predicted

perfectly over the horizon used.

Fig. 2. Negotiation algorithm described in section III-A.

B. Details of allocation algorithm

There are several ways of assigning flows heuristically to

units on a network, since in reality it is never possible to say

whose generated power is being consumed elsewhere on a

network, even though it is simple to determine the power flows

in each line of the grid. Ng [15] and others have derived such

algorithms, but these can lead to negative distribution factors,

i.e. a generator can be given a negative responsibility for the

flow in a given line. Practically it is more acceptable to use

a method that gives only positive values, since in the price

feedback step of equation (10) we want to punish constraint

TABLE I
ASSIGNMENT OF FLOWS AND LOAD SUPPLY TO GENERATORS FOR THE

FLOWS SHOWN IN FIG. 3

MW Value G1 G2 G4

Flows: 1 → 2 517 517 0 0

1 → 3 483 483 0 0

3 → 2 183 60 0 123

4 → 3 1000 0 0 1000

Loads: Node 2 1700 577 1000 123

Node 3 1300 423 0 877

violation in an intuitive way. Therefore we choose a method

due to Bialek [14].

Consider the network of Fig. 3, the shape of which is the

same as used in [11]. For the line flow solution shown it is

straightforward to issue the assignments shown in Table I. The

algorithm is constructed from the assumption that power mixes

proportionally between incoming and outgoing flows at each

node. Now suppose that the flows are hypothetical and a lower

demand is predicted at node 2. This would require changes to

generator outputs. From the entries in Table I we can compute

φ1,2 = 577
1700 = 0.34, i.e. G1’s responsibility for mismatch at

load 2, and issue an appropriate price control signal to G1

using equation (10), and similarly calculate price signals for

the other generators.

G11000 MW G41000 MW

G21000 MW

1300 MW

1700 MW

1

2

3 4

517 MW 183 MW

483 MW 1000 MW

Fig. 3. Network flow state. Table I shows how these flows can be allocated
to the generators on the network.

IV. CONVERGENCE AND OPTIMALITY CONDITIONS

A. Convergence

The strategy in this approach to the Optimal Power Flow

problem is that the problem of planning generators’ schedules

has been changed from a large-scale optimization into a prob-

lem of guaranteeing the convergence of a pricing algorithm.

One aim is for such a price control scheme to allow action

to be taken to force convergence such that a feasible solution

always emerges from the procedure, in order to guarantee that

operating constraints will be satisfied. As shown in section

V-B, convergence has been demonstrated in complex cases

with congested lines on a non-trivial network using such a

controller.

For the uncongested case with each J̃i(·) convex (i.e. ci >
0, ∀i = 1, . . . ,me), and without storage units, convergence

conditions for a negotiation with load imbalance feedback

as in equation (14) were determined. Generation limits are

assumed not to be hit. Although analysis of Bialek’s algorithm



5

is difficult and only just furthered in [16], if the blame

coefficients φi,lk(j) are assumed equal, the following sufficient

condition on the price feedback coefficient KL for convergence

to a power balance is reached:

0 < KL < 2me

[

me
∑

i=1

1

ci

]−1

(12)

In such a case, convergence to a power mismatch less than

magnitude ǫ from a starting mismatch of magnitude ǫ0 is

achieved, for β := KL

me

∑me

i=1
1
ci

, in Nconv steps, where

Nconv =

⌈

ln (ǫ/ǫ0)

ln |1− β|

⌉

, (13)

noting that both the numerator and denominator are negative.

This means that for a given network population, convergence

time has only a logarithmic dependence on the initial mismatch

ǫ0. For succintness, proofs of these results are not given here,

but are held along with further discussion at [17].

B. Optimality

In the example illustrated in section V-A, the nodes unaf-

fected by congestion are shown to have the same price. When

prices are equal across the network, convergence to a feasible

solution satisfying (5c) implies optimality. This is because

when the price is constrained to be equal amongst all loads,

the assumptions of section IV-A imply that total power output

during each time step is a strictly increasing linear function

of price. Since there is only one load here, there is only one

price that will satisfy this load. In other words, the feasible set

in this optimization is a singleton if all generators themselves

are acting optimally. In the more complex example of section

V-B, however, no such optimality guarantee can be made at

present.

It should be noted here, however, that continuous feasibility

(in other words, reliability) of flows over a power network

is more important than economic optimality, since network

failure has extremely serious consequences. This is seen in

present-day trading mechanisms, where the main priority is

to establish a clearing price in the day-ahead market, and

contingencies in real-time are regularly dealt with by telephone

commands. In the current market even the objective function

is a sum of private variables, so we cannot tell how optimal

a dispatch has been reached, even before management costs

and market power of the actors are considered.

Although convex cost functions have been considered in

the example above, it is not required that all cost functions

are convex for there to be a unique global optimal dispatch.

However when non-convex cost functions are present there

will be a duality gap for some optimal solutions. In other

words, there will be no set of prices (dual variables) which

will yield the global optimum. Indeed if enough of the units

have ‘bad’ cost functions there may even be no set of prices

that produces power flows satisfying the network constraints.

V. EXAMPLE APPLICATIONS

The negotiation procedure is shown in detail for a 4-bus

network, so that the mechanics can be examined. Then success

on a 39-bus network and storage effects are demonstrated.

TABLE II
TABLE OF NETWORK PARAMETERS FOR THE 4-BUS EXAMPLE

Param. Line 1-2 Line 1-3 Line 2-3 Line 3-4

σij 1/2 1 1/3 1/2
P e 1000 1000 1000 300

P e 1000 1000 1000 −300

TABLE III
TABLE OF GENERATOR PARAMETERS FOR THE 4-BUS EXAMPLE

Param. G1 G2 G4 Description

ai 0 0 0 Fixed cost
bi 2.5 2.0 1.7 Linear cost
ci 0.18 0.22 0.2 Quadratic cost
pi 1000 1000 1000 Upper power limit
p
i

0 0 0 Lower power limit

αi 0.1 0.1 0.1 Penalty for output changes

∆pi 200 200 200 Upper power change limit
∆p

i
−200 −200 −200 Lower power change limit

A. 4-bus network

A simple network with four nodes is used to demonstrate

the negotiation algorithm, as shown in Fig. 4. Three nodes

support price-elastic generators, and the fourth node supports

an inelastic load to be satisfied by the generators. Using the

previously-defined notation, me = 3, mi = 1, ms = 1. A

time step of τ = 15 minutes is used, with a time horizon

of T = 24 steps, i.e. 6 hours. This horizon is chosen on the

grounds that in a practical implementation of such a power

matching scheme, both demand and wind power outputs could

be predicted effectively over the period [18].

G1 G4

G2

L3

S2

1

2

3 4

j2Ω j3Ω

j1Ω j2Ω

Fig. 4. 4-bus network topology with line impedances and unit placement.

Table II gives the parameters for the 4-bus network, and

Table III gives the parameters for the price-elastic units. The

storage unit at node 2 has a capacity of 100 MWh and

a maximum power magnitude of 200 MW, with midpoint

deviation penalty γ = 0.12 e/(MWh)2.

For the price update rule in equation (10) we take:

κL(p̂lk, p̃lk, φi,lk) = KLφi,lk(p̂lk − p̃lk) (14)

and κE(Pek, P e, P e,Φi,ek)

= KEΦi,ek(max(P e−Pe, 0)−max(Pe−P e, 0)) (15)

where KL and KE are positive scalars determining how heav-

ily to act on load mismatches and line overflows respectively.

The value of (15) is non-zero only when the line is congested

in either direction. If the line is congested, unit i will be

penalised according to the proportion of the excess flow on

that line for which it has been assigned responsibility. Here
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KL = KE = 0.075 is used, consistent with the bounds given

in section IV-A. Convergence to final prices at node 1 is shown

over 15 steps in Fig. 6, and the final prices for all the price-

elastic units are shown in Fig. 7. Fig. 8 shows how the load

at node 3 is satisfied by the three generators plus storage unit;

the storage unit is shown to take advantage of price differences

across the horizon, buying at cheap times and selling at peak

demand.
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Fig. 5. 4-bus negotiation: Demand schedule for the load at node 3.
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Fig. 6. 4-bus negotiation: Price schedule evolution over the negotiation
procedure for node 1.
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Fig. 7. 4-bus negotiation: Final prices for each price-elastic unit.

High prices coincide with times of high power demand, and

the generator at node 4 receives a low price in comparison

to othe generators, since the price controller gives a price

disincentive that stops excess power overloading the line

between nodes 3 and 4. The bold line in Fig. 8 represents

the gross power output of the generators and storage unit

combined, and coincides as required with the demand profile

of Fig. 5.
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Fig. 8. 4-bus negotiation: Stacked power outputs showing how load at node
3 is satisfied. The bold line shows the storage flows relative to the sum of the
generator outputs (the stacked bars).

B. 39-bus network

The negotiation procedure has also been employed on larger

networks. As an example, the IEEE 39-bus network from [19]

shown in Fig. 9 is used here. Price-elastic generators are placed

at nodes 30-39, storage at nodes 31 and 38, and inelastic

units at nineteen other nodes. For compactness, the unit and

network parameters are not given here, but power constraints

are set for each line at 450 MW. The negotiation gives a flow

satisfying each of the loads’ schedules to within 2% within

50 iterations. Fig. 10 shows the final price schedule for the

nodes, and Fig. 11 shows the breakdown of the total power

provision between the price-sensitive units. Fig. 10 shows that

nodes 33 and 34 experience particularly low prices since any

power not drawn by the load at node 20 is transported entirely

by the single cosntrained line 16-19.

Fig. 9. 39-bus negotiation: Network topology showing populated nodes.

C. Effect of storage

The same 39-bus scenario was used to test the effect of

storage. Table IV shows how use of storage affects total

generation costs and nodal prices. The storage is split equally

between nodes 31 and 38. Although total generation costs

and average prices did not change significantly, price volatility

(measured by the standard deviation of the nodal price from

its average over the time horizon) is significantly decreased

by the introduction of storage.
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Fig. 10. 39-bus negotiation: Final price schedule.
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Fig. 11. 39-bus negotiation: Gross power breakdown. The bold line shows
the storage flows relative to the sum of the generator outputs (the stacked
bars).

TABLE IV
EFFECT OF STORAGE ON DISPATCH COST AND PRICE VOLATILITY

Total storage Dispatch cost Average price, Price s.d., node
(MWh) (Me) node 38 (e/MWh) 38 (e/MWh)

0 3.76 118.25 20.87
200 3.73 119.45 13.47
400 3.71 119.34 12.00

VI. IMPLEMENTATION REQUIREMENTS

The ICT requirements of the control scheme are straight-

forward to obtain and reasonable. Part of the control scheme

is inherently distributed over the participants. The centralized

price controller only needs to receive power profiles from each

unit at every negotiation iteration j. Profiles can be issued from

‘smart’ aggregators of domestic devices present at a node,

equivalent to a price-elastic unit. From this information, the

controller computes the new nodal price profiles for all nodes

and transmits them back. The only information the participants

need is the vector of length T nodal prices over the negotiation

horizon and some means of predicting their power needs. The

storage agents moreover need a measurement of their level

of storage. Each elastic or storage agent needs to solve a

problem of dimension T at each negotiation round, which

means the longest allowed computation period is the real price

update sampling period divided by the maximum number of

rounds. This means the number of iterations for acceptable

convergence need to be bounded. The flow equations can be

solved by the central price controller or by microcontrollers at

each node, as described in Appendix A. The price controller

needs to assign responsibilities to nodes and compute the

control law (10) for constraint violations.

VII. CONCLUSIONS

A negotiation-based predictive pricing algorithm has been

employed to produce feasible power flows under selfish op-

eration of network agents. All price sensitive network agents

participate in the negotiation process in order to reduce power

peaks and price volatility. Price insensitive network agents are

modeled as predictable load profiles, such that price sensitive

network agents can optimize their production/consumption.

Simulation results show that load matching and line constraints

are satisfied for large networks populated by elastic, inelastic

and storage components. Analytical convergence results are

given for the algorithm under a strong set of assumptions.

As well as continued analysis of convergence and optimality

properties, several extensions to the scheme are planned. Of

particular interest are reserve margins, which can be priced in

the same framework by bringing the reserves into the local

constraints. Constraint (2b) would be changed and the reserve

price would appear in the local cost function. Each participant

then trades off reserve and real power offered. Reserves needed

are set by the grid operator, e.g. for N−1 reliability. Since at

present reserves are set conservatively and in far advance to

manage a wide range of contingencies [2], significant savings

could be made by using up-to-date state information to set

reserve levels more intelligently on a receding horizon basis.
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APPENDIX

Distributed determination of power flow

The solution of network flows can be framed as the opti-

mization problem (16), under the assumptions of section II-A:

min
δ

J =

n
∑

i=1

Ji =

n
∑

i=1



Gi − Li + V 2
∑

j∈Ni

σij(δj − δi)





2

(16)

where δ = [δ1 . . . δn]
T is the vector of n nodal phase angles,

Gi and Li are the generation (power injection) and load (power

extraction) at node i, and Ni is the set of all nodes directly

connected to node i. σij is the susceptance for lines connecting

node j ∈ Ni to node i, with j /∈ Ni ⇔ σij = 0. Clearly when

the objective function J = 0 the power balance at each node

is satisfied and we have a solution to the flows. The algorithm

used is the following:

1) For each node i, if Ji < ǫ2, set a convergence flag for

node i. Unset if node i no longer satisfies this.

2) Set the phase angle δi such that power balance is

satisfied for that node. This is given by:

0 =
Gi − Li

V 2
+
∑

j∈Ni

σij(δj − δi)

⇒ δi =
[

∑

j∈Ni

σij

]−1





Gi − Li

V 2
+
∑

j∈Ni

σijδj



(17)

Note that applying rule (17) only requires infomation

on the local phase angles {δj | j ∈ Ni}, and that the

reciprocal of the sum can always be taken since every

node i has at least one neighbour.

Repeat steps 1 and 2 sequentially for each node.

3) If all nodes’ flags are set, the algorithm has converged

to within a total imbalance of magnitude less than nǫ;
terminate the procedure. Otherwise return to step 1.

Convergence is reliable in practice, but an analysis is

outside this paper’s scope. If no comprehensive model of

the network even exists, as with the European UCTE, then

a decentralized solution based on local microcontrollers has

advantages, particularly if the initial guess, taken from the pre-

vious state, is already near to the correct solution. A solution

for the nonlinear equations, i.e. avoiding the approximation

sin(δj − δi) ≈ (δj − δi), is also possible in the same way,

except that (17) is replaced by a term involving phasor addition

of the sinusoids at adjacent nodes.
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