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Abstract—Existing methods for demand response either as-
sume direct control of appliances by supplier, or assume that
consumers adapt their load by reacting to pricing signals. The
former are intrusive and might not scale well; the latter expose
consumers to price volatility and require detailed awareness of
time varying prices. We propose an alternative approach, based
on “service curves”, which uses the following two ingredients. (1)
The rate at which a consumer may draw power from the grid
may be controlled by real time signals. Typical concerned devices
would be heating systems, air conditioners and e-car batteries.
(2) However, consumers are guaranteed that, over any window
of time t, the amount of energy that may be drawn is at least
equal to b(t), where the function b() (called the service curve) is
agreed upon by contract at subscription time. The contract also
specifies the maximum power that may be drawn, as well as a
fixed price per unit of energy. Hence users are protected from
price variability, at the expense of possible, but upper bounded,
delays. With a proper service curve definition, an operator may
distribute small service reductions in order to alleviate the impact
of massive incoming demand onto the power grid. Consumers
are able to observe the past service control signals that they
received and can compute optimal load schedules from this and
their service curve contracts, using only local information. Thus,
this provides a distributed, scalable and robust demand response
mechanism.

Index Terms—Demand Response, Service Curves, Load
Switches

I. INTRODUCTION

Demand response is often assumed to be triggered by
pricing signals [1]. However, dynamic pricing comes with a
number of issues, in particular, consumer exposure to large
price volatility might be socially undesirable. Further, it has
been shown [4] that, even in a honest market, dynamic
pricing may result in high volatility on the energy market.
An alternative to end consumer pricing is implemented in
load switches or centralized remote control. For example, the
Voltalis bluepod switches off thermal electrical loads (boiler,
thermal electrical heating) [5, chapter 4]. When and for how
long the load may be switched off is under the control of the
Voltalis company, however, consumers receive the guarantee
that such service inhibitions occur for a total duration of at
most 30 mn per day. Pricing is not involved, and consumers
pay per unit of consumed energy. In short, consumers are
exposed to delayed supply rather than price volatility.

In this paper we propose an extension of such a scheme,
called “service curves”; it is more general, and could serve
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name at epfl dot ch) are with the École Polytechnique Fédérale de Lausanne,
School of Computer and Communication Sciences, Laboratory for computer
Communications and Applications, CH-1015 Lausanne, Switzerland.

Presented in the second European conference on Innovative Smart Grid
Technologies (ISGT-EUROPE 2011), sponsored by the IEEE Power & Energy
Society (PES) and hosted by the School of Electrical and Electronic Engineer-
ing of The University of Manchester, December 5 - 7, 2011 at Manchester
Central Complex in Manchester, United Kingdom.

non thermal loads, in particular plug-in electric vehicle (PEV)
loads. It is inspired by the service curve approach used in the
integrated services Internet framework [3]. With our scheme,
the control exercised on demand need not be On/Off, as it is
with Voltalis’s devices. We show in Section VI that this may
have benefits for reducing variance of the load.

Unlike centralized remote control, the service curves
scheme does not require distribution systems operators (DSOs)
or market aggregators to directly interfere with consumers’
appliances, it provides one level of separation between con-
sumers and the distribution system.

The contributions of our paper are as follows.
1) We introduce the concept of service curves. This frame-

work supports demand response without exposing con-
sumers to price volatility, at the expense of some limited
delay or throttle.

2) We show how the framework allows a DSO1 to exercise
some control on demand in order to smoothen the load
curve, or even delay some demands in case of stochastic
load surge or supply reduction. In the case of random
but stationary load, it is best for the DSO to send smooth
control signals. In contrast, for reducing peak demand, it
is best for the DSO to send binary signals. We also show
how consumer appliances can compute online schedules
using only locally observed information.

3) We relate the framework to max-plus calculus and derive
rules and methods to define and implement service curve
constraints.

We define our framework in Section II, and give two pos-
sible examples in Section III. In Section IV we discuss some
properties of service curves. The implications for consumers
and distribution systems operators are described in Sections V
to VII.

II. DEFINITION OF THE SERVICE CURVE APPROACH

We assume that the rate at which a consumer may draw
power from the grid may be controlled through load control
signals. Such signals can be captured by a smart home
controller who then uses them to compute a schedule for this
home’s appliances. The scheduled appliances are those that
may have some elasticity, for example heating systems with or
without heat pumps, air conditioners and PEV batteries. Non
elastic appliances would not be controlled. The controls can
use cellular networks or the smart grid; protocols and com-
munication systems required to implement them are outside
the scope of this paper (see [2] for a description of such a
system).

1Demand response may be exercised by the DSO or other players, such as
market aggregators. In the context of this paper it is irrelevant to know which
entity issues the control signal; we use the term DSO as a general concept
for the entity that issues the load control signal u(t) defined in Section II.
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Fig. 1. The function bs

Let u(t) be the control signal received by one specific con-
sumer and z(t) the net power drawn by this consumer from the
grid at time t (in Watts). 2 The contract between consumer and
distribution system operator specifies the following constraints.
First

z(t) ≤ u(t) ≤ zmax for all t′ < t (1)

i.e. the consumed energy may not exceed the level u(t)
specified by the distributor; zmax is the maximum that may
ever be allowed.

Second, the consumer receives the guarantee that throttling
cannot be excessive:∫ t

t′
u(τ)dτ ≥ β(t− t′) for all t′ < t (2)

where β : N → [0,+∞) is a function defined at contract
subscription time. We say that β is a service curve, and Eq. (2)
can be paraphrased by saying that the control signals are
constrained by the service curve β.

III. EXAMPLES

In this section we motivate and describe two examples of
service definitions. Later in the paper, we compare the impact
of these definitions on consumer perceived quality of service
and on the amount of load smoothing that can be achieved by
a distribution operator.

(a) Load Switching

It is convenient to introduce the function bs: [0,+∞) →
[0,+∞) defined by

bs is continuous and bs(0) = 0
∂bs(x)
∂x = 0 for 0 < x < 1, ∂bs(x)

∂x = 1 for 1 < x < s
∂bs(x+s)

∂x = ∂bs(x)
∂x

so that

bs(x)
def
= max (x, bx/scs+ 1)− (bx/sc+ 1) (3)

where bxc is the floor function, i.e. the largest integer ≤ x
(see Figure 1). Voltalis’s bluepod can be expressed in our
framework with the service curve

β1(t) = t0zmaxbt1/t0(t/t0) (4)

with t0 = 30 mn and t1 = 24 hours (see Figure 2).
One may think of this service curve constraint as the

possibility to impose switch off periods for a total duration of

2We assume z(t) is positive, i.e. we focus on controlling demand only.
Extension of this framework to consumers who are also producers is for
further study.

30 mn every 24 hours, while otherwise energy may be drawn
at a rate equal to the power zmax. However, the service curve
constraint allows for more general controls than on-off; for
example, we might impose a control u(t) = zmax/2 for 60 mn
instead of u(t) = 0 for 30 mn; there are many combinations
compatible with Eq. (2).

(b) Two-Level Load Control

The service curve β1 in Eq. (4) and Figure 2 may be
appropriate when the distribution system operator directly
controls one or several appliances, but may not be so if we
wish to leave such a control to the customer’s smart home
controller. For such cases, the control applies to the aggregate
power drawn by one customer and it may be desirable to
allow for a constant minimum power at any time (in order to
serve non elastic appliances). Assume therefore that we want
to define a service curve that (1) allows for power zmax except
perhaps for t0 hours every t1 hours, but (2) also allows for
a power zmin at any time. This corresponds to the following
service curve:

β2(t) = zmint+ (zmax − zmin) t0bt1/t0 (t/t0) (5)

(See Figure 3). Note that the service curve β1 is a special case
of β2 with zmin = 0.

β(τ) (Wh)
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Fig. 2. The service curve β1, shown here, allows the distributor to switch
off the load for at most 30 mn every day, or (for example) to reduce the load
to zmax/2 for 60 mn every day.
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Fig. 3. The service curve β2, shown here, corresponds to two-level load
control, with minimum power zmin allowed at any time and maximum power
zmax allowed at any time except perhaps for t0 hours per period of t1 hours.

IV. THE CALCULUS OF SERVICE CURVES

For using service contracts as in Section III, it is important
to understand how to design and implement service curve
constraints. Since service curves define a maximum value over
any sliding window, they should be super-additive [3, Section
3.1.8], which means that β(t + t′) ≥ β(t) + β(t′) for any
nonnegative t and t′.

More precisely, if we define a contract using a service curve
β that is not super-additive, we obtain an equivalent definition
if we replace β by its super-additive closure β̄, which is
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defined as the smallest super-additive function lower-bounded
by β. Since β̄ ≥ β we have an apparently more stringent
constraint [3, Theorem 3.1.10]. Note that the functions β1
and β2 introduced in Section III are super-additive, as is the
function bs (as we show in the proof of Lemma 1).

This has the following implication. If β(t) = z0t for 0 ≤
t ≤ t0 for some positive t0 and z0 (i.e. we want to allow
for some power z0 over some period of time), then the super-
additive closure satisfies β̄(t) ≥ z0t for all t ≥ 0 (i.e. we must
guarantee z0 over any period of time).

Also, assume that we want to design a service contract that
several several constraints, such as∫ t

t′
u(τ)dτ ≥ β(t− t′)∫ t

t′
u(τ)dτ ≥ β′(t− t′)

for all t′ < t. Then we must in fact impose a service curve
equal to the super-additive closure of max(β, β′), which, in
general, is not the same as max(β, β′). For example, we
will see in Lemma 1 that the service curve β2 in Figure 3
is equivalent to simultaneously imposing the two constraints
β′2(t) = zmint and β′′2 (t) = t′0zmaxbt1/t′0(t/t′0) with t′0 =
(1− zmin/zmax) t0.

In the rest of this section we use these results to propose
practical ways to implement the service curves β1 and β2
introduced in Section III.

(a) Load Switching

The following theorem shows that the service curve con-
straint β1 can be implemented by counting the control signals
over sliding windows of duration t1:

Theorem 1. Let u(t) be a sequence of control signals defined
up to some time horizon T . Assume that u(t) ≤ zmax for all
t ≤ T . The two properties are equivalent:

(i)
∫ t
t′
u(τ)dτ ≥ β1(t − t′) for all t′ < t ≤ T , where β1 is

the service curve in Eq. (4).
(ii)

∫ t+t1
t

u(τ)dτ ≥ zmax(t1− t0) for all t such that t+ t1 ≤
T .

Proof: (i)⇒(ii) is immediate (take t = t′ + t1 and note
that β1(t1) = zmax(t1 − t0)).

(ii)⇒(i) First we show an alternative representation for β1.
Let t ≥ 0 and let q be the quotient in the euclidian division
of t by t1, and r the remainder. In other words, q = b tt1 c and
r = t− qt1. We claim that

β1(t) = qβ1(t1) + zmax (r − t0)
+ (6)

where the notation x+ means max(x, 0). This can easily be
shown by induction on q.

Second, for any nonnegative integer k, we claim that∫ t′+kt1

t′
u(τ)dτ ≥ kβ1(t1) (7)

To see why, note that∫ t′+kt1

t′
u(τ)dτ =

∫ t′+t1

t′
u(τ)dτ + ...

+

∫ t′+kt1

t′+(k−1)t1
u(τ)dτ

≥ kβ1(t1) = β1(kt1)

where the last equality is by Eq. (6).
Third, take some arbitrary t′ < t and let q = b t−t

′

t1
c, r =

t− t′ − qt1. Assume first that t0 ≤ r. Then:∫ t

t′
u(τ)dτ =

∫ t′+(q+1)t1

t′
u(τ)dτ −

∫ t′+(q+1)t1

t

u(τ)dτ

≥ (q + 1)β1(t1)− zmax(t1 − r)

where the former term is by Eq. (7) and the latter because
u(τ)dτ ≤ zmax by hypothesis. Recall that β1(t1) = zmax(t1−
t0), it follows that∫ t

t′
u(τ)dτ ≥ qβ1(t1) + zmax(t1 − t0)− zmax(t1 − r)

= qβ1(t1) + zmax(r − t0) = β1(t− t′)

where we used Eq. (6) and the condition t0 ≤ r.
Consider now the case where t0 > r. In this case β1(t −

t′) = qβ1(t1). Further, t ≥ t′ + qt1 thus∫ t

t′
u(τ)dτ ≥

∫ t′+qt1

t′
u(τ)dτ

≥ qβ1(t1) = β1(t− t′)

Theorem 1 gives a practical method for enforcing or veri-
fying the service curve constraint β1. It is sufficient to keep in
memory the history of the control signals over the last t1 time
units; their integral should never drop below zmax(t1 − t0).

(b) Two-Level Load Control

We have a similar theorem for the service curve β2. Recall
that β1 is a special case of β2 with zmin = 0, therefore
Theorem 1 can be viewed as a consequence of Theorem 2.
However the proof of Theorem 2 uses Theorem 1, which
explains why we present the theorems in this order. We start
with a lemma:

Lemma 1. A sequence of control signals is constrained by the
service curve β2 in Eq. (5) if and only if it is simultaneously
constrained by each of the two service curves defined by

β′2(t) = zmint

β′′2 (t) = t′0zmaxbt1/t′0(t/t′0) with t′0 = (1− zmin/zmax) t0

Proof: (i) We show that bs is super-additive. Note that
bs(t) = q(s−1)+(r−1)+ as in Eq. (6) where q is the quotient
in the euclidean division of t by s, and r the remainder. Thus
for any nonnegative integer k:

bs(t+ ks) = k(s− 1) + bs(t)
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Thus for any any nonnegative integers k, k′:

bs(t+ t′ + (k + k′)s)− bs(t+ ks)− bs(t+ k′s) =
bs(t+ t′)− bs(t)− bs(t′)

and it is sufficient to show

bs(t+ t′) ≥ bs(t) + bs(t
′) for 0 ≤ t < s and 0 ≤ t′ < s (8)

This is easily done by considering the four cases obtained by
testing t < 1 and t′ < 1 (with 0 ≤ t < s and 0 ≤ t′ < s).

(ii) We show that β2 is super-additive. This follows directly
from the representation

β2(t) = zmint+ t0(zmax − zmin)bt1/t0(t/t0)

and from (i).
(iii) We show that β2 is equal to the super-additive closure

β̄′ of β′ = max(β′2, β
′′
2 ). Note that β2 ≥ β′2 and β2 ≥ β′′2

thus β2 ≥ β′ and since β2 is super-additive, β2 ≥ β̄′. Now
we show that β2 ≤ β̄′.

Note that β′2 and β′′2 are super-additive (this follows from
(i)), thus [3, Theorem 3.1.11] the super-additive closure of β′

is β′2⊗̄β′′2 , where ⊗̄ denotes the max-plus convolution:

(β′2⊗̄β′′2 )(t) = sup
t′≤t

(β′2(t′) + β′′2 (t− t′))

Therefore we need to show that for all nonnegative t there
exists some nonnegative t′ ≤ t such that

β2(t) ≤ β′2(t′) + β′′2 (t− t′) = zmint
′ + β′′2 (t− t′) (9)

Let q be the quotient in the euclidean division of t by t1, and
r the remainder. If r ≥ t0 then β2(t) = β′′2 (t) and Eq. (9)
is satisfied with t′ = 0. Else, β2(t) = β′′2 (qt1) + zminr and
Eq. (9) is satisfied with t′ = r.

(iv) We are now in a position to prove the statement in the
lemma. Note that β2 ≥ β′2 and β2 ≥ β′′2 therefore the “only if”
part of the theorem is obvious. Assume now that a sequence
of control signals u(τ) is constrained by the service curves β′2
and β′′2 . It is therefore constrained by β′ = max(β′2, β

′′
2 ) and,

therefore by the super-additive closure of β′, which by (iii) is
equal to β2.

Theorem 2. Let u(t) be a sequence of control signals defined
up to some time horizon T . Assume that u(t) ≤ zmax for all
t ≤ T . The two properties are equivalent:
(i)
∫ t
t′
u(τ)dτ ≥ β2(t − t′) for all t′ < t ≤ T , where β2 is

the service curve in Eq. (5).
(ii) u(τ) ≥ zmin for all τ ≤ T ,

and
∫ t+t1
t

u(τ)dτ ≥ zmaxt1 − (zmax − zmin)t0 for all t
such that t+ t1 ≤ T .

Proof: (i)⇒(ii) is immediate as in the proof of Theorem 1,
after noticing that β2(t1) = zmaxt1 − (zmax − zmin)t0.

(ii)⇒(i) By Lemma 1, it is sufficient to show that the con-
straints with service curves β′2 and β′′2 are both satisfied. The
constraint with service curve β′2 is obviously satisfied because
u(τ) ≥ zmin for every τ . For the second constraint, note that
β′′2 is the same as β1 if we replace t0 by t′0 = (1− zmin/zmax) t0
and that zmaxt1−(zmax−zmin)t0 = zmax(t1−t′0). Then apply
Theorem 1.

Theorem 2 gives a practical method for enforcing or veri-
fying the service curve constraint β2. It is sufficient to check
that the control signals satisfy u(τ) ≥ zmin at every time slot
τ and to keep in memory the history of the control signals
over the last t1 time units; their integral should never drop
below zmaxt1 − (zmax − zmin)t0. Note that the constraint
u(τ) ≤ zmax is always implicitly enforced, since we assume
that the consumed power can never exceed zmax.

V. CONSUMER SIDE PROBLEM

In this section we illustrate how a consumer may optimize
her use of a service contract with service curve. Assume a
consumer wants to recharge her PEV battery, using a power
plug controlled by a smart home controller, with a contract as
defined above, with service curve β2. Assume the minimum
guaranteed power zmin can be used at any time by other,
non elastic appliances. Assume the PEV is the only elastic
appliance (the more general problem involves scheduling of
multiple elastic appliances by the smart home controller and
is left for further study). Assume the consumer is interested
in having a fully charged battery at time horizon T , given that
at time 0 the current charge level is B(0). Since the contract
specifies a fixed price per unit of energy, she is interested in
minimizing the consumed power, subject to feasibility. In other
words, she wants to have a battery fully loaded at time T ; if
this is possible, she further wants to minimize the electricity
cost. Let B(t) be the battery level at time t, and Bmax the full
battery level. We can express the consumer’s problem as the
desire to minimize the cost function

K(Bmax −B(T )) +

∫ T

0

z(τ)dτ (10)

where K is a large constant (K > Tzmax). The equations for
battery level are

B(t)−B(0) =

∫ t

0

(
ηz(τ)− ρz(τ)2 − γ1{B(τ)>0}

)
dτ (11)

where the notation 1{condition} means 1 when condition is
true and 0 otherwise, and

η = efficiency
γ = battery leakage
ρ = thermal loss

Further, the load z(t) must be such that B(t) ≤ Bmax at all
times t.

The consumer’s problem must be solved online; to make the
problem tractable, we discretize time. The consumer’s smart
home controller needs to decide at time t for a value z(t+ 1),
not knowing values of the future control signals u(τ), τ > t,
using a “policy” π. The policy must be causal, i.e. decision
taken by π at time t depends on z(τ), u(τ) for τ ≤ t and on
the battery level B(t). Further, the service curve contract must
be obeyed, i.e. the policy must choose a load z(t + 1) such
that

z(t+ 1) + n(t+ 1) ≤ u(t+ 1)

where n(t + 1) is the non elastic load at time t + 1. In this
paper, we assume that the non-elastic load cannot be forecast
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or controlled, however it may not exceed zmin. We assume
therefore that the policy enforces the constraint

z(t+ 1) ≤ u(t+ 1)− zmin

which indeed allows non-elastic load to operate without hin-
drance.

The future control signals u(t + 1) are not known either
at the time of decision making, but their worst case can be
predicted, depending on the past. We also assume that the
consumer’s goal is to minimize the worst case total cost. In
other words, let C(π, u) be the total cost, given by Eq. (10)
(u denotes the complete control signal for all times up to time
T ). The goal is to find a policy π that minimizes

max
u

C(π, u)

where the maximum is over all possible control signals that
are compatible with the service curve constraint.

Finding an optimal policy seems to be an open problem
and is left for further study. However we can provide some
preliminary insight. The first question that can be addressed is
whether a close to full charge can be achieved within the time
horizon T . Note that a full charge cannot be guaranteed, since
control signals sent towards the end of the charging period may
stop the charging process, and some battery leakage is assumed
in our model. Also note that the thermal loss term in Eq. (11)
may imply that for large enough load, e.g., for z(τ) > η/ρ,
the net charge decreases; clearly, the battery charging system
should not operate in this region, it is sufficient to assume that
zmax−zmin < η/2ρ, with batteries such that η2 > 4γρ. We also
assume that the horizon T is less than t1 (this is reasonable
if we assume, as we did earlier, that t1 is of the order of 24
hours).

Theorem 3. Consider the consumer side problem described
earlier. Let B(0) < Bmax be the initial battery level and
u(t), t = 0,−1,−2, ... the past control signals (known to the
consumer).

Let V ∗ be the optimal value of the convex programming
problem:

minimize V =
∑T
τ=1

(
ηx(τ)− ρx(τ)2

)
over the variables x(1), ..., x(T )
subject to the constraints

0 ≤ x(τ) ≤ zmax − zmin for 1 ≤ τ ≤ T,∑t+t1
τ=t+1 x(τ) ≥ (zmax − zmin)(t1 − t0)

for 1− t1 ≤ t ≤ T − t1

If V ∗ ≥ Bmax − B(0) + Tγ, there exists a policy π that
achieves B(T ) ≥ Bmax−γT . This policy achieves full battery
level at some time t ∈ [0, T ].

Proof: Let u(t) be the actual value of the controls (not
known in advance). Let x(t) = u(t) − zmin and let B′(t)
be the level of a virtual battery, that would start at B(0),
would receive the load x(t), would have 0 leakage, and
infinite maximum level. In other words, B′(0) = B(0) and
for t = 0, ..., T − 1:

B′(t+ 1)−B′(t) = ηx(t)− ρx(t)2

The sequence x(t) satisfies the constraints in the theorem,
therefore

B′(T )−B′(0) =

T∑
τ=1

(
ηx(τ)− ρx(τ)2

)
≥ V ∗ ≥ Bmax −B(0) + Tγ

and thus
B′(T ) ≥ Bmax + Tγ (12)

Now define the policy π by

z(t+ 1) = u(t+ 1)− zmin if B(t) ≤ Bmax

z(t+ 1) = min (u(t+ 1), γ) if B(t) = Bmax

i.e. we set the consumed power z(t) to the maximum possible
considering the constraint of non elastic load and of maximum
battery capacity. Let B(t) be the battery level with this policy.
As long as B(t) < Bmax, the rate at which B and B′ vary
differ by at most the leakage term γ, thus as long as B(t) <
Bmax:

B′(t)− γt ≤ B(t) ≤ B′(t) (13)

Assume that B(t) never reaches Bmax. It follows that B′(T ) ≤
B(T ) + γT < Bmax + γT , which contradicts Eq. (12), thus
there exists some time t at which B(t) = Bmax. The rest of
the theorem follows from the fact that leakage occurs at rate γ.

VI. A MINIMUM VARIANCE POLICY (MCAP)

In this and the next section we consider two scenarios where
DSOs could make use of the service curve approach. In this
section, we consider a case where load is random but station-
ary, and we study how the variance of the load can be reduced
by using appropriate control signals. Reducing the variance
reduces DSOs’ hedging costs. The scenario considered here is
highly idealized scenario, but it serves the purpose of showing
that simple binary policies are not always optimal.

Consider an infinite population of identical customers hav-
ing contracts specified by the service curve β2(·). Assume that
customers arrive according to a Poisson process of constant
rate λ with arrival times {S(n), n ∈ Z}, consume an amount
β2(T ) of energy, for a fixed T satisfying t0 < T < t1, and
subsequently leave the system forever. The quantity of energy
consumed by each customer can be written as

w := β2(T ) = zmaxT − (zmax − zmin)t0.

The system operator chooses signal u(s) satisfying the
contract agreement∫ t

t′
u(s) ds ≥ β2(t− t′), ∀t′ < t,

that it sends to each customer upon arrival. Customers behave
greedily and immediately consume their w units of energy, as
soon as the control signals allow them to do so. Denote the
instantaneous power consumption of a customer at t time units
after her arrival in the system by

z(t) := u(t)10≤t≤T .
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t = 0 is a customer arrival time.

Assume that the DSO knows w. If
∫ T
0
z(s) ds < w, then

the contract is violated. On the other hand, if
∫ T
0
z(s) ds > w,

then the DSO exceeds its obligations. Hence, the DSO wishes
to have ∫ T

0

z(s) ds = β2(T ). (14)

The aggregate instantaneous energy consumption observed by
the DSO is given by the stochastic process

Z(t) =

+∞∑
n=−∞

z(t− S(n)).

By Campbell’s theorem, the mean and variance of Z(t) are
given by

EZ = λ

∫ +∞

−∞
z(s) ds = λw,

Var(Z) = λ

∫ +∞

−∞
z2(s) ds.

Since the users have the same energy consumption, the DSO
wishes to minimize the variance of the process Z(t), i.e., to
solve the following problem:

Minimize
∫ +∞

−∞
z2(s) ds over u(·) ≤ zmax (15)

such that
∫ t

t′
u(s) ds ≥ β2(t− t′), ∀0 ≤ t′ < t ≤ T. (16)

A first choice is to take binary control u(·) equal to

ub(t) =

{
zmin, 0 < t ≤ t0
zmax, otherwise,

a choice which, by Theorem 2, satisfies the constraint (16).
By Jensen’s inequality, we can write∫ T

0

u2b(s) ds = t0z
2
min + (T − t0)z2max

≥ T
(
t0
T
zmin +

T − t0
T

zmax

)2

. (17)

Denote
z(T ) :=

t0
T
zmin +

T − t0
T

zmax, (18)

and define the policy

u∗T (t) =

{
z(T ), 0 < t ≤ T
zmax, otherwise. (19)

By Theorem 2, u∗T also satisfies constraint (16) and further-
more achieves a lower variance, by (17). We shall refer to this

policy as the Minimum Constant Allocation Policy (MCAP).
Let us prove that MCAP is optimal.

Theorem 4. For identical customers with contract given by
β2(·) arriving according to a Poisson process of rate λ and
consuming the same amount of energy w = β2(T ) for a fixed
value t0 < T < t1, the MCAP control signal u∗T minimizes
the variance of the aggregate demand Z(t). In other words,
it achieves the optimum of (15)-(16).

Proof: For any control u, by Cauchy-Schwartz,∫ T

0

u2(s) ds

∫ T

0

1 ds ≥

(∫ T

0

u(s) ds

)2

.

Thus, using (14), we obtain a lower bound on the variance of
Z(t): ∫ +∞

−∞
z2(s) ds ≥ 1

T
β2
2(T ).

Since ∫ T

0

u∗T
2(s) ds =

1

T
β2
2(T ),

we can conclude.
Service curves give freedom of control choice for the DSO.

As discussed in Section III, service curves such as β2(·) allow
the implementation of binary controls ub (which are similar to
the ones implemented by Voltalis), but also of more complex
ones. In the setting of steady arrival of identical users, we
saw (Theorem 4) that binary controls are not the best suited
for reducing peak consumption, and found that the smoother
MCAP control u∗T achieves the goal, while satisfying the
contract conditions.

In the next section we evaluate a heuristic for performing
demand response using service curves in a setting of bursty
arrivals.

VII. BURSTY ARRIVALS

Like in Section VI, we consider consumers that have
a guaranteed minimal service characterized by the service
curve β2(·). We have seen that, when arrivals are static
and consumers homogeneous, the best policy for the system
operator is to use MCAP, which imposes a constant power
consumption for users. In this section, we define the Quota
Binary Allocation Policy (QBAP), a heuristic which distributes
temporary service reductions to the users of the system through
binary power signals, while satisfying the contract specified
via the service curve. We consider a setting in which arrivals
are bursty. We show through numerical evaluations that QBAP
outperforms MCAP in this scenario.

A. Assumptions

We consider a population of N users U = {1, . . . , N} with
contracts specified by service curve β2(·). At time t each
user i ∈ U receives control signal ui(t) from the DSO and
consumes power zi(t), such that zi(t) ≤ ui(t).

We address a specific scenario where the N consumers (or
users) charge their PEV batteries upon arriving home after a
work day. The arrival times are normally distributed and the
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car batteries are identical, ideal (i.e., no thermal losses, or
leakage), have a maximum charging power zb and capacity
w. Like in Section V, consumers additionally impose a non-
elastic load on the grid, which may not exceed zmin, and the
PEV is their only elastic appliance. We set t1 = 24h and
zmax = zmin + zb, such that it is possible to satisfy the non-
elastic load and to charge the battery at maximum power for a
duration of at least t1− t0 per day. The burst of consumption
due to batteries causes the load on the grid to peak. We wish
to design a policy which makes use of the freedom of decision
provided by the service curve to reduce the peak load.

For presentation ease, in this section we consider discrete
time. We note that the results presented in the previous sections
directly apply for discrete time.

B. Quota Binary Allocation Policy

Theorem 2 states that in order to satisfy the constraints im-
posed by the service curve β2(·), it is necessary and sufficient
to guarantee an energy output of at least zmax(t1−t0)+zmint0
over any time window of length t1, while at any time t,
the control signal ui(t) sent to each user i is such that
zmin ≤ ui(t) ≤ zmax. We use this result to design a technique
that enforces the service curve.

For each user i, fix ui(t) for the duration of time step t, and
allow it to take only two possible values {z′min, zmax}, where
z′min = zmin + ε, for a fixed ε > 0. We call ui(t) a discrete
binary policy. We introduce ε for a signaling purpose: Since
the non-elastic load is limited at zmin, power consumption
greater than zmin is an indication for the DSO that elastic load
is present. Let us make sure that the control ui(t) satisfies the
contract. By Theorem 2, it is sufficient to guarantee that ui(t)
will be set to z′min over no more than t0 time steps within any
time window of length t1.

Setting ui(t) to z′min rather than zmax can be inter-
preted as a “penalty”. Define a penalty budget sequence
(pi,t(t

′))t′≥0 for each user i and at each time step t .
The values pi,t(t′) represent the number of successive time
steps, starting at time t + t′, during which user i can
be limited at zmin without violation of the contract, if no
low-power signals are sent between times t and t + t′.
For example, if pi,t(1) = 2, then the control sequence
ui(t..t+ 3) = (zmax, z

′
min, z

′
min, zmax) is feasible, while the

control sequence ui(t..t+ 3) = (zmax, z
′
min, z

′
min, z

′
min) vio-

lates the penalty budget.
Implicitly, if pi,t(0) ≥ 1, then the control ui(t) may take

any of the values z′min or zmax, whereas if pi,t(0) = 0, then
ui(t) must be set to zmax. In the latter case, we say that the
penalty budget of user i is depleted.

Let us describe how the penalty budget sequence can be
computed. By definition, pi,t(t′) = t0, for all t′ ≥ t1.
Therefore, the operator needs to maintain the penalty bud-
get over a window of only t1 time steps in the future:
(pi,t(0), pi,t(1), . . . , pi,t(t1 − 1)).

At t = 0 (i.e., no consumption history), for each user i,
we have that pi,t(t′) = t0, for all t′ ≥ 0. At time t, the
DSO can perform two operations: either send a maximum
power signal zmax to user i, or, if the penalty budget allows

it (i.e., pi,t(0) ≥ 1), a low-power signal z′min. The operation
performed by the DSO modifies the penalty budget sequence
as follows:

• If ui(t) = zmax, then the penalty budget is not affected.
Hence, at time step t+ 1 we have

pi,t+1(t′) =

{
pi,t(t

′ + 1), 0 ≤ t′ < t1 − 1,
t0, t′ ≥ t1 − 1.

• If pi,t(0) ≥ 1, then the DSO may send a low-power signal
to user i, ui(t) = z′min. In this case, the penalty budget
is decremented and at time step t+ 1 we have:

pi,t+1(t′) =

{
pi,t(t

′ + 1)− 1, 0 ≤ t′ < t1 − 1,
t0, t′ ≥ t1 − 1.

In Algorithm 1 we propose a heuristic for reducing aggre-
gate peak consumption, the Quota Binary Allocation Policy
(QBAP). The DSO enforces the service curve using a sliding
window of penalties Pi of length t1 for each user i, as
described above. The algorithm takes as input a fixed “best-
effort” quota Na > 0. At each time step, it aims for at most
Na users consuming zmax. We pick these among the most
deprived users in terms of penalty budget. Note that it might
not always be possible to satisfy the quota, since users with
depleted penalty budgets must be served at zmax. An adaptive
quota is left for future study. For now, we simply wish to show
that there exist values of the quota N∗a , such that QBAP(N∗a )
outperforms MCAP.

Algorithm 1 Quota Binary Allocation Policy
QBAP(Na, ε, Tmax)
Penalty budget windows (t1-dimensional): Pi(0..t1−1) ∀i ∈ U

1: Initialise Pi := (t0, . . . , t0), for all i ∈ U
2: t := 1
3: for t = 1 to Tmax do
4: Retreive consumption at time t− 1: {zi(t− 1)}i∈U .

(by default, zi(0) = 0)
5: Find users i that exceeded zmin at time t− 1:

A := {i ∈ U : zi(t− 1) > zmin}.
6: Sort users in A increasingly according to their penalty

budget Pi(0): π : A → {1, . . . , |A|},
Pi(0) ≤ Pj(0) ⇐⇒ π(i) ≤ π(j), ∀i, j ∈ A.

7: for i = 1 to N do
8: if i ∈ A and π(i) > Na and Pi(0) ≥ 1 then
9: ui := zmin + ε

10: Decrement penalty budget sequence: Pi := Pi − 1
11: else
12: ui := zmax

13: end if
14: for t′ = 0 to t1 − 2 do
15: Slide window: Pi(t′) := Pi(t

′ + 1)
16: end for
17: Pi(t1 − 1) := t0.
18: end for
19: Send signals {ui}i∈U to the consumers for time step t
20: end for
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(a) t0 = 30mn, quota Na = 6100
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(b) t0 = 3h, quota Na = 3500.

Fig. 5. The peak-shaving effect of MCAP (Section VI) and QBAP (Section VII). N = 10000 users, w = 52kWh, zmax = 14.6kW, zmin = 5kW, ε =
100W, time step = 6mn.

C. Numerical Evaluation

Customers are guaranteed minimum power of zmin = 5kW.
The non-elastic appliances may consume at most zmin power
(e.g., physically limited by a fuse box). Non-elastic consump-
tion level for user i at time t is given by independent normally
distributed random variables Xi,t of mean zmin and standard
deviation 1 capped at zmin: min{zmin, X

+
i,t}.

The N consumers start charging their batteries at random
times normally distributed, centered at 6pm, with standard
deviation of 1 hour. We consider identical PEV batteries of
capacity w = 52kWh, with charge levels (wi)i∈U uniformly
distributed between 0 and 4/5 of the total battery capacity
w. We consider ideal batteries, without losses or charging
inefficiencies. The batteries charge at the power imposed by
the control signals zmin + ε and zmax (for ε = 100W ) without
hindering the non-elastic appliances. The maximum power at
which the batteries can be charged is zb = 9.6kW. The overall
consumption is capped at zmax = zmin + zb = 14.6kW.

Under a service curve β2(·), battery i may take up to Ti
time steps to recharge, where β2(Ti) = wi + Tizmin. A back-
of-the-envelope calculation gives Ti = wi

zmax−zmin
+ t0.

In Figure 5 we show the aggregate consumption for two
values of t0: a Voltalis-like setting t0 = 30mn (Figure 5(a))
and a less constraining value t0 = 3h (Figure 5(b)). We
consider two possible controls. In the first case, the PEVs
transmit their charge levels wi to the DSO, which in turn
implements the smooth MCAP(Ti) customized for each con-
sumer i ∈ U . This control gives an aggregated consumption
shown by the curves labeled “MCAP”. In the second case, the
DSO uses QBAP(Na) for the specified versions of the quota
Na. This control gives an aggregated consumption shown by
the curves labeled “QBAP(Na)”. For comparison we also plot
the aggregate demand when power consumption per user is
capped at zmax and no control is used.

We notice that in the considered settings QBAP outperforms
MCAP. In the Voltalis-like setting (Figure 5(a)) QBAP reduces
peak consumption by 11.3% (vs. 4.1% for MCAP). For t0 =
3h (Figure 5(b)), QBAP reduces peak consumption by 30.2%
(vs. 21.3% for MCAP). Note that the overall energy output

(i.e., the integral over time of the consumed power) is the
same for the three policies. Moreover, for t0 = 3h we obtain
significant reductions in peak load, while PEV batteries are
fully charged by 3am.

VIII. CONCLUSION

We have introduced the concept of service curves for
electricity consumption, inspired from load smoothing mech-
anisms proposed for the Internet. Service curves provide the
systems operator with the ability to alleviate the load on the
grid at critical peak-hours through demand-response mecha-
nisms. Such mechanisms come at the cost of small discomfort
on the consumer side in the form of service reductions over
limited periods of time. This approach has the advantage
of decoupling the consumer and provider problems, while
avoiding to expose consumers to electricity price volatility.
We have formally characterized such service curves using
max-plus calculus and provided efficient methods to provably
implement the constraints imposed thereby. We have shown
that on the consumer side, discomfort can be reduced by
employing simple policies which take into consideration the
parameters of the service curves. Finally, we have provided
simple heuristics that can be implemented by the DSO in order
to reduce peak load. In the setting of bursty arrivals of het-
erogeneous consumers, we have shown that QBAP, a heuristic
which controls the load via binary power signals, outperforms
MCAP, which sends smooth signals and is provably optimal
in a stationary setting.

REFERENCES

[1] S. Borenstein, M. Jaske, and A. Rosenfeld. Dynamic pricing, advanced
metering, and demand response in electricity markets. 2002.

[2] S. Keshav and C. Rosenberg. Direct adaptive control of electricity
demand. 2010.

[3] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag Lecture
Notes in Computer Science volume 2050, July 2001.

[4] S. Meyn, M. Negrete-Pincetic, G. Wang, A. Kowli, and E. Shafieepoor-
fard. The value of volatile resources in electricity markets. In Proc. of
the 49th Conf. on Dec. and Control, 2010.

[5] OECD. OECD Economic Surveys: France 2011. OECDiLibrary, March
2011.


