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Controlling Smart Grid Adaptivity
Hermen A. Toersche, S. Nykamp, A. Molderink, J. L. Hurink, and G. J. M. Smit

Abstract—Methods are discussed for planning oriented smart
grid control to cope with scenarios with limited predictability,
supporting an increasing penetration of stochastic renewable
resources. The performance of these methods is evaluated with
simulations using measured wind generation and consumption
data. Forecast errors are shown to affect worst case behavior in
particular, the severity of which depends on the chosen adaptivity
strategy and error model.

Index Terms—Energy management, linear programming,
smart grids, wind energy.

I. INTRODUCTION

FACING increasing stress on the electricity grid, academia
and industry propose a smart grid paradigm, aiming to

improve the economy of the electricity supply chain by using
information and communication technology.

Current developments make the smart grid paradigm in-
creasingly attractive and make it more and more become real-
ity. On the demand side, a large scale electrification of larger
domestic appliances (a.o. heat pumps [1]) and electric vehicles
increase the electricity demand significantly—and increases
the opportunities for demand side management. On the supply
side, inflexible and variable renewable producers are emerging.
Consequently, the increased flexibility on the demand side
ought to be used to balance the flexibility decrease at the
supply side.

A pivotal aspect in exploiting the economic potential of
the smart grid is resource dispatch management, which is
the theme of this work. Common optimization objectives
include load balancing (decreasing production and transport
inefficiencies) and dynamic pricing exploitation. Literature
has proposed several management strategies, showing sub-
stantial improvements over passive control (Section II). The
“TRIANA” approach developed at the University of Twente
(Section II-B4) complements these approaches with spatial
hierarchical planning. The fitness of this approach has been
illustrated before [2], [3], [4].

To exploit the available flexibility within the system, a
forecast of future system constraints is needed, i.e. expected
supply and demand. Next to being variable over time, the total
supply and demand are both also hard to predict precisely.
Discrepancies between the projected and realized behavior are
inevitable and can result in problems. This paper addresses this
issue in the context of TRIANA. For the use cases considered
so far, these problems could be safely ignored. Projected cases
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with more volatile conditions—already existent in parts of the
US [5]—do not permit this abstraction.

We propose to extend the planning oriented approach to
accommodate more dynamic environments, aiming to improve
the following aspects of TRIANA:
• Economy: Tighten acceptable safety margins and exploit

better-than-expected circumstances.
• Scope: Support scenarios which particularly benefit from

or depend on dynamic response, including (dynamic) real
time pricing and demand response.

• Dependability: Increase the ability to circumvent prob-
lems using local and collective flexibility.

In this paper, we introduce the general concepts towards
adaptive smart grid control. These are illustrated and partially
validated in an economy-oriented context. For the sake of
brevity and completeness, a full treatment of the latter two
aspects is deferred.

We first provide an overview of the background of the
problem (Section II). Subsequently, we explain the need for
adaptivity and its aptness in contexts with variable uncertainty
(Section III), followed by a discussion on strategies for realiz-
ing a tractable solution for the problem (Section IV). These are
evaluated using simulations (Section V). We close with con-
clusions and recommendations for future work (Section VI).

II. BACKGROUND

In this section, we first reiterate the smart grid context (Sec-
tion II-A), followed by an overview of the control approaches
presented in related work (Section II-B).

A. Context

As stated in Section I, smart grid refers to novel abilities
to monitor and control the electricity supply and demand.
It is furthermore associated with several accessory resource
and context changes. Some of these changes are material to
this work and are treated here. A more complete overview is
provided in literature, see [6].

1) Supply: Renewable resources commonly have limited
production adaptation flexibility. Natural causes make solar
and wind conditions subject to variability, translating to a
variability in electricity production. This leads to serious
infrastructure problems. In Germany the frequency of con-
gestion incidents, where large renewable energy producers
are contracted to reduce their infeed with conservation of
payment to avoid imbalance problems in the transmission and
distribution grid, is increasing [7].

Furthermore, for the renewable resources, production pro-
file predictions are not perfect, as these depend on weather
forecasts. While generally the accuracy of these is reasonably
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good [8], substantial outliers with poor predictability do occur
[9]. The resulting uncertainty needs to be accounted for. The
current market design affords an increase of the capacity of
swift response generation facilities, i.e. gas plants. However,
due to a low number of operating hours, the profitability of
these plants is questionable leading to investment restraints of
market participants [10].

2) Demand: Demand side control offers ample flexibility
opportunities. Because (retrofit) smart appliances are required,
this is presently only extensively used beyond trials for large
industrial loads. Three appliance classes are covered exten-
sively in literature: thermal systems, batch job appliances and
electric vehicles (EV).

In this work, we abstract from demand side management,
i.e. it is regarded as a potential implementation of storage.
Furthermore, we approximate that the demand side is fully
predictable based on the law of large numbers. All relevant
nondeterminism is imposed by the supply side.

3) Storage: To offset unanticipated and anticipated de-
viations, buffering is needed. Demand and supply response
provide this feature implicitly. In addition explicit storage is
considered, involving a tradeoff between capacity, efficiency
(instantaneous and over time), electricity market conditions
and capital costs.

Abstaining from going into the details of specific technolo-
gies, we presume economical efficient large scale electricity
storage to be infeasible at present. Storage should therefore be
economized.

4) Pricing: Electricity suppliers (and markets) use variable
tariff structures to avoid being penalized for occurring im-
balances in demand and supply. Various schemes have been
proposed with an increasing degree of sophistication, ranging
from Time of Use (TOU) pricing to real time pricing and
critical peak pricing, incurring severe penalties for (excess)
on-peak consumption. These have already been implemented
in parts of the US [5].

The trend observed in these programs is that technology
improvements enable electricity price volatility to be shifted
to the end users and shifted forward in time. This means that
financial benefits can be attained by revising behavior as cost
expectations change.

5) Dependability: Electricity prices are irrelevant when the
supply fails. The disconnection of mission critical loads causes
substantial economic damage in the US and in developing
countries [11], [12]. Furthermore, in numerous applications in-
termittence results in disproportionate losses. Therefore some
(incentive-reinforced) altruism in maintaining grid stability
seems prudent.

In practice, critical facilities are protected with emergency
power supply hardware (UPS and diesel generators)—at sub-
stantial cost. As an alternative, literature proposes to establish
microgrids, reusing distributed energy resources (DER) for
dependability purposes. This approach promotes economy of
scale and increases flexibility [13]. To exploit this flexibility
effectively, appropriate adaptive control ought to be employed.

B. Control
After defining which resources are (to be) available in

a smart grid, the next concern is defining how to direct
these. In the past, technical constraints limited control to a
small number of large producers and industrial loads. With
decreasing hardware costs, interest is shifting to residential
loads, and in particular to the large household appliances.
Consequentially, as the optimization problem size increases
by orders of magnitude, scalable scheduling techniques need
to be devised.

In the following, we provide a brief overview of established
approaches for smart grid control problems, referring to litera-
ture for a more complete review [14]. We subsequently present
our approach, contrasting it to related work and positioning it
in this work.

1) Transactive Control: The transactive control paradigm
proposes to schedule resources using an interactive electric-
ity double-auction procedure [15], [16]. Distributed software
agents place demand and supply bids on a market where the
equilibrium price for electricity is determined by an auctioneer.
Bidding functions express the local control option desirability.

While being scalable and capable of swift contingency
response, assuming that communication is available or can
be substituted, the distributed architecture makes it difficult
to exclude emergent behavior completely [17]. Transactive
control provides load balancing in the spatial dimension and
employs a heuristic approach in the temporal dimension, which
is encoded in the appliance cost functions. Great attention must
therefore be paid to the cost function design and analysis of
their interaction in the target context to ensure that the desired
behavior is attained for minimizing the global objective.

2) Model Predictive Control: Various groups are studying
the unit commitment and the economic dispatch problem, and
formulate it as a mathematical optimization problem which
can be solved with general techniques.

Control actions affect the state of the system, and should
therefore be considered not only in the light of the instan-
taneous consequences, but also of the effective change in
state. In the smart grid control problem, comfort and economy
reasons dictate that the local state is to be observed in
particular. Considering this, several authors propose to apply
Model Predictive Control (MPC), evaluating the immediate and
indirect outcome of control actions, typically using a Mixed
Integer Linear Programming (MILP) optimization approach.

In a real time constrained context, MPC introduces sev-
eral issues. The computational intensity of the optimization
problem grows (in the worst case) exponentially both with
control variables and horizon length. This means that, in
order to provide timely results, MPC is typically used with
a shallow horizon and a small number of control options.
Furthermore, in a distributed context, monolithic concurrent
optimization is not feasible. The approach to offset this is to
partition and solve MPC problems independently (hierarchical
and distributed MPC), for example using pricing based schemes
to decouple the subproblems. When price elasticity is too
high, this introduces issues. Although good results have been
reported in many practical scenarios, performance and stability
guarantees are mostly missing [18].
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Fig. 1. Three step methodology TRIANA.

3) Stochastic MPC: The need to account for resource
behavior uncertainty (disturbances) in a predictive setting
beyond reevaluation (i.e. closed loop control) has earlier been
identified and addressed in the context of the work on MPC.
An approach proposed in literature is to incorporate likelihood
information in the MPC procedure itself. Rather than deriving
the expectation of the input variables, it has been proposed to
optimize on the expectation of the cost function, which is hard
to express directly in practical cases. A procedure to approxi-
mate the latter with randomized realizations has been defined
[19] and applied to a (small) energy scheduling problem [20].
As this procedure further aggravates the computational burden
(exponentially), it was found that only small problems with
short horizon lengths can effectively be tackled. Scalability is
left as an open research problem.

4) Distributed, Planned Control: To enable the optimiza-
tion of the schedule of a fleet of (in particular large domestic)
flexible appliances in a scalable manner, the domain specific
optimization framework for smart grids “TRIANA” has been
developed at the University of Twente over the last half decade
(Fig. 1) [2], [3]. The main differentiating feature of this work
is that it makes and maintains an explicit electricity profile
planning in advance.

The TRIANA framework is modular with respect to ap-
plication scenarios and optimization objectives. The software
associated with the optimization framework provides a graph-
ical user interface to construct simulation scenarios with a
standardized representation (Fig. 2). As a result, a multitude of
use cases can be and have been covered, including microCHP
virtual power plant production scheduling and various demand
response scenarios.

The TRIANA approach partitions the smart grid optimization
problem into three steps:

• Forecasting: Assess the energy demand and other sys-
tem parameters for the coming period at an appliance
granularity [21].

• Planning: Determine a dispatch schedule based on the
distributed system forecast [22].

• Control: Dispatch the resources (in real time), following
the dispatch schedule or a local cost optimization [2].

electricity
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...
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house
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converting
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Fig. 2. Example of a TRIANA house model.

The TRIANA approach has several benefits:
• Limited communication: Communication is optional.

It is desirable to establish a planning periodically (e.g.
once per day), but there is no absolute reliance on real
time communication. In emergencies a fail safe alterna-
tive may be followed.

• Predictability: The electricity profile is established in
advance, improving predictability and enabling day-ahead
electricity market trade.

Disadvantages include the computational burden of the in-
duced large scale planning problem and the limited adaptivity
in the presence of disturbances. This work proposes to rectify
the latter at the cost of increasing communication and compu-
tation overhead while retaining communication fault tolerance
and predictability.

In this work, we focus on determining the impact of forecast
errors when using planning with real time control. Scalability
and distribution concerns are only addressed from a conceptual
point of view in this paper.

III. RATIONALE FOR ADAPTIVITY

Planning mismatch can in many cases be desirable or even
be inevitable. In this section, we discuss these circumstances.

A. Volatile Objectives

On advanced electricity markets (Section II-A4), prices are
determined in real time (as opposed to static or day-ahead
time of use pricing). Under the assumption that the optimiza-
tion objective depends on the clearing price, it is useful to
incorporate updated information as it becomes available.

This applies in particular when large differences occur
between expected and actual electricity prices. Several US grid
operators already issue emergency response requests on critical
summer days to shed air conditioning loads, incentivized with
grave price penalties [5]. A planner with adaptivity in mind
can make preparations for such (anticipated) events and act
upon them.

Although real time pricing is the prime considered applica-
tion in this context, objective volatility is a generic concept.
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For example, it becomes useless to operate a light when all
residents leave. In the context of the scenario considered in
Section V, the objective is static.

B. Mismatch Response for Minor Deviations

Device models are not perfect. The physical variability
of appliances and operating conditions as well as modeling
abstractions result in differences between the estimated and
the actual system behavior. We assume that the power con-
sumption difference is typically relatively small and can be
averaged out with increasing scale.

Perturbations do build up over time, affecting local state in
particular. The TRIANA approach currently assumes that the
system state mismatch is reasonably small and can be met
with buffer safety margins. This mostly implies that either
the planning horizon is limited or the safety margins are
overdimensioned (dictated by the magnitude of uncertainty).

With adaptivity, these disadvantages of planning may be
reduced. Device behavior can be adapted to mitigate these
deviations. Furthermore, if the performance is better than
anticipated, we may exploit this to improve on the objective.

C. Mismatch Response for Major Deviations

Some resources inherently have a high degree of unpre-
dictability (a.o. Section II-A1). While this may be offset with
ample storage, economy and efficiency considerations lead to a
preference of adapting the system schedule with more accurate
forecast information.

With the availability of ample storage, improved scheduling
using updated information can still allow for better use of the
available resources.

D. Volatile Constraints

In the US as well as in developing countries, power infras-
tructure problems and (resulting) failures are quite common.
Failure is probable during disasters and peak demand (and
supply) events. The latter becomes an immediate problem
when inadequate safety margins are maintained or insufficient
capacity is available altogether.

More generally, power infrastructure faults can be regarded
as a stochastic process which reconfigures the topology of
the power infrastructure. Consequently, the constraints on
the application of the resources in the grid are subject to
change. Substantial changes substantially affect the operating
environment and therefore demand adapted behavior.

Resource degradation can occur gradually over time or
instantaneously. When this is known in advance (including the
extent over time), this can still be accommodated in a static
planning. Otherwise, in a (highly) nondeterministic context, it
is not realistic to expect a planning to cover every possible
outcome. A lack of perspective on the actual outcome during
the planning phase will result in overly pessimistic resource
utilization, a demand for excessive storage facilities or failure
due to resource exhaustion (or a combination thereof).

This naturally leads to an approach where (final) decisions
are postponed to allow the most recent information to be

exploited. This does not mean that planning has no value
and should not be done. A planning can still accommodate
the (approximate) most probable outcomes, or prepare for
contingencies under consideration of expectations. Balancing
between these is a matter of assigning weights to objectives.

Based on an updated forecast, one may discover that the
current schedule becomes unattainable in the (near) future and
that it is not possible to avoid failure. Rather than waiting for
the failure to occur, one may opt to degrade preemptively in
order to mitigate its impact. For example, a battery resource
can be spared to serve important loads.

IV. TOWARDS ADAPTIVE CONTROL

In a nonideal environment, discrepancies persist between
planning and reality. Under favorable circumstances these
can be effectively masked with buffer margins, abstracting
undesired behavior.

Accepting reduced predictability, the latter approach be-
comes ineconomical. Better techniques should therefore be
considered and evaluated. We shortly present a more elaborate
vision on coping with these disparities in the future. More
specifically, we consider techniques which may be described as
adaptive control. By swift diversion from the planned behavior
without full replanning, rapid response to changing conditions
may lead to improvements on the objective.

A. Planning State Interception

As the planning detoriates over time with respect to the real
system state, corrective action is demanded. Behavior could
be adapted to return to the predestined state. The flexibility
for correcting the state can be sourced both locally or in the
near vicinity, violating the planning of the affected devices.
Selecting the devices to affect, one may prefer devices which
are easy to replan.

Exhausting the flexibility of neighboring systems, the option
should be available to request an upstream electricity profile
change to be effectuated to realign the local state. In the
context of the conventional grid, this option is always offered
implicitly and is exerted continuously—flexibility is adminis-
tered centrally.

B. Planning State Adaptation

Alternatively, the planned schedule could be adapted to
reflect the predestined behavior. This means that the antici-
pated state should be revised. The flexibility for correcting
the behavior can be sourced both locally or in the near
vicinity, violating the planning of the affected devices. When
the flexibility of (a subset of) the local state is exhausted, one
must mend this provisionally or perform replanning.

The subtle difference between these two approaches, plan-
ning state interception and adaptation, should be observed. The
former aims to conserve the state assumed during planning,
while the latter aims to conserve planned behavior.

This corresponds to a difference in perspective with respect
to attaining objectives. The former has the goal to retain
continuity in the long run at the expense of accepting a
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performance penalty in the present. The latter has the goal
to evade actions which immediately detriment the objective
while accepting state deviations in the planning.

Based on these characteristics, we expect that the intercep-
tion approach will be benefited in particular by interactive
cooperation, which increases the rescheduling flexibility. The
adaptation approach should particularly benefit from replan-
ning, repairing mismatch before it becomes problematic.

C. Planning Defection

At a certain point in time one may, either predictively or
instantaneously, observe that the planning is or will become
infeasible. A simple strategy to work around such situations
is to drop the planning and continue without it for some time,
avoiding planning induced problems. The disadvantage is that
an unplanned control strategy is needed, which preferentially
should be reasonably good. One should ensure that this
strategy is not triggered unnecessarily to retain average case
characteristics.

D. Predictive Replanning

A planning must be completed before it is brought into
effect. Consequently, ample time should be alotted in advance
to allow for proper evaluation. While this can be facilely
accomplished for scheduled replannings, failure of physics to
yield to the forecast can render the current schedule void,
demanding reconsideration.

A replanning can be arranged up front when problems are
foreseeable (and foreseen), providing opportunity for proper
planning. Multiple outcomes may be considered with separate
plannings to accommodate uncertainty. Definite commitment
to any of these plans can be postponed to the instant of
execution.

E. Coarse Planning

Failing to anticipate the necessity of diversion in a timely
manner, one is forced to invent a substitute swiftly. Before
resorting to context-oblivious control approaches, a fall back to
rapid planning methods is preferred, presumably at the expense
of accuracy. The latter can be made up with subsequent
replanning.

A large part of the provisional planning should never be
put to purpose, serving merely to estimate the future behavior
and state. Therefore, accuracy of this part can be sacrificed
with limited impact. For instance, the temporal granularity
may be decreased. As the complexity of solving an opti-
mization problem typically grows superlinearly (and often
even exponentially) with problem size, substantial reductions
of computational effort can be attained while retaining its
principal anticipatory advantage.

V. RENEWABLE GENERATION SCENARIO

To demonstrate the potential benefits of adaptivity quanti-
tatively, we demonstrate the problems arising from the use of
a representative set of basic adaptation strategies. We do this
using a wind production scenario, coupled with a large load
and centralized storage.
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(a) Transmission load by annual average wind contribution, no storage.
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(b) Transmission load by storage dimension, 50% wind contribution, using
(near) optimal planning. Only the most significant (worst case) part is shown.

Fig. 3. Load duration curves used to determine system parameters.

A. Scenario Definition

We use measurement data from a wind turbine situated in
Germany of 2010, provided by RWE. The generator has a
nominal capacity of 1.8 MW and shows an annual yield of
17.1% in this data set.

The grid operator is incentivized to increase efficiency
by minimizing transport losses and decreasing the needed
medium voltage transmission capacity. To this end, electricity
should be consumed locally where and when it is produced.
We assume that the wind park is located near to a resi-
dential load center with a suitable load dimension. Several
wind contribution dimension choices are evaluated in Fig. 3a,
demonstrating that wind generation can help reducing the
average case load but does not aid in reducing the demand
peak load. We choose a 50% annual local wind contribution
(Pwind = 307.8 kW → P load = 615.6 kW), because this
matches the demand and the infeed peak.

Near to the load and the wind turbine, a lossless storage
facility is introduced with no transport losses and bounded
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Fig. 4. Load curves under worst case wind supply conditions. Note the
24-hour demand pattern which is visible in ‘¬S’.

capacity. The optimization goal is to use the storage to
minimize the peak transmission load (|Pup|).

More formally, the problem can be stated as follows:
τ Time interval length := 900 s
n Number of time intervals := 35040
T Time interval indexes := {0 . . . n− 1}
T ′ T ∪ {−1} (initial state)
H Entities := {wind, load, bat, up}
Hs Storage entities (⊆ H) := {bat}
Ph(t) Electricity flow rate to/from h ∈ H at t ∈ T ′
Sh(t) State of Charge of h ∈ Hs at t ∈ T ′
Smax
h Maximum State of Charge of h ∈ Hs

ε � 1 (improve average-case behavior)

Minimize:

max
t∈T
|Pup(t)|+ ε ·

∑
t∈T
|Pup(t)| (1)

Subject to:∑
h∈H Ph(t) = 0 ∀t ∈ T (2)

Sh(t) = Sh(t− 1) + Ph(t− 1) · τ ∀t, h ∈ T ×Hs (3)
0 ≤ Sh(t) ≤ Smax

h ∀t, h ∈ T ′ ×Hs (4)

Simulations are performed using AIMMS, employing CPLEX
for linear programming. As a compromise between computa-
tion time and accuracy, an execution window of 48 (12 hours)
and a planning window of 192 (2 days) are respectively used.
This was found to be 0.13% worse than the full-year optimum
for the baseline scenario.

Subsequently, a sensible value for Smax
bat is determined.

Fig. 3b presents the load duration curves under (near) optimal
control for several options. The graph suggests Smax

bat =
4000 kWh as a sensible choice, approaching saturation. We
observe that the time of the peak remains approximately
constant (Fig. 4). Investigation shows that windstorm ‘Carmen’
caused this peak around November 12th, 2010 [23].
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Fig. 5. Load duration curves per adaptive control strategy under several
error models. Note that only the most significant (worst case) part is shown.

B. Forecast Error Injection

Next, a prediction error is introduced. After planning based
on a variant of (1) incorporating the forecast error, the ex-
ecution window is committed based on the actual profile,
using an adaptive policy. We consider the following wind
forecast error models: no error (./), the persistence model
(←1; Section II-A1), relative overestimation (↑x%) and relative
underestimation (↓x%). We suppose x = 10%; the mean
absolute error of ←1 in the data set is 9%. For reference,
we also show Sbat = 0 (labeled ¬S).

The policies considered are planning state interception and
adaptation (Section IV). In this scenario this translates to using
transmission and storage to cope with misprediction when
possible, respectively. The results are presented in Fig. 5 and
will shortly be discussed in more detail.

C. Simulation Results

For planning state interception (Fig. 5a), production over-
estimation leads to a notable peak increase. The explanation
found for this is that the planner underestimates its (negative)
peak shaving capability. An even higher peak originates from
persistence model forecast errors. Furthermore, these occur at
times where there is ample storage capacity left to avoid them.
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Fig. 6. Load duration curves of planning state adaptation for ↑10% and ↓10%
by execution window length. Note that only the worst case part is shown.

In this case, this is caused both by unanticipated transitions
from near-absent to near-full wind production and vice versa.
In the case of production underestimation, peak demand is
almost equal to the (near) optimum. For the shown part, per-
formance appears to be slightly better due to an optimization
goal definition issue in the ε term: it is indifferent to where
behavior is improved.

For planning state adaptation (Fig. 5b), both production
overestimation and underestimation lead to a substantial in-
crease of the peak upstream load. In both cases, the peak is
observed at the upper buffer bound. For overestimation, the
buffer is employed to instantiate the predicted peak condition.
For underestimation, it can be attributed to premature buffer
capacity exhaustion. The peak increase resulting from the
persistence error model is marginal, because the integral
production is forecasted accurately.

The results in Fig. 5b suggest that more frequent replanning
may decrease the planning mismatch, which is explored in
Fig. 6. These results show that for overestimation, the peak
is maintained at small window lengths, because the afore-
mentioned problem persists. For underestimation, buffer state
reconsideration substantially improves performance at small
window lengths. These are however highly impractical due to
computation and communication limitations.

D. Evaluation

We find that a suitably sized residential load can substan-
tially reduce the infeed peaks induced by a wind generator.
This is particularly by virtue of its base load (42% of average
load over the year and 46% in the week with the worst mis-
match in our data set). The converse is not true, as large wind
production does not incline to coincide with large demand.
In the average case, absolute transmission load reductions are
demonstrated to be feasible.

Up to a saturation point, storage can aid substantially to
decrease peak load. It must however be observed that proper
control is imperative. Improperly controlled storage is shown
to be capable of aggravating load peaks.

Forecast errors matter in the worst case and must be
accommodated with an appropriate adaptive control strategy.
Appropriateness is however error mode dependent. The sim-
ulation results clearly suggest a duality between planning
state interception and adaptation, accomodating distinct cir-
cumstances. To reach a satisfying solution, a balance should
be struck between these extremities, meeting both immediate
and forthcoming needs.

VI. CONCLUSION

This work demonstrates that, to exploit the potential of
planned smart grid control in a realistic context, the possible
impact of forecast errors on grid resources can be of significant
order and therefore that forecast errors must be accommodated
adequately. We show the following points:
• Planned use of smart grid resources can contribute to a

significant reduction in power infrastructure load, both in
the peak as well as in the average case.

• Under a realistic forecast error model, these errors affect
worst case conditions in particular.

• Control strategies exhibit different error mode behavior,
depending on the error model.

However, before this work can effectively be incorporated into
TRIANA, several important aspects ought to be accounted for
in subsequent work.

A. Future Work

We abstracted from the distributed context in this work,
concerning ourselves with transmission rather than distribution
problems. Also, several optimistic assumptions have been
made regarding the storage resource. These issues should be
addressed in the future.

Next to investigating adaptive control policies, the consider-
ation of adaptivity in the planning (cost function) itself should
be evaluated, using techniques related to stochastic MPC to
manage prediction errors.

In the simulations performed in this work, we assume that
it is possible to make a reasonably accurate forecast of the
electricity profile. It would be interesting to investigate what
happens when this assumption is wrong, and at what point a
strategy which does not rely on a prediction exhibits better
performance.
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