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Abstract — This paper describes preliminary findings of 

research on the use of Distributed Energy Storage devices for 

Renewable Energy integration. The primary objective is to 

describe the effect of different storage scheduling strategies, and 

namely the benefits from intraday intraday scheduling on the 

storage performance in renewable energy integration. Optimal 

schedules of Distributed Energy Storage devices are based on 

forecasts of Renewable Energy production, local consumption 

and prices, along with other criteria. These forecasts tend to 

have a higher uncertainty for higher time horizons, resulting in 

losses due to errors and to the underutilization of the assets. The 

use of frequent schedules updates can reduce part of these 

drawbacks and this paper aims at quantifying this reduction. 

The importance of the quantification of the benefits arising from 

different rescheduling frequencies lies in its influence on the ICT 

infrastructure necessary to implement it and its cost. 

Index Terms – Energy storage, Solar power generation, 

Forecasting 

I. INTRODUCTION 

The objective of this paper is to describe the effect of 
different Distributed Energy Storage (DES) schedule update 
frequencies on their performance in renewable energy 
integration. DES optimal schedules are based on forecasts of 
Renewable Energy (RE) production, local consumption and 
prices, along with other criteria. Forecasts are used as input in 
an optimisation process aiming at minimizing the DES 
operating cost function taking into account the financial gain 
of the storage, the achievement of technical objectives or both. 
The forecasts tend to have a growing uncertainty for higher 
time horizons, resulting in losses due to errors and to the 
underutilization of the assets. High uncertainties can be 
associated to false alerts and missed alerts, and the necessity to 
maintain a determined risk appetite will result in a reduced 
utilization of the storage capacity. The use of frequent 
schedules updates can reduce part of these drawbacks i) by 
reducing the forecasts uncertainty, ii) by allowing corrective 
actions to be taken in case of false or missed alerts and iii) to 
take into account the possibility of corrections to the schedule 

in the optimisation phase of each plan. In real world 
applications a higher rescheduling frequency needs of a 
different and in general more complex and expensive ICT 
infrastructure to be implemented. Therefore, the quantification 
of the benefits is important in a cost benefit analysis. The 
frequency of updates and the type of intelligence necessary to 
calculate the optimal schedules, along with the size of the 
battery are also important in the determination of the 
centralised or decentralised architecture of the control. 

It must be noted though, that this paper does not aim at 
identifying the optimal operating schedule frequency update, 
which would depend on particular conditions and on the 
particular optimisation criteria used, but to illustrate and 
quantify the effect of schedule update frequencies. 

A. State of the art 

The interest in the use of storage for grid applications is 
growing, because of its potential for facilitating renewable 
energy integration and thanks to innovations in the field of 
storage technologies [1]. An advantage of DES over large, 
transmission connected storage facilities such as traditional 
pumped hydro is that they can be used both for helping the 
load-generation balance and for solving network congestion 
problems, since the location is not dependent on particular site 
characteristics [2]. 

Because of the dynamic nature of the problem and the 
relatively high cost of the storage, the use of DES is usually 
associated with the definition of a schedule considering prices, 
load or renewable production forecasts, and the eventual 
constraint violations on the network. At the microgrid level, 
this is shown clearly in [3], where a DES is used for reducing 
the effects of the uncertainty in the production of a local wind 
farm. The study does not consider power flows constraints 
within the microgrid but is focused on the comparison of 
different optimisation criteria and methods. In this work, 
forecasts of wind power production, loads and prices are used 
for scheduling the storage and the controllable loads. Another 
example can be found in [4], where the authors propose short 



term (hour ahead) and very short (five minutes ahead) term 
rescheduling of the original day ahead plan, in order to reduce 
the operation cost of the grid reducing the effect of forecast 
errors. The time constraints of the very short time 
rescheduling are met with the use of a genetic algorithm based 
optimisation approach, with the solution validated thanks to a 
power flow. 

A similar problem is faced also in [5] and [6]. In the first 
paper, a fuzzy logic expert system is used with 24 hours ahead 
photovoltaic production forecasts and one hour ahead wind 
production forecasts. Also in this case the use of intraday 
rescheduling was proven to reduce considerably the 
microgrid’s operational cost. In the second, a deterministic 
and a stochastic optimisation algorithm are compared, 
showing a slightly better performance for the stochastic 
algorithm. Moreover, the work compares different 
rescheduling frequencies in order to quantify the reduction in 
operating cost related to the uncertainty reduction. For the 
system considered, an hourly rescheduling can reduce the 
average replacement reserve of about the 25% respect to a six 
hour rescheduling, but unfortunately no information is given 
on lower rescheduling frequencies. The authors consider also 
part of this reduction caused by simplifications in modelling 
the problem. 

The use of intraday rescheduling is attractive considering 
the presence of forecast errors and the possibility of reducing 
their impact with the use of more recent forecasts or more 
recent information from the network. An example of such a 
network management approach is described in [7], where a 
multi-timescale scheduling approach is developed and applied 
to a grid with high wind power penetration. The work shows 
that the multi-timescale approach can reduce the per-unit 
generation cost by reducing the dispatch of fast start 
generation. 

B. Structure of the paper 

This paper is structures in the following order: in section 
II, the models used for the forecasts and the batteries are 
described, along with the procedure use for schedules 
calculations. In section III the simulation results are presented, 
after a description of the data used as inputs and finally in 
section IV conclusions are drawn. 

II. MODELLING 

A. Forecasts 

In this paper, PV production distribution forecasts are 
obtained using the Quantile Regression Forest (QRF) 
algorithm [8]. The QRF algorithm estimates the whole 
cumulative distribution function of the production, then 
allowing deriving the desired quantiles all at once. Such 
estimation is made conditionally to the projected surface 
global solar irradiation at the level of the solar plant. For the 
model, solar irradiation solar irradiation numerical weather 
predictions from the European Centre for Medium-Range 
Weather Forecasts are used, along with measures of effective 
production from the observed PV plant [9] are used as inputs. 

The numerical weather predictions used are available with 
a three hour resolution and they have been interpolated in 
order to obtain the half hour resolution requested for this 

work. The measurements of PV production are available with 
a resolution of fifteen minutes, and for the same reason, they 
have been averaged in order to obtain the necessary half hour 
resolution. 

B. Battery schedule optimisation 

The objective of the battery schedule optimisation 
algorithm is to minimise the cost associated to the exploitation 
of the battery. For a complete schedule of the battery 
PLAN = [P1, ..., PT], with Pi being the power charged or 
discharged by the battery at time i, the overall cost can be 
calculated as the sum of three main components, as proposed 
in [3] and reported in Equation (1). 

 C(PLAN)=Csource + Closs+ Caging (1) 

where, CSource represents the cost of importing/exporting 
power from/to the main grid, Closs represents the cost 
associated to the losses in the inverter and the efficiency in the 
charge/discharge of the battery and Clol represents the cost of 
the loss of life of the battery. 

The sourcing cost Csource depends on the price Pr of 
electricity. In this study, the residential day-night tariff applied 
in the region of Nice is chosen. The cost is calculated both in 
the charge and discharge phase, where in the second case, it 
represents a profit for the battery as reported in Equation (2). 

 Csource = Σh (Ph · Prh) (2) 

The cost Closs associated to the losses in the inverter and in 
the electrochemical reactions of the battery, is calculated 

considering an overall charge/discharge efficiency eff  [0,1], 
as shown in Equation (3). 

 𝐶𝑙𝑜𝑠𝑠  =     𝑒𝑓𝑓  ·  𝑎𝑏𝑠(𝐶𝑠𝑜𝑢𝑟𝑐𝑒 ,ℎ) ℎ  (3) 

The cost Clol is relative to the ageing of the battery caused 
by the charge and discharge cycle. The ageing mechanism is 
particularly complex, strongly dependent on the Depth of 
Discharge (DOD) during the discharge, and is described in 
detail in [10]. In this work, the effect of the temperature is not 
taken into account and it is considered that the ageing speed 

increases of a value x  [1,2], at each doubling of the DOD. 
It is assumed also that the maximum number nCycles of full 
cycles (DOD = 100%) that the battery can withstand is known. 
With these assumptions the cost Caging can be calculated as 
shown in Equation (4), where BC [€] is the initial cost of the 
battery. The sum on negative DOD is done to take into 
account that the irreversible reactions contributing to the aging 
of the battery occur in the discharge phase of the cycle. 

 Caging = Σh (-min(0,DODh)) · BC / nCycles (4) 

In this study, a gradient-descend optimisation algorithm 
has been used for minimising the cost function reported in (1). 
The algorithm, as shown in Equation (5) minimises the sum 
over the whole period T of the cost for the single horizon h 
calculated as in Equation (1), subject to the constraints 
reported in Equation (6) and Equation (7) and returning the 
optimal battery schedule. 

 PLANopt = argmin(Σh(Ch(PLAN))) (5) 

 Pdh ≤ Ph ≤ Pch (6) 

 SOCmin ≤ SOCh ≤ SOCmax (7) 



 SOCh = SOC0 + Σi=1,h (Pi dt/Bcap) (8) 

Where: Ph [kW], is the power exported or absorbed by the 
battery at horizon h, SOCh, is the state of charge of the battery 
at horizon h, calculated as in Equation (8) Pdh, Pch [kW], are 
respectively the maximum charge and discharge power of the 
battery that can change in relation to the situation of the 
network at horizon h, SOCmin, SOCmax, are respectively the 
minimum and maximum allowable state of charge of the 
battery and Bcap [kWh] is the capacity of the battery. 

C. Battery PV integration 

Central to the definition of the problem is the relation 

between the PV plant and the battery. The system considered 

in this paper is composed by two different entities, where the 

battery offers a service to the PV producer on a day ahead 

contract. In this study it is assumed that the export capacity of 

the PV producer is limited to a threshold thr equivalent to the 

50% of the peak rating of the PV plant and the exceeding 

power is either stored in the battery, or not produced. The 

mechanism is described below: 

 

1) An initial optimal schedule for the battery PLAN(0) is 

calculated by solving the optimisation problem described in 

(7-9) without considering network constraints in Equation 

(8). 

2) For each quantile α of the probabilistic forecasts an 

array of flexibility needed FLEX = [F1, ..., FT] is calculated 

as described in (9). Negative velues represent energy that 

must be absorbed by the battery, whilst positive values 

represent the maximum discharge allowed to the battery. 

 Fh(α) = thr - qt+h|t(α) (9) 

3) The corresponding battery schedule PLAN(α) is 

calculated solving the optimisation problems described in (5-

7), imposing the flexibility FLEX(α) as the minimum (in 

absolute value) discharge power of the battery, as reported in 

(10), where the maximum discharge capacity of the battery 

Pd is also taken into account. If the total amount of energy of 

the flexibility demanded is greater than the capacity of the 

battery, a correction factor is calculated and applied to the 

flexibility request. The cost associated with the plan C(α) is 

calculated as the difference between the cost of the schedule 

PLAN(α) and the schedule PLAN(0), as described in (11) 

 Pdh = min(Fh(α),Pd) (10) 

 C(α) = C(PLAN(α)) – C(PLAN(0)) (11) 

The expected profit EPPV for the PV associated to the 

flexibility FLEX(h,α) is calculated as described in (12). 

 EPPV(α) = -Σh(min(0, Fh(α)) · Prh)   (1-α) (12) 

4) The expected profit for the system EPSYS is then 

calculated as the difference between the expected profit 

EPPV(α) and the disoptimisation cost of the battery C(α). 

5) The steps 2-4 are then repeated for each quantile of the 

forecasts and finally the quantile αopt corresponding to the 

maximum expected profit for the system is identified, along 

with the optimal schedule PLAN(αopt). 

6) The effective profit for the PV TPPV is then calculated 

as in Equation (12), by considering the effective measured 

PV production Y instead of the forecasted production 

qt+h|t(αopt). 

 

A visual representation of the process described is 

presented in Figure 1. 

 

Figure 1. Cost benefit analysis of the flexibility requested at different 
forecast quantiles 

III. SIMULATIONS 

A. Case-study 

This section describes the data used in this work, in 
particular the data relative to DES characteristics, photovoltaic 
production and electricity prices. 

Regarding the DES, a lithium-ion battery with a storage 
capacity of 100 kWh has been considered in this work. The 
maximum discharge power has been fixed at 150 kW and the 
maximum charge power at 50 kW. This is to take into account 
the fact that usually the maximum charge speed of batteries is 
slower than the maximum speed of discharge, and their ratio, 
in Li-ion batteries, is about 1/3rd. A summary of the 
parameters used in the battery model is reported in TABLE I. 

TABLE I. SUMMARY OF BATTERY PARAMETERS 

Parameter Dimension Value 

Charge power kW 50 

Discharge power kW 150 

Storage capacity kWh 100 

Charge-discharge losses % 5 

Battery life n° of cycles 5000 

Cost €/kWh 1000 

 

Regarding photovoltaic production, the data obtained from 
[10] have been used. They consist of a continuous time series 
covering the period from March 2010 to December 2011 with 
a temporal resolution of 30 minutes. The production data do 
not present irregularities due to particular orientations or 
shadowing and can be considered as representative of typical 
PV plants, with a daily bell shaped curve and a production 
lower in winter than in summer. Regarding the electricity 
prices used in the DES optimisation algorithm and to evaluate 
the financial benefits of the intra-day rescheduling, the 
wholesale electricity prices for the French market have been 
used. The data are made of a time series covering the period 
from January 2010 and December 2011 with hourly values. 
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The data are described in Figure 2 and Figure 3, where the 
distribution of the production and of electricity prices is shown 
on an hourly and seasonal basis respectively and the first, fifth 
and tenth deciles are highlighted. 

 

Figure 2. Daily distribution of the dimensionless production of the PV plant 

for the period 03/2010-12/2011 and of the wholesale electricity prices for the 
period 01/2010-12/2011 

 

Figure 3. Seasonal distribution of the dimensionless production of the PV 

plant for the period 03/2010-12/2011 and of the wholesale electricity prices 

for the period 01/2010-12/2011 

B. Results 

The results of the study are presented in Figure 4, where 
indicators for the operating profit for the PV-Battery system 
and for the utilisation level of the battery are reported. 

The profit of the system is represented through the ratio 
between the profit calculated as in Equation (2) and the profit 
that would be obtained by the PV plant alone without the 

presence of the export constraints. Figure 4 shows that this 
ratio is roughly constant in the range of 60% for update 
frequencies between 24 and 12 hours, and increases up to 80% 
when forecasts and battery schedules are updated with a 
frequency of one hour. These results are dependent on the 
prices for the electricity and the capital cost of the battery, but 
also on the capacity of the battery, both in kW and in kWh. 

 

Figure 4. Qualitative representation of the study results: financial value vs 
schedule update frequency. 

In order to show this aspect of the problem, Figure 4 
reports also the behaviour of two indicators linked to the 
utilisation of the energy capacity of the battery and of its 
charge power. The red dashed line reports the 99th percentile 
of the calculated SOC during the simulation period and the 
solid red line reports the 99th percentile of the simulated 
charging power of the battery. The 99th percentile is used 
instead of the maximum value (equivalent to the 100th 
percentile) because the latter is almost always equal to one, 
but the 99th percentile gives a better representation of the real 
utilisation of the battery by filtering extreme values. The two 
lines show that with a growing update frequency, the 
utilisation of the battery decreases, especially for the SOC. 
This can be associated to the reduction of the correlation of 
forecast errors. A direct consequence of this is that with a 
higher update frequency a smaller battery can be used with the 
same performance or that, in presence of a smaller battery, a 
large update frequency would not be able to solve the PV 
export problem with a low update frequency. 

At this point, it is possible to calculate the quantitative 
financial benefit of different rescheduling frequencies on the 
performance of the system. This value can then be used in a 
cost benefit analysis taking into account the cost and the 
necessary performance of the necessary ICT infrastructure. It 
is therefore necessary to compare the increase in profit with 
the reduction in capital expenditure given by the possibility to 
use a smaller battery. For this, the net present value of the 
system’s profit, as calculated in Equation (12) for an expected 
lifetime of about 15 years and a discount factor of 10% is 
summed to the savings originated from the possible reduction 
in the power and energy rating of the battery. The results are 
then reported in Figure 5 and TABLE II for each kW of 
installed PV power.  

The results are calculated for four different cases, 
corresponding to different values of the cost of the battery, 
representing different batteries technologies or different stages 
of development of the same technology. The cost of the power 
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rating of the battery has not been changed because it is 
expected to be less variable. The details of the four cases 
considered are reported below: 

 Case A: 800 €/kWh, 200 €/kW 

 Case B: 600 €/kWh, 200 €/kW 

 Case C: 400 €/kWh, 200 €/kW 

 Case D: 200 €/kWh, 200 €/kW 

The results are shown in Figure 5, where the value of the 
rescheduling frequency is plotted for the four cases. This value 
can be considered as the headroom available for the cost of 
ICT, taking into account the initial capital cost and the 
operating cost made of data transfer, electricity consumption, 
maintenance, subscription to eventual forecast services, etc... 
It is possible to see that, at least for the simple case study 
considered, there is little difference in total performance for a 
rescheduling frequency larger than 12 hours. It is believed that 
this may be caused by the saturation of the battery. For smaller 
update frequencies the value for the system increases 
considerably, arriving to be comparable with the initial capital 
cost of the battery. On the other side, it must be considered 
that the absolute value of the gain per kW may be modest, 
representing a barrier for applications in small systems such as 
domestic batteries. 

TABLE II FINANCIAL VALUE OF DIFFERENT SCHEDULE UPDATE 

FREQUENCIES 

Update frequency [hh] 24 12 6 3 2 1 

Financial 

value 

[€/kW] 

Case A 260 265 450 581 679 1011 

Case B 258 263 409 519 588 846 

Case C 256 261 369 456 498 682 

Case D 254 259 328 394 408 517 

 

 

Figure 5: Financial value of different schedule update frequencies 

 

IV. CONCLUSIONS 

The results of a study on the value of Distributed Energy 
Storage rescheduling frequency on its operating performance 
have been reported in this paper. It is verified that the 
performance increases along with the increase of the 
rescheduling frequency and the improvement between the two 

extreme rescheduling frequencies of 24 hours and 1 hour) has 
been quantified in about the 20%. The work highlighted also 
the importance of the battery size on the results, showing that 
an increased forecast and rescheduling frequency lead to a 
reduction in the utilisation of the battery. This reduction has 
been quantified in about the 80% and the 20% for the energy 
rating and the power rating respectively. It is opinion of the 
authors that the reduced utilisation of the energy storage is due 
to the possibility for the battery to reduce the effect of forecast 
errors autocorrelation. The study shown also how, high 
rescheduling frequencies can generate a value comparable 
with the initial capital cost of the battery. On the other side, 
the little absolute value of this gain may represent a limiting 
factor in the case of small batteries such as in domestic 
applications. These two observations show the importance to 
take into account the rescheduling frequency and the 
necessary ICT infrastructure for the management of batteries 
and, in general, for advanced power system applications. 
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