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Comparing Demand Side Management approaches
Albert Molderink, Vincent Bakker, Johann L. Hurink, Gerard J.M. Smit

Abstract—Due to increasing energy prices and the greenhouse
effect, a more efficient energy supply is desirable, preferably
based on renewable sources. To cope with the decrease of
flexibility due to the introduction of renewables in production
side of the supply chain, a more flexible consumer side is
required. In literature, a lot of management methodologies are
proposed to exploit the flexibility of consuming devices. Due
to the large number of devices, these methodologies are often
based on cost functions. Comparing the results of different
methodologies is hard since differences in results can be caused
by the methodologies itself or by less good defined cost functions.
In this paper an auction based realtime control is compared with
an ILP based realtime control using identical cost functions.
Furthermore, the influence of planning on these strategies is
studied. The simulation results show that planning leads to better
and more predictable results. Furthermore, planning is best
combined with an auction. However, the auction should slightly
be altered to decrease communication and to be able to cope
with (local) grid constraints.

Index Terms—Cost functions, utility functions, double-sided
auction, Demand Side Management, Smart Grid, Distributed
Generation

I. INTRODUCTION

Due to increasing energy prices and the greenhouse effect
more efficient energy supply is desirable, preferably based
on renewable sources. The shift towards a sustainable energy
supply is often called the energy transition. The current energy
supply chain is based on large scale generation on a number of
central places, a tree topology of the grid, a completely inflexi-
ble consumer side of the chain and no buffering, meaning that
all flexibility is on the generation side. On the other hand,
energy generation based on renewable sources is often less
flexible than the current generation and a large share of this
generation is distributed and connected to the lower (voltage)
levels of the grid tree. Therefore, the energy transition urges
for more flexibility in other parts of the energy supply chain
and will have a severe impact on the grid, probably resulting
in high investments. Smartening the grid and transforming
the domestic customers from static consumers into active
players in the production process can help to overcome these
issues. This flexibility on the consumers side (or demand
side) of the energy supply chain is called Demand Side
Management (DSM). DSM incorporates in this context load
shifting/shedding, buffering and distributed generation in the
MV and LV network. To reach this flexibility at the large group
of consumers, a smart grid is necessary. A smart grid is an
ICT layer on top of the physical layer of the grid, monitoring
and steering the energy streams in the grid, enabling DSM to
exploit the flexibility on the consumer side.
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In the literature a lot of demand side management method-
ologies are proposed [1], [2], [3], [4], [5]. These methodolo-
gies include a variety of strategies to optimize the consumption
pattern of consumers and to exploit the potential of buffers
and distributed generation. Most of the methodologies have
in common that they optimize on a device level, where a
device is a consuming, producing or buffering device (e.g.
PV panels, fridge or battery). Optimization on a device level
introduces device level constraints (technical and user con-
straints), resulting in an optimization problem subject to a lot
of constraints and a significant complexity. Devices can have
multiple options on every moment in time, of course respecting
the constraints. For example, a fridge can be switched on or
delayed (switched off), modulating boilers have multiple run
levels and an energy buffer can be (dis)charged with a certain
amount of energy. In all control methodologies, a decision for
every device is taken, often in a hierarchical way to maintain
scalability. The complexity is often overcome by using generic
functions expressing the device constraints and preferability
of different options of the device. These functions are called
utility functions, bidding functions, cost functions, etc. In
this paper we call them cost functions. These cost functions
reduce the complexity of the optimization problem to a cost
optimization problem with a limited number of constraints.
The outcome of such an optimization problem is an energy
price, which in combination with the cost function of the
devices specifies the resulting dispatch for each device.

In literature multiple methodologies to solve these opti-
mization problems are proposed, based on different strategies
like (double-sided) auctions, game theory and/or mathematical
optimization techniques (see Section III). Since the definitions
of the cost functions have a large influence on the results, it
is hard to compare the methodologies; a better result can the
result of a better solving methodology or of better defined cost
functions. This paper investigates two characteristics of cost
function based optimization methodologies:

• local/global realtime control: what is the influence of the
amount of information available at the level where the
decisions are taken?

• with/without prediction and planning: does prediction and
planning improve the results?

For the comparison of the realtime control a double-sided
auction is compared with a local ILP implementation, using
the same cost functions and a common scenario for both
strategies. Furthermore, the two realtime control strategies are
extended with prediction and planning to study the influence
of these strategies.

The rest of this paper is built up as follows: first the
background of the underlying model for optimization is de-
scribed and then a brief survey of related work is given. Next,
Section IV describes the different compared strategies and in
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Fig. 1. Example of modeling of a house

Section V a detailed analyses of the important aspects of the
strategies is given. A description of the use case is given in
Section VI, the simulation results are present in Section VII
and in Section VIII these results are discussed. The last section
ends up with the conclusions.

II. BACKGROUND

In an energy network, there must always be a balance be-
tween production and consumption, optionally using an energy
buffer. To derive methodologies for keeping this balance while
working towards given objectives, a model of domestic and
neighbourhood energy streams is deducted at the university of
Twente. Based on this model, methods for DSM of consuming,
producing and buffering devices are developed [6].

The basic element of this modelling is the model of a
building. Since the behavior of individual devices is optimized,
the model is detailed up to the device level. Multiple types
of energy can flow through the building (e.g. gas, electricity,
heat). These flows are modelled as streams transporting one
type of energy. Within the model energy-types are converted,
buffered and consumed by devices. Furthermore, energy-types
can be exchanged with the environment, which is modelled
by exchanging devices. Every device can have certain energy-
streams flowing in and certain energy-streams flowing out, e.g.
a microCHP has a gas stream in and an electricity and a heat
stream out.

As energy flows between devices, the energy-streams of the
devices also have to be connected with each other. However,
sometimes the energy flows directly from one device to one
other device (e.g. heat from the boiler to the central heating),
while in other cases energy can flow from and to multiple
devices (e.g. electricity). Therefore, pools are introduced. Each
energy-stream of the devices is connected to a pool. One or
more energy-streams (of the same type) can flow into the same
pool and one or more energy-streams can flow out of the same
pool. Note that a pool is not a buffer, the amount of energy

flowing in and out must be in balance. In Figure 1(a) and 1(b)
an example house and the associating model are given.

The balance in the pools can be reached by using the
flexibility of devices. For this, for every device a variable xd

is introduced expressing the amount of energy flowing in and
out of the device. However, not every value for xd is valid
for a device, so for each device it is defined which intervals
(options) the values of xd are valid (for example a light can be
switched on or off — 0W or 100W). The valid values and the
preferability of every value is expressed using cost functions
(see Section V-A for more details). Each choice for xd leads
to corresponding flows of the energy-streams flowing in and
out of the device.

Furthermore, constraints are introduced in the model to
force all technical and non-technical constraints to be satisfied
(e.g. balance in the pools and supply of all demand). Within
these constraints often multiple solutions for the decision
variable vector xd can be chosen. The decisions influence
the energy import profile per building, therefore the energy
efficiency, etc. As a result, some combinations of decisions
are more desirable than others. The goal of an optimization
methodology is to optimize the import profile (using the
energy price), given a certain objective (e.g. peak shaving).

This model can be extended to the electricity grid, where
transformers can be seen as converting devices converting
electricity from one voltage level to another, producers also
can be seen as converters. In this way, constraints, costs and
preferences of transformers and producers can be incorporated
in the model.

A detailed description of this model is given in [4].

III. RELATED WORK

In literature, several energy management methodologies are
proposed. Some of these methodologies only use realtime
control, i.e. they only optimize for the decisions at the current
moment, whereas other management methodologies optimize
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for a longer period, often combined with a realtime control to
stick to the planning.

Most realtime control strategies use cost functions in combi-
nation with an optimization methodology. These optimization
methodologies can be split up in three groups: auction based
optimization, game theory based optimization and other math-
ematical optimization strategies. These methodologies build
up in a hierarchical way for scalability reasons, i.e. the cost
functions are aggregated on different levels in a tree structure
with the individual devices as leaves and the optimization
scope (building, street, neighbourhood) as root node.

Planning strategies determine the best sequence of decisions
for every point in time on beforehand. However, a changes in
the environment alter the value of the decision points. In other
words, cost functions in a certain time interval may depend
on decisions taken in earlier time interval.

Multiple strategies for planning can be chosen, from sub-
sequently determining the decisions for every point in time
to algorithms finding the optimal sequence of decisions (see
Section V-E).

In literature, a lot of auction based methodologies are
proposed. In an auction based strategy the generators and
consumers place bids for the energy price (=cost function),
these are aggregated and then a market clearing price can
be calculated (see Figure 2). One of the more developed
methodologies is the PowerMatcher [2], [7], which is tested
in a real world situation [8]. In [9] a double-sided auction
mechanism is proposed and evaluated, based on piecewise
linear bidding functions, and it is proven that this methodology
reaches maximum social welfare. In [10] similar auction
methodologies are used, but using dual decomposition these
methodology is transformed into a distributed algorithm where
part of the calculations can be performed on lower levels (e.g.
building level). Claessens et al also propose an agent-based
double-sided auction approach, combined with self-learning
prediction ([11] and personal communication).

All methodologies mentioned in this paragraph use concave
functions for the demand and (strictly) convex functions for
the generation. Under these constraints it can be proven that
maximum social welfare is reached (amongst others, [9]).

The methodology proposed in [12] is based on game theory
and a longer period (multiple decision points) is optimized.
The energy costs are convex and the costs for individual users
are determined by the amount of energy they consume and
the total energy costs for the group. For this methodology it is
also proven that the maximum social welfare is reached (Nash
equilibrium), but no local preferences are taken into account.

Other optimization methodologies are proposed in [13],
[14] and [15]. In [13] a distributed MIQP optimization is
proposed, in [14] a particle swarm optimization and in [15] a
ILP optimization, all based on cost functions.

At the university of Twente an optimization concept is
developed, called TRIANA [4]. TRIANA uses the concept of
three steps: prediction, planning and control. In the first step,
on a device level the energy production and consumption is
predicted, together with the preferences and constraints. The
second step uses this information to make a planning for the
observed horizon, for example the next 24 hours. The third,
realtime control step observes the actual situation and tries
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Fig. 2. Determine market clearing price

to stick to the planning. Multiple methodologies can be used
for every step in this concept. The current implementation
uses neural networks for prediction, an iterative strategy for
the planning and an Integer Linear Program for the realtime
control.

IV. COMPARED STRATEGIES

For this paper multiple (combinations of) optimization
strategies for DSM are compared using identical preconditions.
All strategies are tested using the same scenario and objective.
Furthermore, the same implementation of devices, communi-
cation framework and simulator is used and cost functions for
the devices (see Section V-A) are equal within the use cases.

Two methodologies for realtime control are compared, both
based on cost functions. The first one is the current imple-
mentation of the realtime control algorithm of the TRIANA
methodology. This methodology is based on an ILP model on
a building level. Given the energy price (function) and the cost
functions of the devices in the building, the optimal solution
vector is deducted. This can be seen as an active auction [16],
where the central controller distributes an energy price and the
devices respond to this. The central controller determines the
price based on the price and the overall consumption in the
previous time interval. Due to the lack of information about
the devices on the global level the central controller has no
knowledge on what the result of a chosen energy price will
be. Therefore, this methodology is not meant for standalone
usage, it should be used in combination with a planning phase.
When it is combined with planning, the prices are determined
on beforehand.

The second methodology is a double-sided auction; all de-
vices (consuming and producing) send their (aggregated) cost
functions to the central controller and this central controller
deducts a market clearing price based on the cost functions
and the objective. This method can be seen as an interactive
auction [16], due to the information the controller has on what
the effect of the deducted energy price (function) is. The third
category of realtime algorithms (game theory based) is left
for future work since these methodologies are not based on a
central control.

Besides the two strategies consisting of the above specified
realtime control methodologies, these strategies are also com-
bined with prediction and planning, according to the TRIANA
concept. Since the cost functions are based on expectations of
fluctuations in the price, this can be seen as transactive auction
[16].
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So, four scenarios are considered:
• Realtime control, ILP (ILP)
• Realtime control, double-sided auction (Auction)
• TRIANA concept, ILP (ILP+)
• TRIANA concept, double sided auction (Auction+)
The goals of the comparison is to compare the ILP with

the double-sided auction strategy and to study the influence
of prediction and planning on both realtime control strategies.
To compare the different cases, the mentioned strategies are
incorporated in a simulation tool [17], [18], leading to an
electricity load profile for the group of houses for every
strategy (the total net consumption of all houses together for
every point in time). In the scenario we presume one common
objective for the group; the consumption profile of the group
of houses is taken into account instead of the profiles of
individual houses. This means that profiles of houses can be
non-optimal from an individual house point of view and that
the energy prices are only artifical prices (they can be seen
as steering signals). Therefore the profit for indivual houses
cannot be based on this time of use pricing, an other way
of distributing the profits should be found, e.g. based on the
amount of load shifted. However, this aspect is out of the scope
of this paper.

The objective is chosen to be a flat consumption profile,
meaning that the reached profiles are rated based on the devia-
tion from this profile (3�, load duration curve). Furthermore, a
discussion about the amount of communication, predictability
and dependability is given.

V. ANALYSES

In this section the compared methodologies are analysed in
more detail. First, the used structure of the cost functions is
described. Next, an analyses of the both used realtime control
strategies is given and the aggregation of the cost functions,
required for the auction, is described. Finally, a description of
the prediction and planning is given.

A. Cost functions
The cost functions express constraints and preferences of

producers and consumers. Note, that a battery can both be a
consumer and producer, based on the State Of Charge. For
simplicity, we use piecewise linear cost functions. However,
the conclusions also hold for other types of cost functions. Fur-
thermore, most methodologies require convex cost functions
for producers and concave functions for consumers to reach the
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Fig. 4. Example of transforming a cost function to a bidding function

optimum (social welfare), so we add this constraint too. The
used costs for every possible energy stream xd corresponding
to a given option of a device is defined by a function consisting
of a variable part A and a fixed part B: A ⇥ xd + B, with
as constraint that the cost functions are a convex/concave
function.

Since devices often have multiple valid options, constraints
constraints on xd of the form F  xd  T are added to restrict
xd to the allowed values corresponding to the given option.
An example of a device with three valid options is given in
Fig. 3. The value of xd in this example should be chosen in
one of the intervals.

In literature, often a distinction is made between cost
functions and bidding functions. As difference between these
concepts is often mentioned that a cost function expresses
the costs to deviate from normal behavior and that bidding
functions express the relation between the energy price and the
produced/consumed amount of energy (see Fig. 2). However,
cost functions can easily be rewritten as bidding functions.
This is illustrated in Fig. 4. The device in the figure prefers to
consume 100W, consuming less will lead to costs. Switching
the device completely off has 150 costs, so it is only profitable
to consume 100W when the import of 100W is cheaper than
150, i.e. when the price per W is at most 1.5. This leads to a
bid of 1.5 for 100W of electricity. The same reasoning leads
to a consumption of 50W when the unit price is at most 2 and
a consumption of 25 when the unit price is at most 3. Thus,
given cost function P with costs Pw for a given consumption
w, the accompanying bidding function P

0
can be calculated

using

P

0

w =
PWmin � Pw

w �Wmin
,

where Wmin is the minimum allowed consumption. The bid
P

0

Wmin
should be the maximum bidding price, since the min-

imum allowed consumption should be consumed apart from
the clearing price.

In this paper all types of functions expressing the relation
between the energy costs and usage are called cost function.

B. ILP
At the University of Twente a realtime control algorithm

based on cost functions is developed as part of the TRIANA
concept. This algorithm uses ILPs on a house level, where the
ILP optimizes the local devices given the energy import/export
price(s). In this methodology the energy import is modelled
as a buffering device with its own cost functions, which gives
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extra optimization options (e.g. import prices depending on
the amount of import on a house level). The corresponding
algorithm is described in detail in [4].

The TRIANA methodology has been rewritten to cope with
bidding functions. In this way the same functions can be
used for the auction and the ILP. The resulting methodology
still models the the energy import/export as a device with its
own cost functions (based on the energy price) and again an
optimization over all devices is performed. The ILP can be
seen as determining a local clearing price, only consumers
with biddings at least this price are allowed to consume and
only producers with biddings at most this price are allowed
to produce (importing energy is seen as production). The
important difference between an auction and the ILP is that
the ILP is an optimization in house and that the ILP allows
that devices with equal costs are not all supplied (e.g. in case
of limited available supply). In some circumstances not every
device that is allowed to consume or produce based on the
local clearing price actually consumes or produces. This is
for example the case, if two devices have the same price
for switching on, but given the clearing price and the local
limitation on energy import, only supply for one of the two
devices is available. This is caused by the fact that (aggregated)
bidding functions are not alway continuous, meaning that
a value between two options should be selected, which is
impossible.

C. Auction
An auction mechanism is based on cost functions expressing

bids of all consumers and all producers and based on these
functions a market clearing price is determined. This is vi-
sualized in Fig. 2. In the used implementation all consumer
cost functions and all producer cost functions are aggregated
first (on an house level) and then sent upwards. Note, that
the electricity import of the houses is not incorporated in
this aggregation. Based on the aggregated cost functions and
the preferred amount of consumption the market clearing
price is determined. This market clearing price defines which
consumers are allowed to consume and which producers are
allowed to produce, thus it defines the amount of electricity
the group of houses need to import. Therefore, this market
clearing price can be used to steer the import towards the
given objective. The resulting clearing price is distributed
and the local (house) controller can determine which devices
are supplied, similar to the case where the price is locally
determined via ILP.

D. Aggregation of cost functions
During the auction, each consumer and producer provides

a cost function. As mentioned in the previous subsection,
the functions are aggregated on different levels. Here, two
possible methods for aggregation are possible: 1) match local
production and consumption first by substracting the local
production function from the consumption function, resulting
in an overall cost function, or 2) add all production and con-
sumption functions seperately, resulting in total production and
consumption cost functions. During simulations, the second
has been used, since it is easier to implement.
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Fig. 5. Cost function aggregation example

A cost function f , as described in Section V-A, maps the
possible xd values to a unit price, i.e.

f : X ! P.

A cost function describes the consumption/production of an
device, based on a given price p 2 P . More precisely,
only consumers with a bidding at least the clearing price are
allowed to consume and only producers bidding at most the
clearing price are allowed to produce. When there are two
devices, they will both consume a certain amount of energy
given the clearing price. Aggregating two functions thus means
that the xd values have to be added, based on the clearing
price. Adding two cost functions f1 and f2 is achieved by
combining the inverse cost functions, i.e.

f1 + f2 = (f�1
1 + f

�1
2 )�1

.

An example of adding two cost functions is depicted in
Fig. 5. Here, the cost functions of two consumers are added.
From a unit price in the range [100, 75i, only f1 will switch on.
From a unit price of 75, both devices will switch on, resulting
in the shifted second line segment.

Given these aggregated consumption and production func-
tions, the clearing price can be determined. When all producers
and consumers are incorporated, the clearing price is the in-
tersection of these two functions (as shown in Figure 2). Note,
that the import from the grid is not taken into account in these
functions. This import is defined as the difference between
consumption and production for a given price. Therefore, the
clearing price corresponding to a preferred amount of import
can be determined.

E. Prediction and planning
The realtime control strategies (auction and ILP) can be

extended by prediction and planning, as described in the TRI-
ANA concept. The predictions are made on a device level, the
overall planning is determined on a global level (since a global
objective is set). Therefore, an hierarchical infrastructure from
the devices, via the house and intermediate network nodes up
to the global node is required (optionally based on the existing
grid infrastructure). Based on the device level predictions and
initial prices the consumption profile can be deducted. This
is done in a straightforward way: for every subsequent time
interval it is determined what the device would do given the
price and device state. Based on this, the next device state
can be determined and the next time interval is processed in
the same way. These consumption profiles are aggragated in
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the hierarchical structure, resulting in an overall profile in
the root node. Based on this overall profile and the given
optimization objective, new prices are determined [19]. These
prices are distributed and new profiles are deducted based
on the adjusted prices. This process is iteratively repeated
until the objective or the maximum number of iterations is
reached. In the ILP realtime control the determined prices are
used as price for exporting/importing electricity. In the auction
realtime control the determined total amount of consumption
is used as objective when the clearing price is determined on
the global level.

This methodology has a few differences with the original
TRIANA methodology. Firstly, in this implementation one
price is used for all houses. Normally different prices per
house can be used (for more information see [19]). The
advantage of multiple prices is a larger deviation: multiple
devices in different houses in (almost) the same state can
behave differently [19]. Furthermore, local grid aspects do
not thwart the overall system: (network)constraints on a lower
level (e.g. capacity of the transformer in one street) lead to
a maximum consumption on that local level. This locally
limitation on the allowed consumption results in a minimum
price. Since only a single clearing price is used, this can mean
that this minimum price is set for the whole system. In other
words, the weakest link in the network can influence the price
of the whole system. Therefore, grid aspects are not taken into
account in the scenario used for this paper.

Secondly, an optimization is used when determining the
consumption profiles. Given the prices and the prediction not
the profile based on subsequent intervals is determined, but the
best possible profile (using dynamic programming). The result
of the final planning (and thus the best profile for individual
devices) is taken into account when the cost functions are
determined. Using this strategy in the ILP+ scenario would
lead to a less fair comparison since different cost functions
would be used for the ILP+ and Auction+ strategy. Note, that
deviation from the planning (due to prediction errors) cannot
be determined in the ILP+ methodology when the planning is
not incorporated in the cost functions. The Auction+ can cope
with prediction errors since the realtime algorithm is steered
on a global level where the prediction errors can cancel each
other and more flexibility is available to steer (law of the large
numbers).

To illustrate this difference, the results section also shows
the results of the original TRIANA methodology using this
more sophisticated planning strategy and the ILP realtime
control (TRIANA).

VI. USE CASE

For the simulations, a set of 400 houses is used and a
period of one week is simulated. This use case is described
in more detail in [20]. All houses have a non-controllable
heat and electricity load and some controllable devices (PV,
battery, heat pump, washer, dryer, dishwasher, plug-in electric
vehicles). The houses only have an electricity connection (no
gas, to prevent multi-commodity auctions).

Different configurations are included in the scenario for each
controllable load. Furthermore, different demand profiles for
the houses are generated based on normal distributions per

time interval and the start times of devices are derived by
probability distribution functions of device usage are described
from which stochastic variations are derived for their start
times. Storage options and local production are identical for
each household.

Demand predictions for one day ahead (the forecast period)
can be used by the control system to make a planning. These
predictions deviate from the actual behavior of the devices
resulting in prediction (and therefore planning) errors in the
planning phase.

VII. RESULTS

The described use case was simulated using our energy
stream simulator, as described in Section IV. The same sim-
ulation tool, the same implementation of devices and cost
functions are used, resulting in a fair comparison.

The objective of the optimization in the different methodolo-
gies was to flatten the overall consumption profile. Therefore,
the reached profiles are rated on their mean and standard
deviation (mean, 3�). Furthermore, from a distribution system
operator perspective it is important to know the minimally
required network capacity, and how efficient the distribution
system is utilized. Therefore, for each profile the peak value
and the load duration curve is determined. From the load
duration curve one can easily read the maximum peak value
(the most left value). A flat load duration curve means less
fluctuations in the network and a more efficient use of the
network capacity.

In Fig. 6(a) the load duration curves of the methodologies
without planning are depicted. The corresponding mean, 3�
and maximum values are given in Table I. As can be seen
in this figure, the control methodologies have a big impact
on the resulting profiles. The ILP solution, which only uses
historical data, gives a worse result than the reference case.
Information about the current state of the devices, which is
available in the auction methodology, helps to determine the
proper clearing price values. Note, that both methodologies
steer towards a certain value, this is a prediction of the mean
electricity consumption.

TABLE I
RESULTS OF THE DIFFERENT METHODOLOGIES (IN WATT)

Method Mean 3� Max

None 332824 100% 431249 100% 726994 100%
ILP 314493 94% 689962 160% 990712 136%

Auction 305819 92% 263351 61% 503869 69%
ILP+ 310105 93% 473488 110% 949523 131%

Auction+ 308132 93% 337548 78% 575245 79%
TRIANA 329904 99% 223637 52% 511146 70%

Adding a planning step gives information about the possi-
bilities in the future. Therefore, it is expected that the ILP+

step should improve the results compared to the ILP step. As
shown in the Fig. 6(b), the results do improve. Furthermore,
the mean and standard deviation is reduced significantly (see
Table I), although the peak load still is higher than for the
reference case. This limited improvement is caused by the
limitation imposed on the planner (as discussed in Section
V-E). The limited planner also results in a worse result in the
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Fig. 6. Load duration curves

Auction+ methodology compared to the Auction, because the
Auction+ tries to achieve the result of the limited planner. In
the TRIANA methodology, better planners are used, resulting
in the overall best results even though an ILP methodology is
used for the realtime control.

VIII. DISCUSSION

The results show that making decisions based only on
historical data leads to worse results. Looking forward, i.e.
adding planning, improves the results significantly as can be
seen in the TRIANA scenario. The Auction scenario performs
remarkably good, this indicates that there is enough spreading
in the cost functions and that there is a significant amount of
flexibility to reach the goal.

The ILP+ and Auction+ scenarios perform less good than
the Auction scenario, but this is due to the limitation of the
planning algorithm. However, notable is that the Auction+

scenario sticks to the planning much better than the ILP+

scenario. This is caused by the fact that the Auction+ steers
on the planned import profile, where the ILP+ just blindly uses
the on beforehand determined prices. Therefore, the Auction+

can cope better with prediction errors.
Another advantage of planning is that it is known what

can be reached on beforehand, especially when the objective
is more complicated. Furthermore, it is easier to predict the
consumption profile on beforehand since the planner gives a
prediction of the consumption profile and the realtime control
works towards this profile (where auction performs better).

Planning improves the dependability of the methodology,
since a planning is derived only a few times a day. During the
determination of the planning communication with the central
controller is required, no communication is strictly required for
the realtime control since the houses have some information
(the planning) which can be used as fall-back. However, the
methodology of course performs better with communication
available since in this case the auction can be performed. When
the communication medium is not available for some time,
even the planning can be delayed while the houses still have
information about what to do (the planning horizon during
the planning process is longer than the period for which the
planning is carried out).

The amount of required communication also varies over
the four scenarios. In the ILP scenario, only a price signal
is distributed, the Auction scenario first aggregates the cost

functions and then spreads a price signal. Planning requires
more communication than the double-sided auction since more
iterations are run. The combination of planning and auction
requires most communication.

Future work: Thus, a good planning algorithm combined
with auction as realtime control seems to be the best solution
(i.e. TRIANA with auction as realtime control methodology).
Therefore, the TRIANA planning should be combined with
Auction as realtime control, although the planner does not
use one single price for all houses. However, to lower the
communication of the double-sided auction with planning, the
auction methodology should be altered. Instead of always do
an auction on the highest level, it first should be tried to stick to
the planning on a building level. Only when that is not feasible,
auction on a higher level in the hierarchical tree should
be performed, upto the level the planning can be reached.
Furthermore, the aggregators on the different levels should
be smarter to cope with the effect of local (grid)limitations
on the overall market clearing price. They should adapt the
aggregated cost function to the local constraints and alter the
eventual clearing price for the local situation. For example, in
the case of local constraint due to the capacity of a transformer,
the aggregator on this transformer should cut off the amount of
consumption Next, it should raise the clearing price when this
price would lead to violation of the transformer limitation.

IX. CONCLUSION

The results in this paper show that the chosen methodologies
have a severe impact on the results. It is shown that a combina-
tion of prediction, planning and an auction as realtime control
is a good solution to reach a given consumption profile for a
large group of houses. However, the auction should be altered
a bit to lower the (unnecessary) amount of communication and
to cope with local (grid) constraints.

The simulations show that auction performs much better
than ILP since more information about the current state of the
devices is available on a global level. Basing decisions only
on historical data can even lead to worse results than applying
no optimization.

Adding planning improves the results, especially in com-
bination with auction. Furthermore, the predictability of the
system improves since on beforehand a prediction of the
consumption profile is available.
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