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Abstract—In this work, we propose an Economic Model
Predictive Control (MPC) strategy to operate power systems that
consist of independent power units. The controller balances the
power supply and demand, minimizing production costs. The
control problem is formulated as a linear program that is solved
by a computationally efficient implementation of the Dantzig-
Wolfe decomposition. To make the controller suitable for real-
time applications, we investigate a suboptimal MPC scheme,
introducing an early termination strategy to the Dantzig-Wolfe
algorithm. Simulations demonstrate that the early termination
technique substantially reduces the computation time.

I. INTRODUCTION

For the last two centuries, mankind has depended on fossil
fuel. The consequences of the extensive use of these fuels,
i.e. global warming and rising costs of fossil fuels, affect
our life. Furthermore, the greatest source of CO2 emissions
is the combustion of fossil fuels to generate electricity. A
change in energy systems is clearly necessary if we are to
become free of dependence on fossil fuels. The introduction
of Smart Grids is crucial for future energy systems, as these
grids will connect consumers and producers through, for
example, renewable energy sources (RES). This innovative
scenario requires control actions to ensure that the total energy
production can satisfy customer demand.

In this paper we propose an optimization-based controller
for dynamic load balancing of a power system consisting of
multiple power units that are dynamically decoupled. The
control strategy is an Economic MPC strategy that is used
to balance power supply and demand in the most economical
way. The control problem may be expressed as a linear pro-
gram tailored for the Dantzig-Wolfe decomposition technique.
However, real-time applications require fast computation of the
optimal control trajectory; because of this, an early termina-
tion strategy is applied to the Dantzig-Wolfe decomposition
algorithm. Such early termination significantly reduces the
computational time for the MPC at the cost of obtaining only
a suboptimal solution.

Economic MPC operates many energy systems, for example
refrigeration systems, heat pumps for residential buildings,
solar-heated water tanks and batteries in electric vehicles.
However, with regard to large-scale systems, a distributed
controller to overcome the communication limitation and
computational complexity is a better choice [1]. Distributed

MPC successfully applies decomposition techniques, i.e. the
Dantzig-Wolfe decomposition [2], [3]. Such a decomposition
algorithm has been utilized in several applications, including
power balancing based on an `1-penalty function [4] and
to operate large-scale power systems [5]. To strengthen the
applicability of the controller to real-time applications, this
work introduces a suboptimal MPC strategy [6]–[10].

The outline of this paper is as follows: Section II introduces
power systems and formulates a linear Economic MPC for
linear power systems. Section III describes the Dantzig-Wolfe
decomposition algorithm. The early termination strategy is
explained in Section IV. Section V-A proposes a model for
the power generators included in the power system; Section
V-B reports simulation results and, finally, the conclusion and
suggestions for future work are presented in Section VI.

II. POWER SYSTEMS AND ECONOMIC MPC

Future power systems will consist of independent power
units connected to one common operation center that must
control and coordinate such power units, balancing power
production and consumption in an economical and realiable
way. Operating such a power system means making real-time
decisions such as planning the power production in response to
customer demand and unpredicted production variations from
renewable energy producers, e.g. wind turbines.

A power unit is assumed to be described as a linear
stochastic discrete time state space model

xk+1 = Axk +Buk + Edk (1a)
yk = Cxk + vk (1b)
zk = Czxk. (1c)

The measurement noise, vk ∼ Niid(0, Rvv), and dk ∼
N(d̄k, Rdd,k) are predicted by external prognosis systems [5];
in many power applications dk might represent wind speed or
sun radiation. While xk denotes the states, uk the manipulated
variables (MVs), yk denotes the measurement used for feed-
back, and zk is the output variable. The manipulated variable,
uk, is subject to hard constraints

umin ≤uk ≤ umax (2a)
∆umin ≤∆uk ≤ ∆umax (2b)



The system output zk must be within an interval
[rmin,k, rmax,k]; such interval may represent electricity de-
mand forecast in advance, or it can define indoor temperature
in a building, or temperatures in a refrigeration system or state-
of-charge of a battery. However, due to some disturbances or in
a specific scenario, it might be impossible to obtain zk within
the defined interval; therefore, the constraints on the output
variable include slack variables sk. The slack variables, sk,
may represent selling or buying power from the short-term
market, violation of temperature limits, or violation of state-
of-charge limits. Every time sk is non-zero, a penalty cost, e.g.
the cost of buying or selling power on the short-term market
must be paid.

rmin,k − sk ≤zk ≤ rmax,k + sk (3a)
sk ≥ 0 (3b)

In order to deal with the stochasticity of the power units,
we apply the certainty equivalence principle: in this way,
all variables are replaced by their conditional mean values
[5]. Furthermore, we implement a Kalman filter to predict
x̂k+1+j|k ∀j ∈ N looking N periods ahead [5]. Consider
a power system consisting of P power units (1), the cost of
producing power for a power generator is φi,k, ∀i ∈ P . This
economic cost, φi,k, consists of the cost of operating the power
unit, ĉi,k+j|k, and the penalties, ρ̂i,k+j+1|k, related to the use
of slack variables, ŝi,k+j+1|k

φi,k =

N−1∑
j=0

ĉ′i,k+j|kûi,k+j|k + ρ̂′i,k+j+1|kŝi,k+j+1|k (4)

These unit prices are provided by external forecasting systems.
The linear constraints and the linear objective functions lead
to the formulation of the control problem as a linear program;
accordingly, the Linear Economic MPC to operate a power
system of P power units is formulated as

minφk =

P∑
i=1

φi,k +

N−1∑
j=0

ˆ̃ρ′k+j+1|k
ˆ̃sk+j+1|k (5)

subject to the local constraints ∀i ∈ P and ∀j ∈ N

x̂i,k+j+1|k = Aix̂i,k+j|k +Biûi,k+j|k + Eid̂i,k+j|k (6a)
ẑi,k+j+1|k = Cz,ix̂i,k+j+1|k (6b)
umin,i ≤ ûi,k+j|k ≤ umax,i (6c)
∆umin,i ≤ ∆ûi,k+j|k ≤ ∆umax,i (6d)
ẑi,k+j+1|k + ŝi,k+j+1|k ≥ r̂min,i,k+j+1|k (6e)
ẑi,k+j+1|k − ŝi,k+j+1|k ≤ r̂max,i,k+j+1|k (6f)
ŝi,k+j+1|k ≥ 0 (6g)

and subject to the following connecting constraints ∀j ∈ N
and ∀i ∈ P , where ˆ̃zk+j+1|k denotes the supply constraints
connecting the produced and requested power, ˆ̃rmin,k and

 Master Problem 

Subproblem 1 … Subproblem 2 Subproblem M 

π, ρ1 π, ρ2 π, ρM ψ1, v1 ψ 2, v2 ψ M, vM 

Fig. 1: Dantzig-Wolfe structure. Each subproblem comunicates
exclusively with the master problem (MP).

ˆ̃rmax,k are provided by external forecasts

ˆ̃zk+j+1|k =

P∑
i=1

C̃z,ix̂i,k+j+1|k + D̃z,iûi,k+j|k (7a)

ˆ̃zk+j+1|k + ˆ̃sk+j+1|k ≥ ˆ̃rmin,k+j+1|k (7b)
ˆ̃zk+j+1|k − ˆ̃sk+j+1|k ≤ ˆ̃rmax,k+j+1|k (7c)
ˆ̃sk+j+1|k ≥ 0 (7d)

The optimization control problem (5)-(7) has a block-
angular structure tailored for the implementation of Dantzig-
Wolfe decomposition to solve efficiently the control linear
program.

III. DANTZIG-WOLFE DECOMPOSITION TECHNIQUE

The Dantzig-Wolfe decomposition algorithm is a decom-
position technique to solve efficiently linear programs that
have a block-angular structure, such as (5)-(7), [2], [3]. The
Economic MPC expressed, as a linear program in (5)-(7), can
be formulated as

min
{wi,k}Mi=1

ϕ =

M∑
i=1

e′iwi,k (8a)

s.t.


F1 F2 . . . FM
G1

G2

. . .
GM



w1

w2

...
wM

 ≥

g
h1
h2
...
hM

 (8b)

where i ∈ M = {1, ..., P, P + 1} as the slack variables
ˆ̃sk+j+1|k in (5) and (7) are considered as an independent unit.

In this decomposition approach, the linear programming
problem can be separated into independent subproblems,
which are coordinated by a master problem (MP), as depicted
in Figure 1. Within each iteration, the MP sends its Lagrange
multipliers to all the subproblems to update their objective
function. Then, the subproblems are solved and they send
their solutions and objective function values to the MP. The
solution to the original problem can be shown to be equivalent
to solving the subproblems and the MP through a finite number
of iterations [11].

When describing the Dantzig-Wolfe decomposition, it is
necessary to introduce the theorem of convex combination,
or Dantzig-Wolfe transformation [11], [12].

Theorem 1 (Convex Combination): Consider W =
{w | Gw ≥ h} is a nonempty, bounded and closed set,
i.e. a polytope. vj denotes the extreme point of W with



j ∈ {1, 2, ..., V }.
Then any point w in the polytopeW can be written as a convex
combination of its extreme points

w =

V∑
j=1

λjv
j (9a)

s.t λj ≥ 0, j = 1, 2, ..., V (9b)
V∑
j=1

λj = 1 (9c)

Proof: See [11].
Via the theorem of convex combination (9), the MPC can be
formulated as follows, assuming that the feasible regions of
subproblems are bounded

min
λ

ϕ =

M∑
i=1

Vi∑
j=1

fijλij (10a)

s.t

M∑
i=1

Vi∑
j=1

pijλij ≥ g (10b)

Vi∑
j=1

λij = 1, i = 1, 2, ...,M (10c)

λij ≥ 0, i = 1, 2, ...,M ; j = 1, 2, ..., Vi
(10d)

where the coefficients are

fij = e′iv
j
i , pij = Fiv

j
i (11)

The linear program (10), known as master problem (MP), is
equivalent to the block-angular linear problem (8). It is worth
noting that (10) has fewer rows in the coefficient matrix than
the original problem (8). However, in the MP the number of
columns is larger due to an increase in the number of variables
with the extreme points of all subproblems.

If the MP is solved via the Simplex method, then only
the basic set is needed and it has the same number of basic
variables as the number of rows. Hence, not all the extreme
points are necessary to be known. This yields to the reduced
master problem (RMP), dynamically constructed at a fixed size
by incorporating column generation techniques

min
λ

ϕ =

M∑
i=1

l∑
j=1

fijλij (12a)

s.t

M∑
i=1

l∑
j=1

pijλij ≥ g (12b)

l∑
j=1

λij = 1, i = 1, 2, ...,M (12c)

λij ≥ 0, i = 1, 2, ...,M ; j = 1, 2, ..., l
(12d)

where l ≤ Vi for all i ∈ {1, 2, ...,M}. Solving the RMP pro-
vides the Lagrange multipliers π associated with the inequality

constraint (12b), the Lagrange multipliers ρ, associated with
equalities (12c), and the Lagrange multipliers κ for the posi-
tivity constraints (12d). As depicted in Figure 1, the MP sends
the Lagrange multipliers to each subproblem.

The Lagrangian associated to the MP (10) yields to the
following necessary and sufficient optimality conditions, for
i = 1, 2, . . . ,M and j = 1, 2, . . . , Vi

∇λijL = fij − p′ijπ − ρi − κij = 0 (13a)
M∑
i=1

Vi∑
j=1

pijλij − g ≥ 0 ⊥ π ≥ 0 (13b)

Vi∑
j=1

λij − 1 = 0 (13c)

λij ≥ 0 ⊥ κij ≥ 0 (13d)

The conditions (13a) and (13d) yield to

κij = fij − p′ijπ − ρi = [ei − F ′iπ]
′
vji − ρi ≥ 0 (14)

The Karush-Kuhn-Tucker conditions (KKT-conditions) for
(10) are for i = 1, 2, . . . ,M and j = 1, 2, . . . , Vi

M∑
i=1

Vi∑
j=1

pijλij − g ≥ 0 ⊥ π ≥ 0 (15a)

Vi∑
j=1

λij − 1 = 0 (15b)

λij ≥ 0 ⊥ κij = [ei − F ′iπ]
′
vji − ρi ≥ 0 (15c)

Initially, a feasible extreme point to the MP is necessary;
we adopt an initialization technique that uses the previous
optimal solution and the output constraints (3)-(7) to compute
the initial vertex [5]. This initial point is then used to form
the RMP (12) considering l = 1. Assuming λRMP

ij to be a
solution of RMP, so that a feasible solution to MP (10) is

λij = λRMP
ij i = 1, 2, . . . ,M ; j = 1, 2, . . . , l (16a)

λij = 0 i = 1, 2, . . . ,M ; j = l + 1, l + 2, . . . , Vi
(16b)

λRMP
ij satisfies the KKT-conditions for i = 1, 2, . . . ,M

and j = 1, 2, . . . , l; however, the optimal solution needs
to satisfy these conditions for all i = 1, 2, . . . ,M and
j = l + 1, l + 2, . . . , Vi. We only know the extreme points,
vji for i = 1, 2, . . . ,M and j = 1, 2, . . . , l. Because of this
the KKT-conditions are satisfied for i = 1, 2, . . . ,M and
j = 1, 2, . . . , Vi if mini ψi − ρi ≥ 0 where

ψi = min
vj
i

[ei − F ′iπ]′vji (17)

vji is an extreme point of the polytope Wi. Then, we form the
following linear program to solve (17)

ψi = min
wi

ϕ = [ei − F ′iπ]′wi (18a)

s.t Giwi ≥ hi (18b)



These linear programs are called subproblems and can be
solved via either parallel or sequential computation. This
possible parallel computation of the subproblems represents
one of the advantages of the Dantzig-Wolfe decomposition
algorithm. Let (ψi, wi) be the optimal value-minimizer pair
for the linear problem (18); an optimal solution is reached if
the following condition is satisfied

ψi − ρi ≥ 0 i ∈ {1, 2, ...,M} (19)

Therefore the solution of the original control problem (8) is
given by

w∗i =

l∑
j=1

vjiλij i ∈ {1, 2, ...,M} (20)

When condition (19) is not satisfied, the number of extreme
points considered, l, is not enough to satisfy the KKT-
conditions and a new vertex vl+1

i needs to be included.

IV. SUBOPTIMAL MPC STRATEGY

Real-time applications may restrict the applicability of the
Economic MPC, especially because of the limits on the
storage space and the computation time. Real-time MPC
applications often involve warm-start, explicit MPC and early
termination techniques to speed up the online computation
[7], [8]; these approaches compute suboptimal solutions. The
warm-start technique is used to initialize the Dantzig-Wolfe
decomposition algorithm, as described in Section III and [5].
The novel step of this paper is the introduction of the early
termination strategy to reduce computation time in the solution
of the optimal control trajectory. Section III introduces the
RMP (12): the algorithm adds a vertex of the polytope (9) to
the RMP as long as the stopping criteria (19) is not satisfied.
In a real-time scenario, the Dantzig-Wolfe algorithm tries to
compute the optimal solution within a given sampling time.
However, if too many vertices of the polytope (9) are necessary
to get from the solution of the previous control problem to that
of the current one, then the algorithm can be stopped. With
regard to the early termination strategy, the CPU time can be
limited [9]; for this purpose, in this work we use as heuristic
a limit on the number of vertices of the polytope to include
in the Dantzig-Wolfe algorithm. It is worth noting that, in
the Dantzig-Wolfe algorithm, the suproblem (18) always has
a feasible solution if the original linear program (8) does [13];
moreover, each polytope is assumed to be nonempty (9). As a
result, the suboptimal solution obtained by early termination is
feasible and the resulting MPC is both feasible and, therefore,
stable [7], [8].

V. APPLICATION TO A POWER SYSTEM

In this section we apply the Economic MPC controller to
a power system consisting of power plants, and the Dantzig-
Wolfe decomposition computes the optimal control trajectory.
In addition, we implement the early termination strategy in
order to reduce computational times.
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Fig. 2: Master problem (10) objective function and number of
extreme points of the polytope (9) at each time step.

As a case study we consider a power system consisting of
four power units, described below. Simulations are carried out
for 120 time steps with time horizon T = 70.

A. Power Units

As a case study we consider a power system that consists of
power generators. The individual power units are independent
systems, and they can be modeled separately, as the actions
in one of them do not directly affect the other units. They
are coupled through the objective to follow the overall power
system reference and activate secondary resources. Power units
are modeled as in (21) [14]; in this way we address three kinds
of power units: central thermal power plants, diesel generators
and gas turbines. The first kind of power generator has a slow
dynamic, while the remaining two show fast dynamics.

Zi(s) = Gi(s)Ui(s) Gi(s) =
1

(τis+ 1)
(21)

where zi(t) is the produced power at unit i, while ui(t) is
the corresponding reference signal.

B. Simulations Results

The controller developed in this work implements an Eco-
nomic MPC policy, where the Dantzig-Wolfe decomposition
technique computes the optimal control sequence. Section
IV introduces the early termination strategy that leads to a
subpoptimal MPC. Simulation reveals that ten vertices of the
feasible polytope (9) provide the optimal value of the objective
function, as shown in Figure 2: the algorithm reduces the
objective function until it reaches the minimum. However, the
Dantzig-Wolfe algorithm takes 32 extreme points to satisfy
the stopping criteria (19). As a result, the controller can
terminate iteration before the stopping criterion is satisfied and
the solution obtained is, therefore, suboptimal. Furthermore,
at each time step, the Dantzig-Wolfe algorithm implements
the warm-start described in Section III; because of this, the
algorithm has a better initial point and the optimal value of
the objective function decreases at each time step, see Figure 2.
In order to demonstrate the early termination effectiveness, we
simulate four different scenarios: the first is the exact Dantzig-
Wolfe algorithm, while the remaining three include limits on
the number of vertices of the polytope, respectively 15, 10 and
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Fig. 3: CPU time and cost distributions based on 20 stochastic simulations. Blue distribution is for Economic MPC solved via
exact Dantzig-Wolfe algorithm. Green distribution is for an early termination strategy with 15 vertices. Magenta distribution
is for an early termination strategy with 10 vertices. Black distribution is for an early termination strategy with five vertices.

5. Figure 3a reports the CPU time for closed-loop simulations:
the early termination technique substantially reduces the com-
putational time by comparison with the implementation of the
exact Dantzig-Wolfe algorithm. It should, however, be noted
that the decrease in computational time is linked to an increase
in the production costs, see Figure 3b.

VI. CONCLUSION

In this work we have proposed a subotpimal Economic MPC
to operate power systems. We have introduced power systems
and their independent power units; consequently, we have
defined the control problem as a linear program tailored for the
Dantzig-Wolfe decomposition technique. After the description
of the Dantzig-Wolfe algorithm, we have introduced the early
termination strategy that provides a suboptimal solution of the
control problem. Closed loop simulations have demonstrated
that the algorithm developed noticeably decreases compu-
tational times. On the other hand, such reductions cause
unavoidable extra costs. This finding should be explored in
future work.
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