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Abstract
This paper proposes a hybrid three-phase load flow method for ungrounded distribution
systems. Based on topology connectivity analysis, the system is partitioned into a mainline
system and multiple tap systems. A Newton method with constant admittance matrix is used
to solve the mainline system, such that zero impedance branches are merged into adjacent
impedance branches to be considered, and constant active-power and voltage-magnitude (PV)
buses with three-phase balanced voltages are transformed into single- phase PV buses to be
modeled. A backward/forward sweep with loop compensation is used to solve the tap systems,
such that a transformer and a voltage regulator is modeled using line-to-line voltages, a
distribution line is simplified as a series branch, and loop compensation current is initialized
based on loop downstream loads and the impedances of loop paths. Test results of sample
systems are given to demonstrate the effectiveness of the proposed method.
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Abstract-- This paper proposes a hybrid three-phase load flow 

method for ungrounded distribution systems. Based on topology 
connectivity analysis, the system is partitioned into a mainline 
system and multiple tap systems. A Newton method with constant 
admittance matrix is used to solve the mainline system, such that 
zero impedance branches are merged into adjacent impedance 
branches to be considered, and constant active-power and 
voltage-magnitude (PV) buses with three-phase balanced voltages 
are transformed into single-phase PV buses to be modeled. A 
backward/forward sweep with loop compensation is used to solve 
the tap systems, such that a transformer and a voltage regulator 
is modeled using line-to-line voltages, a distribution line is 
simplified as a series branch, and loop compensation current is 
initialized based on loop downstream loads and the impedances 
of loop paths. Test results of sample systems are given to 
demonstrate the effectiveness of the proposed method. 
 

Index Terms-- Distribution system; Three-phase; Load Flow; 
Ungrounded; Real-time. 

I.  INTRODUCTION 
ITH the increasing deployment of smart grid 
technologies such as renewable energies, demand 
responses, pluggable electric vehicles  and 
advanced network controllers, the operation of 

distribution systems becomes much more complicated and 
challenging than before. Computational tools suitable for real-
time monitoring of large-scale distribution system are highly 
desired by the electric utilities for assisting their operators to 
ensure the safety, security and efficiency of the operation of 
distribution systems under fluctuating and less-predictable 
situations introduced by smart grid applications. As a 
fundamental tool of real-time monitoring, three-phase real-
time load flow is playing an important role by analyzing the 
steady-state performance of distribution systems in a timely 
manner.  

Various methods for solving three-phase power flow 
problems are known. Most of these methods are mainly 
designed for grounded distribution systems, and might not be 
                                                           

Hongbo Sun and Daniel Nikovski are with the Mitsubishi Electric Research 
Laboratories, Cambridge, MA 02139 USA (e-mail: hongbo.sun@merl.com; 
nikovski@merl.com).  

Tetsufumi Ohno, Tomihiro Takano, and Yasuhiro Kojima are with the 
Mitsubishi Electric Corporation, Hyogo 661-8661 Japan (e-mail: 
Ono.Tetsufumi@ah.MitsubishiElectric.co.jp; Takano.Tomihiro@df. 
MitsubishiElectric.co.jp; Kojima.Yasuhiro@ab.MitsubishiElectric.co.jp). 

applied to the ungrounded systems directly. These methods 
differ in both the form of the equations describing the system 
and in the numerical techniques used. Usually, either 
topology- or matrix-based methods are employed. Topology-
based methods are suitable for radial systems, and include the 
Backward/Forward sweep method[1] and Ladder method[2]. 
Compensation schemes[1], [3]-[4] must be used when loops or 
PV buses are present in the system, and the existing schemes 
are less efficient when dealing with PV buses. The 
admittance-matrix based methods include the Implicit Z-bus 
method [5]-[6], the Newton-Raphson method [7]-[8], the Fast 
Decoupled method [9], and the Sequence Decoupling method 
[10]-[11]. All of these methods have their own limitations 
when applied to large systems, either in terms of modeling 
capabilities, or in terms of computational efficiency. 

This paper proposes a new hybrid three-phase load flow 
method that is suitable for real-time applications in large-scale 
ungrounded distribution systems. Based on topology 
connectivity analysis, the distribution system is partitioned 
into a mainline system and multiple tap systems to be solved 
by means of a Newton method with constant Jacobian matrix,  
and a backward/forward sweep method with loop 
compensation, respectively. The impact of zero-impedance 
branches such as voltage regulators have been modeled by 
merging those branches with adjacent impedance branches, 
such that the inaccuracy or divergence problems introduced by 
adding small impedances into those branches,  that is 
commonly used by conventional methods, can been avoided. 
Unlike the common practice to set active power for each phase 
arbitrarily, the proposed method models the control 
requirements for constant active-power and voltage-magnitude 
(PV) buses with three-phase balanced voltages precisely, that 
is, by maintaining the sum of three-phase active power 
constant, and by maintaining three-phase voltages balanced 
and with constant magnitudes. Instead of initializing the bus 
voltages with the setting of the swing bus, and loop 
compensation currents as zeros, the method sets the initial bus 
voltages based on the swing-bus voltage and the amplifier 
factors of transformers and regulators along paths connecting 
each bus with the swing bus, and initializes the loop 
compensation currents based on the connected loop loads and 
an allocation factor matrix defined solely by the loop path 
impedances. The method used a closed-form formula to 
uniquely convert line-to-line voltages into phase-to-ground 
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voltages for ungrounded buses. By using the formula, 
ungrounded transformers in tap systems are solved by using 
admittance models based on line-to-line voltages in order to 
avoid the resulting matrix singularity when using models 
based on phase-to-ground voltage. The formula also enables 
the construction of the nodal admittance matrix of the 
mainline system, based on amplifying factors of zero-
impedance branches written in line-to-line voltages. The 
solution process for a tap system is further simplified by 
integrating line charging into connected buses, and only series 
line currents are used during iterations. 

II.  THE PROPOSED METHOD 

A.  System Partitioning 
Based on the topology analysis, the proposed method has 

partitioned the distribution system into a mainline system and 
a set of tap systems. The mainline system is formed by 
mainline buses connecting a swing bus to  a set of PV buses, 
and the tap system is formed by one or more tap buses, such 
that the root bus of each tap system corresponds to a mainline 
bus.  

 
Fig. 1  Distribution system partitioning 
 
Fig. 1 shows an example of the partitioning of a 

distribution system into a corresponding mainline system and 
two tap systems 1 and 2. In the example, the mainline system 
includes five buses, including one swing bus m1, one PV bus 
m2, and two root buses, t1 and t2 for two tap systems, 1 and 2. 
The mainline system is a radial system. Tap system 1 starts 
from a mainline bus t1, which is its root bus, and includes all 
buses and devices downstream to the bus t1. As can be seen, 
tap system 1 forms a loop. Tap system 2 starts from a 
corresponding root bus t2 of the mainline system, and includes 
all buses and devices downstream to bus t2. Tap system 2 has 
no loops and is a radial system.  

Based on the number of devices connected between the 
study bus and the root, the tap systems can be divided into 
layers. For example, in Fig. 1, tap system 1 is divided into four 
layers, where the first layer contains one bus, and the last layer 
constants three buses. Similarly, tap system 2 is divided into 
three layers.  

The power flows of distribution system is solving through 
iterative solving of the mainline system and tap systems, and a 
final solution is obtained when the required accuracy for the 
bus voltage or power mismatch is satisfied. 

B.  The mainline system 
The mainline system is formed by mainline buses that 

reside on the paths between the swing bus and PV buses. The 
mainline system may be radial, or meshed. The modeled bus 
and phases in the mainline system are converted to nodes to 
construct the power flow equations. The number of nodes for 
each bus is equal to the number of modeled or available 
phases at the bus.  

The power flow equations are formulated in polar 
coordinates and solved by Newton's method with a constant 
Jacobian matrix. The impacts of zero-impedance branches and 
voltage balance requirements of three-phase PV buses are 
embedded into the nodal admittance matrix of the mainline 
system. 
    1)  Zero-impedance Branches 

Many branches in a distribution system can be regarded as 
zero-impedance branches, such as step voltage regulators, 
switches, jumpers and very short lines. Usually, the 
impedances of those branches are very small and can be 
ignored. However, the consequence is that some entries in the 
resultant nodal admittance matrix become infinite, and thus 
the admittance matrix based approaches are inapplicable. In 
order to use admittance matrix based approaches, conventional 
methods have arbitrarily assigned small non-zero impedances 
to those branches. However, assigning such small impedances 
makes the analysis ill-conditioned, and load flow analysis is 
difficult to converge. In the proposed method, a different 
method is used that merges those zero-impedance branches 
with adjacent impedance branches into new non-zero 
impedance branches.  

Fig. 2 gives an example of a generalized three-phase zero-
impedance branch between bus m and bus p. One of the buses, 
for example the bus m, is assigned to be a master bus, and the 
other bus p is assigned to be a slave bus. The buses are 
connected by an ideal transformer. The slave bus is connected 
with a load current pI .  

 
Fig. 2 Zero-impedance branch model 
 
The phase-to-ground voltages of its two terminal buses, and 

two directional phase currents on the branch are related to 
each other with the voltage amplifying factor matrices, 

mpVA  
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and 
pmVA , and current amplifying factor matrices, 

mpIA  and 

pmIA as: 

pmImp IAI
mp

=                                   (1) 

mpIpm IAI
pm

=                                   (2) 

pVm VAV
mp

=                                    (3) 

mVp VAV
pm

=                                    (4) 

where mpI and pmI are the vector of phase currents flowing 
from bus m to bus p, and bus p to bus m respectively, 

mV and pV are the vector of phase-to-ground voltages of bus m 
and bus p. These amplifying factor matrices are determined 
according to the winding connection and tap positions for a 
transformer or a voltage regulator, and the phase connection 
for a switch, a short line or a jumper.  

As shown in Fig.2, the zero-impedance branch is merged 
into adjacent impedance branches, such that the slave bus is 
not considered in the analysis of the model. In the example, 
the zero-impedance branch is connected to two branches by 
the slave bus p, and to another two branches by the master bus 
m. Taking one adjacent branch between slave bus p and bus s 
as an example, the relationship between the branch currents 
and the terminal bus voltages can be described as: 
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where, psI and spI are the vector of phase branch currents 

flowing from bus p to s, and bus s to p, sV is the vector of 

phase-to-ground voltages at bus s, ppY and ssY are the self 

admittance matrices of bus p and s, psY and spY are the mutual 
admittance between p and s, and s and p respectively. In the 
equivalent model, the zero-impedance branch and the slave 
bus p are removed. There are no changes for the branches 
connected to the master bus m. The branches connected to the 
slave bus p are reconnected to bus m, and the branch 
admittance matrices and the current injections at the master 
bus m are modified accordingly. The load current pI at bus p 

is modeled as an equivalent current at bus m, as pI IA
mp

− . 

The branch between bus p and bus s is replaced with a new 
branch directly between bus m  and bus s, and the branch 
currents, msI  and smI , and the nodal voltages, mV  and sV , 
are related as:  
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If the amplifying matrices are expressed with line-to-line 
voltages, (6) is replaced by the following equation: 
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where, LL
Vmp

A and LL
Vpm

A  are the voltage amplifying factor 

matrices for the branch between bus m to bus p written in  
terms of line-to-line voltages, and line-to-line voltages at bus 
m, and bus p, LL

mV and LL
pV  are related as: 

LL
p

LL
V

LL
m VAV

mp
=                             (8) 

LL
m

LL
V

LL
p VAV

pm
=                            (9) 

where, LP
VC  is a conversion factor matrix to be used to 

convert voltages from phase-to-ground form into line-to-line 
one. Taken bus p as example, we have 

p
LP

V
LL

p VCV =                      (10) 

The matrix LP
VC is defined as: 
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PL
VC is a conversion factor matrix to be used to convert 

voltages in the form of line-to-line into phase-to-ground. For 
bus p, we have: 

LL
p

PL
Vp VCV =                          (12) 

The conversion from line-to-line voltages into phase-to-
ground voltages is not trivial. Due to unknown neutral-to-
ground voltages, multiple results may be obtained based on 
the same line-to-line voltages. A conversion equation defined 
below is used to uniquely convert the line-to-line voltages to 
the phase-to-ground voltages: 
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The conversion is accurate when the voltages only include 
positive and negative sequence components, and is a good 
approximation if the zero-sequence components are small 
enough. 
    2)  Three-phase PV buses with balanced voltages 

A PV bus in the mainline system can be modeled as three 
PV nodes, if the power and voltage magnitude of each phase is 
regulated independently. However, if the bus is connected to a 
balanced voltage generation source, and  the generator is 
regulated as constant voltage magnitude and constant total 
active power of three phases, accordingly, the three-phases of 
such bus have to be combined together to be modeled in the 
admittance matrix based power flow equations.  

Assumed bus p is a PV bus with three-phase balanced 
voltages, its three phases a, b, and c can be combined into an 
equivalent single-phase e to be modeled. The equivalent phase 
e can be any phase, and taken phase a as example, we can 
have: 

a
p

e
p VV =                                     (14) 

ps
Te

ps IRI =                                  (15) 
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where, e
pV  and a

pV  are the phase-to-ground voltages at 

equivalent phase e, and phase a of bus p respectively, and 
e
psI is the equivalent phase current flowing on the branch from 

bus p to bus s, R is a rotation vector to rotate all phases to the 
selected equivalence phase e, TR  is the transpose of vector 
R . Assumed the equivalent phase is phase a, the rotation 
vector is defined as: 
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Fig. 3 shows an example of determining an equivalent 
model for a distribution system with three-phase ganged 
regulated PV buses. In Fig. 3, the three phase PV bus p is 
connected to two branches. In the equivalent model, the three 
phases of PV buses with balanced voltages are combined into 
one single phase, and taking one branch between bus p and 
bus s as an example, the new branch model can be described 
as: 
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where *R  is the conjugate of rotation vector R . 

 
Fig. 3 Three-phase Balanced-Voltage PV Bus Model 
 

    3)  Initial Bus Voltages 
The Jacobian matrix is determined from the initial voltage 

setting. The initial voltages are set to the values at the swing 
bus multiplied with the aggregated voltage amplifying factor 
matrix introduced by the transformers or voltage regulators 
along the shortest path between the swing bus and the bus: 

swing
st

Vp VAV
st∏=)0(                   (18) 

where, )0(
pV  is the vector of initial voltages of bus p, swingV  is 

the voltage of the swing bus, 
stVA  is the voltage amplifying 

factor matrix of a voltage regulator or transformer between 
two buses, bus s and bus t residing on the shortest path from 
the swing bus to the bus under consideration. 

    4)  Solving power flows of the mainline system 
The power flows of the mainline system is solved through 

iteratively solving the following power mismatch equations: 
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where PΔ and QΔ are vectors of nodal power mismatches 
between the scheduled values and calculated values, θΔ and 

VΔ are the vectors of node phase angle and voltage 

magnitude changes, and J  are the Jacobian matrices of node 
active and reactive powers with respect to node phase angles 
and node voltage magnitudes. The Jacobian matrix is 
determined from the initial voltage setting, and factorized by 
using sparse LU decomposition or sparse Cholesky 
decomposition techniques, dependent on whether the matrix is 
symmetrical.  

Any bus in the mainline system, which is not a PV, or 
swing bus, is treated as a PQ bus. Its equivalent phase powers 
are determined by the connected loads, capacitors, adjacent 
line charging, and downstream branches, if it is a root bus for 
a tap system. The equivalent power x

pS  for bus p at phase x is 
determined according to: 
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x
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x
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where, x
pI  is the equivalent phase current of bus p at phase x, 

x
psI  is the equivalent phase current flowing through bus p 

toward bus s at phase x, pTap is the set of buses that connect 
with bus p and reside in the tap system fed by the bus p.  

C.  The tap systems 
A tap system is formed by a set of tap buses and the root 

bus of each tap system corresponds to a mainline bus. A 
backward/forward sweep scheme based on current summation 
with loop breakpoint compensation is applied.  
    1)  Loop Breakpoint Compensations 

The loops in a tap system are broken into radial paths to be 
considered, and the downstream load current fed by the loop is 
allocated appropriately between two breakpoints, in order to 
maintain their voltages identical. 

Fig. 4 shows an example construction of an equivalent 
model for a tap system having a loop formed between an 
upstream bus up and a downstream intersection bus dn. There 
are two paths available from the bus up to the bus dn. By 
replacing the downstream intersection bus with two 
breakpoints, i.e., one is the original bus dn, and the other is a 
new compensation bus comp, the loop is broken into two 
radial paths. Compensation current compI  is added as a load to 

the compensation bus comp, and as a negative load to the 
original bus dn. In the proposed method, the compensation 
current compI  is initially determined according to: 

dncompcomp IAI =                           (21) 
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where, compA  is the allocation factor matrix to be used to 
allocate downstream currents between two parallel loop paths. 
The allocation factor matrix is calculated based on the series 
impedance matrices of two paths according to: 

1)( −
−−− += compupdnupdnupcomp ZZZA

                (22) 
where, dnupZ − is the impedance matrices for the path from the 

upstream bus up to the downstream bus dn, and compupZ − is 
the impedance matrices for the path from the upstream bus up 
to the compensation bus comp. 

 
Fig. 4 Tap Loop Model 
 
Using above equation, the loads at a downstream bus is 

initially allocated into two parallel paths. The currents along 
the two paths have to be adjusted, if the voltages at the two 
breakpoints are not identical. The incremental compensation 
current, compIΔ  is determined according to 

compcompcomp VZI Δ=Δ −1                  (23) 

where,  compVΔ  is the vector of the voltage difference 
between the compensation bus and the loop downstream 
intersection bus, and it can be calculated according to: 

)( dncompcomp VVV −=Δ                     (24) 

where, compV  and dnV   are the phase-to-ground voltages at the 

bus comp, and the bus dn, respectively. compZ  is a loop 
impedance matrix, which for an independent loop can be 
determined as the sum of two path impedance matrices 
according to:  

)( compupdnupcomp ZZZ −− +=
                 (25) 

If some of the loops share common paths between different 
loops, above equations can still be used to calculate the 
incremental compensation current, but the vector compIΔ  and 

compVΔ  includes the corresponding compensation current and 

voltage changes for each loop, and the loop impedance 
matrices compZ  are formed based on the path impedance 

matrix for each loop, and common path impedance between 
loops. 

    2)  Three-phase transformer branches 
For a three-phase transformer, the backward/forward sweep 

steps need to calculate the inverse of its admittance matrices, 
and unfortunately for ungrounded connections, some of those 
matrices are singular. So, the line-to-line voltages, and phase 
currents are used to express the transformer model in tap 
systems. Because the primary and secondary buses are 
ungrounded, the sum of the three phase currents are zero, so 
only two phase currents are needed.  And,  only two of the 
three line-to-line voltages are needed as well.  As an example, 
if we take currents at phase a and b as current variables, and 
line-to-line voltage between phase a to phase b, and phase b to 
phase c as voltage variables, the admittance model for a 
transformer between bus p and bus s are calculated according 
to: 

'PL
Vmn

LL
mn CYY =        },{, spnm ∈       (26) 

where, 
'PL

VC  is a conversion matrix that used to calculate the 
phase-to-ground voltages for three phases based on line-to-line 
voltages between phase a to b, and b to c. The matrix is 
defined as: 
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    3)  Three-phase line branches 
In order to simplify the calculations for three-phase lines, 

the conventional π-model of distribution line is replaced with a 
series impedance branch by merging the line charging of shunt 
admittances into terminal buses as shown in Fig. 5. 

 
Fig. 5 Tap Line Branch Model 
 
Fig. 5 shows a model of distribution line connects bus p 

and bus s. In the model, there is one series branch with 
impedance matrix, se

psZ and two shunt branches and each with 

half of shunt admittance matrix sh
psY . Instead of solving the 

actual branch currents '
psI  and '

spI directly, the proposed 

method has used the internal currents, psI  and spI ,  that flow 

through the series impedances as the variables of the model to 
be solved. The actual branch currents can be determined by 
adding the line-charging currents to the internal currents, after 
the converged power flow solutions are obtained. By doing so, 
the computation efforts required for both backward sweep and 
forward sweep are significantly reduced. For example, for a 
backward sweep, the currents entering the line through the 
sending side p, can be directly set as negative of currents 
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entering through the receiving side s, i.e. spps II −= . 

    4)  Solving power flows of the tap systems 
The power flows of a tap system is solved by using the 

backward/forward sweep scheme. The scheme includes two 
integrated steps. The first is the backward sweep step, or 
current summation step, which calculates the branch currents, 
starting from the branches at the last layers and moving 
towards the branches connected to the root bus. The second is 
the forward sweep step, or voltage update step, which updates 
the branch terminal voltages, starting from the branches in the 
first layer towards those in the last, and for each branch 
between a sending bus and a receiving bus, the voltage at the 
receiving bus is calculated using the updated voltages at the 
sending bus. 

In a backward sweep, for any branch between sending bus p 
and receiving bus s, the branch current entering the receiving 
bus s is determined according to: 

∑
∈

−−=
sDNt

x
st

x
s

x
sp III     },,{ cbax ∈        (28) 

where, x
sI  is the equivalent current for bus s at phase x; sDN  

is a set of downstream buses connected to the bus s, and x
stI  is 

the phase current entering from bus s to a branch between bus 
s and bus t.  

The equivalent phase current for a bus takes contributions 
from the connected loads, capacitors, the line charging from 
connected lines, and the loop compensation currents, if it is a 
loop breakpoint. The loads and capacitors are Delta connected 
in an ungrounded system. The loads include constant power 
loads, constant current loads, and constant impedance loads. 
The equivalent phase currents at bus p, pI can be determined 
according to: 

comp
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            (29) 

The first component of the right-hand side of (29) is the 
contribution from connected loads and capacitors which are 
calculated as line-to-line currents, LL

pI  and then converted to 

phase currents using the current conversion factor matrix PL
IC  

defined as: 
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The second component of the right-hand side of (29) is the 
contribution of line charging for all lines that connect to bus p, 
and sh

psY  is the shunt admittance of the line between bus p and 

s. The third component, compI , is the contribution of loop 
compensation currents that can be determined using (21) and 
(23) if bus p is one of loop breakpoints, and is a positive value 
for the breakpoint corresponding to the compensation bus, and 
negative value for another breakpoint of the loop that 
corresponds to the original bus. The line-to-line current at bus 
p between phase x and y is determined as follows:  
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where, Rxy
S p

S − , Rxy
I p

S − and Rxy
Z p

S − are the rated complex powers 

at bus p and between phase x to phase y of constant power 
loads, constant current loads and constant impedance loads 
respectively; Rxy

pC −  is the rated reactive power generated at 

bus p and phase x to y by connected capacitors; and Rxy
pV − is 

the rated voltage at bus p and between phase x to y. 
In a forward sweep, the line-to-line voltages are used for 

calculation of transformers and voltage regulators, and then 
converted into phase-to-ground voltages by using the voltage 
conversion matrices. The phase-to-ground voltages are used 
for calculation of lines, and then converted into line-to-line 
voltages if the connected device is a transformer or voltage 
regulator.  

III.  NUMERICAL EXAMPLES 
The proposed method was tested against several 

ungrounded distribution systems including the IEEE 37 node 
test feeder, and a 2000-node sample system. The testing was 
performed on a desktop computer with an Intel Core i7-960 
processor. The maximum allowed power mismatch is set to be 

510− per unit. 

A.  Test results for the IEEE 37 node test feeder 
Table I lists the test scenarios that are generated based on 

the IEEE 37 node test feeder in which scenario I is a pure 
radial system, scenario II is a looped system, scenario III is a 
radial system, but with additional distribution generation that 
is regulated as a PV bus, and scenario IV is a looped system 
with additional PV regulated generation.  

 
TABLE I 

TEST CASES BASED ON IEEE 37 NODE TEST FEEDER 
Test 

Scenarios 
Configurations Characteristics 

of system 
I Same as IEEE 37 node test feeder Radial system 
II Add two new branches to scenario 

I, one between node 718 and 725, 
and one between node 729 and 732 

System with 
two loops 

III Add one new node 788 with three-
phase PV regulation, and one 
branch between 711 and 788 to 
scenario I  

Radial system 
with 1 PV bus 

IV Add one new PV bus 788, and three 
new branches, between 788 and 
711, 729 and 732, and 718 and 725 
to scenario I 

System with 2 
loops and 1 PV 
bus 

The computational performance of the proposed algorithm 
on those test scenarios is presented in Table II. The 
computational procedure includes two stages, the first stage 
involves the construction of connected islands based on the 
current or study-mode switch status through topology analysis, 
and the second stage involves the calculation of load flows for 
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each island that was constructed during the first stage. For 
real-time applications, the first stage only needs to be re-
executed when there are switching operations taking place in 
the system.  

TABLE II 
COMPUTATIONAL PERFORMANCES OF TEST CASES 

Test 
Scenarios 

CPU Time(ms) 
Topology Analysis Load Flow Calculation 

I 0.122 0.302 
II 0.136 0.442 
III 0.126 4.862 

IV 0.172 5.890 

As shown in Table I and II, the proposed algorithm is 
capable of analyzing three-phase load flows for ungrounded 
distribution systems with various configurations. 

Tables III and IV list the computational results for test 
scenario III with different PV bus models, including three-
phase independent regulating model, and three-phase ganged 
regulating model. The generation outputs of distributed 
generation and the swing bus are heavily dependent on the PV 
bus models to be used, and different models results in different 
generation dispatch results. It is obvious that if a three-phase 
ganged regulated PV bus were modeled as a three-phase 
independent regulated bus, the resultant power flow results 
might be wrong or at least not very inaccurate. 

 
TABLE III 

PV BUS MODELS OF SCENARIO III 
 

PV Model 
Regulation 

Active Power 
Generations 

Magnitude of Phase-to-
ground Voltage 

Three-phase 
Independent 
Regulated 

The output of each 
phase is 100 kW 

1.0 p.u for each phase 

Three-phase 
Ganged 

Regulated 

The total output of 
three phases is 300 
kW 

1.0 p.u. for each phase, 
and phase a leads  120 
degree to phase b, and lags 
120 degree to phase c  

 
TABLE IV 

RESULTS FOR SCENARIO III WITH DIFFERENT PV MODELS 
 

PV 
Model 

PV Bus Swing Bus 
Line-to-line 

Voltage 
Generation 

Output 
Generation 

Output 
Mag. 
(p.u) 

Angle 
(Deg.) 

kW  kVar kW kVar 

Three-phase 
Independent 
Regulated 

0.986 
1.014 
1.000 

27.6 
-92.4 
146.3 

100.0 
100.0 
100.0 

489.1 
320.5 
440.4 

728.8 
637.0 
858.8 

79.5 
-92.4 

-132.7 
Three-phase 

Ganged 
Regulated 

1.000 
1.000 
1.000 

27.2 
-92.8 
147.2 

183.7 
23.0 
93.3 

464.3 
470.0 
328.4 

692.3 
664.5 
851.5 

100.8 
-99.5 
851.5 

B.  Test results for the 2000-node sample system 
The proposed method was also tested against a sample 

ungrounded distribution system with 2000 three-phase nodes. 
The sample system is a radial system, and has one substation 
and six feeders.  

Similarly, four different test scenarios were generated 
based on the configuration of the 2000-node system. Scenario 
I is a pure radial system which uses the original configuration 
of the 2000-node system. Scenario II is a looped system which 
created by adding 12 loops to Scenario I. Scenario III is a 

radial system, but with additional constant voltage sources by 
adding 3 PV buses into Scenario I. Scenario IV is a looped 
system with PV buses which created by adding 12 loops and 3 
PV buses into Scenario I. The PV buses are located at the tails 
of associated feeders. 

The testing results on the sample system and computation 
performance compared with other existing methods are 
provided in Table V. Three different algorithms have been 
compared, including the proposed method, the Gauss-Seidel 
method, and the Newton-Raphson method. 

TABLE V 
COMPUTATIONAL PERFORMANCE OF 2000 NODE TEST CASES 
 
Method 

Test 
Scenarios 

CPU Time(ms) 
Topology 
Analysis 

Load Flow 
Calculation 

The 
proposed 
method 

I 7.286 6.181 
II 7.334 8.852 
III 7.459 1585.493 
IV 7.729 1637.177 

Gauss-
Seidel 
method 

I 7.166 8837.054 
II 7.160 8872.727 
III 7.140 8868.963 
IV 7.184 8951.292 

Newton-
Raphson 
method 

I 7.122 432000.103 
II 7.206 432399.666 
III 7.175 427109.171 
IV 7.224 429613.896 

From these test results, we can see that the proposed 
method is much more efficient than the Gauss-Seidel and 
Newton-Raphson algorithms when dealing with systems in 
radial configuration, or with limited number of loops and 
constant voltage sources. Taking Case IV as an example, it 
took 1637 ms for the proposed algorithm to find the final 
solution with the required precision. In comparison, it took 
8951 ms for the Gauss-Seidel algorithm, and 429613 ms for 
the Newton-Raphson algorithm to find the solution with the 
same precision. Similar results can be found for the other three 
cases. 

The test on the 2000 node system with radial topology 
showed that the proposed algorithm could find a solution 
within 7 ms, after the connectivity of the system was analyzed 
at the initial phase within 8 ms. In addition, the algorithm 
could also perform well for systems with arbitrary topology, 
including loops, at a slower speed. When 12 loops were added 
to the same 2000-node distribution system, calculation time 
was only slightly longer, 9 ms. Even with worst cases that 
generation sources are located far apart, ones at feeder heads, 
and the others at feeder tails as in the last two scenarios of 
table V, calculation time was considerably slower, but still 
within 2 seconds. Considering the size of test systems, and the 
platform that was used for testing, the calculation time is quite 
reasonable. Based on the preliminary results, it is safe to say 
that the proposed algorithm is suitable of real-time load flow 
analysis of large-scale ungrounded distribution systems. 

IV. CONCLUSION 
A new hybrid method for three-phase power flow analysis 

of ungrounded distribution systems was proposed, in which 
the topology of the distribution system is partitioned into a 
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mainline system and a set of tap systems, where the mainline 
system is formed by mainline buses connecting a swing bus 
and a set of constant voltage source buses, and the tap system 
is formed by one or many tap buses, such that a root bus of 
each tap system corresponds to a mainline bus.  

The mainline system is solved by means of a Newton 
method with constant Jacobian matrix, in which the zero-
impedance branches are merged into adjacent impedance 
branches, and the three phases of balanced-voltage PV buses 
are merged into one single  phase of PV buses. The tap 
systems are solved by a backward/forward sweep scheme with 
loop compensation, in which line-to-line voltage based voltage 
regulator and transformer parameters are used, and both line 
models and the calculation of initial loop compensation 
currents are simplified to speed up the solution procedure. 

The numerical examples on sample systems have 
demonstrated the effectiveness of the proposed method and 
the suitableness of real time applications. 
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