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Abstract—Column generation is applied to the TRIANA smart
grid framework’s planner and combined with distributed dy-
namic programming. Simulations show that this improves the
resulting planning compared to methods described in previous
work (extra peak reduction of 7.3%; large fluctuation reduction)
at the cost of additional processing.

Index Terms—Energy management, mathematical program-
ming, power system management, smart grids.

I. INTRODUCTION

SMART GRIDS promise to revolutionize the way electrical
power is transported and used. Flexible transmission

systems and controllable assets, including those owned by end
users—such as heat pumps, EVs and household appliances—
will increase the ability to manage the grid from the demand
side. Using this potential, the needed capacity investments in
the near future, due to increased electrification and renewable
generation, may be reduced. Furthermore, systems can respond
better to markets and losses can be reduced.

To deliver on this promise, effective and coordinated control
of these assets is essential. In contrast to many related works
on smart grid control, we believe that smart grids should not
be scheduled reactively, but actively—as is the case for the
current grid. The reason for this is that the new assets also
have states and by that have dependencies over time: limits
on for example run length, ramp rates and departure times (of
EVs). Therefore, a reactive control policy makes it difficult
to control the indirect consequences of actions, i.e. effects on
future flexibility.

For the current grid, these scheduling and control problems
are well known, have been well studied and are practically
solved; see for example [1]. However, for smart grids several
complications arise. Most importantly, the expected number
of dispatchable assets is much larger, typically ranging up
to millions rather than hundreds. This means that centralized
scheduling is not an option. Furthermore, since the controlled
power per asset is relatively low, the scheduling effort needs
to be limited, such that its benefits clearly outweigh its costs.

In earlier work, we presented what is now known as TRIANA,
a general smart grid optimization framework [2]. It uses
a hierarchical—and thereby scalable—scheduling approach.
It plans both demand and supply, guided by forecasts of
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expected behavior. To resolve forecast errors, furthermore
an operational (real time) control is added. This three-step
approach of forecasting–planning–operation gives good results
in comparison with other control approaches [3].

For the TRIANA approach, we observe that the operational
control policy degenerates to reactive control if the plan is not
revised frequently [4]. To avoid this problem, more freedom
must be given to the local controller; this may be realised
by increasing the frequency at which the planning process is
redone (or just revised) to be able to account for the long-
term effects of real time control choices. However, the current
planning approach (namely IDDP—iterative distributed dynamic
programming [2]) may not allow such improvements without
degrading solution quality. Although single IDDP iterations
are fast and lead to rapid result improvements in the initial
phase, it fails to achieve any substantial improvements in later
iterations. We are therefore exploring new ways of making the
planning process more effective.

Column generation [5] is a well-known technique from the
domain of Operations Research that is used to solve very
large linear optimization problems. It has been demonstrated
to be highly effective for many problems that involve limited
coupling of different entities—a description that applies to
smart grids. Therefore, we previously investigated the use of
column generation in a specific smart grid unit commitment
problem [6].

In this work, we adopt column generation more generally
for the distributed planning problem in the TRIANA framework.
To validate and demonstrate the resulting approach, termed
CGDDP—column generation with distributed dynamic program-
ming, we reuse the 400-house FLEX STREET case presented in
[7]. Whereas [7] compares TRIANA using IDDP to a reactive
control approach, this work uses the case as a reference scenario
to both discover and illustrate the features of CGDDP.

This paper is structured as follows. In Section II, we
provide more background on related control approaches and on
TRIANA, followed by a short review of column generation. Next,
Section III presents the approach taken to integrate column
generation in TRIANA, together with the corresponding formal
definitions and design considerations. Subsequently, simulation
results of our implementation of CGDDP are presented and
interpreted in Section IV. Finally, conclusions are drawn in
Section V.
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II. BACKGROUND

A. Smart Grid Control

Smart grid related problems have been approached by
applying control engineering theory, such as Model Predictive
Control; see for example [8]. Such approaches often focus
on the efficient operation of the devices themselves under a
given pricing scheme, rather than optimizing for aggregate
behavior. Furthermore, the number of considered appliances
is often small (or even just one), and even when multiple
appliances are considered, they are all of the same type. These
factors result in both conceptual and computational scalability
problems.

Integrated smart grid control approaches address these
problems by partitioning the optimization problem both con-
ceptually (by supporting more than one type of device) and
computationally (by partitioning the optimization problem and
allowing workload distribution). Explicit prediction is typically
sacrificed. The major vehicles of abstraction are prices on
the one hand—indicating the relative desirability of power
consumption—and power consumption levels on the other hand.
Direct price steering is well known to result in uncontrolled
demand response: all devices respond to the lowest price.
Therefore, approaches such as GridWise [9], PowerMatcher
[10] and Intelligator [11] have adopted a transactive control
approach. Transactive control is typically implemented with an
on-line double-sided auction mechanism, in which a dynamic
priority ordering determines how the available capacity is
assigned. Explicit prediction is computationally hard to be
added to a double-sided auction: due to dependencies, it does
not scale beyond a few intervals. Therefore, to account for
the future, the priority ordering is in part determined by an
estimate of the future system state. Transactive controllers are,
despite their reactive design, quite effective in terms of the
most often considered objective: coordinated peak shaving [7].

In TRIANA [2], these perspectives are combined alongside
legacy grid control: globally, transport and large generation
resources are considered, whereas locally device behavior is
optimized subject to the demands of the global problem. For
scalability, we exploit the hierarchical structure of the problem
(Fig. 1). The coordination aspect is handled in a scalable manner
by an iterative feedback mechanism [12], which can be seen
as a substitute for a double-sided auction with lookahead. The
described work in this paper involves replacing this mechanism
with column generation.
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Fig. 1. Partitioned optimization approach in TRIANA.

B. Column Generation

Linear programming (LP) is one of the most widely used
techniques for mathematical optimization: many problems
can be naturally expressed with it, and efficient (polynomial)
methods exist to solve such problems. Even more problems can
be expressed by applying (Mixed) Integer Programming (MIP),
though this comes at the cost of increasing computational
cost—in many cases even exponentially. As a result, solving
large MIPs directly is infeasible. This means that nontrivial
problems need to be modeled with care, in particular such that
the number of integer variables is kept small.

Rather than considering a complete large LP problem at once,
Dantzig–Wolfe decomposition [5] may be used to separate a
given problem into its block structure, which can then be re-
composed by means of column generation. The master problem
is concerned with a set of connecting variables and associated
constraints. A series of subproblems is concerned with their
own set of local variables and constraints. The master problem
uses the subproblems to explore new columns of the original
solution space by sending shadow prices to its subproblems.
These prices are derived from the linear program structure
and express the relative objective importance of the shared
variables. The subproblems must be optimized subject to these
prices.

In the case of linear programming, this approach gives
optimal results: when no improving columns are found by the
subproblems, the given solution is optimal for the original
problem. However, in the case of MIP, further effort is
needed to guarantee optimality [13]. Since we need to avoid
computational effort, we do not consider this in this work.

III. COLUMN GENERATION FOR TRIANA

A. Overview

As became clear in Section II-B, the first step in column
generation (after defining the original problem) is to identify the
master problem, the subproblems and their connecting variables.
Given the hierarchical architecture of the IDDP approach, this
step can be made with little effort: the subnodes (substations,
houses, devices) map to subproblems; their demand levels over
each time interval are the connecting variables. The master
problem relates to aggregate demand, i.e. the sum of demand
levels over each time interval. Though other relations can
be considered later on, this small set of connecting variables
is sufficient for many applications, including peak shaving,
imbalance reduction and virtual power plant operation (the
same applications as IDDP was applied to).

In IDDP, the top-level and middle-level problems are solved
using a randomized algorithm. The bottom-level subproblems
are solved to optimality by dynamic programming (DP), i.e.
by state-space exploration. Using DP is much more efficient
or sometimes even the only option when nonlinear constraints
are prevalent, yet is functionally almost equivalent to MIP.
The dynamic programs are solved in parallel for performance
reasons; these programs can be solved locally for reduced
communication overhead (this also protects privacy to some
extent). The problems at the different levels are iteratively
solved in succession: the higher problems generate prices; in
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turn, the lower problems optimize demand according to these
prices. The higher problem then revises the prices according
to observed aggregate demand.

In this work, the basic problem can be described as a MIP
similar to [6], though we do not need to make this MIP explicit.
We derive a column generation master problem, which will be
described in Section III-B. Next, Section III-C reformulates the
corresponding subproblems such that these can be optimized by
dynamic programming, allowing them to be solved efficiently.
Except for the values of the prices, the lowest subproblems
are now equal to the subproblems of IDDP.

Analogous to IDDP, we refer to this method as CGDDP:
column generation with distributed dynamic programming. The
‘iterative’ of IDDP has been dropped because column generation
is iterative by definition.

This work addresses both the top level and the bottom level
of the hierarchical approach. To accommodate larger problems
or to decrease the time used to reach a solution, the hierarchical
structure can be used.

B. Master Problem

1) Variables and Objective: Let x(k)(t) be the aggregate
demand at time interval t in iteration k: these are the central
variables in this formulation. Let i ∈ I be the set of
subproblems (houses); P(k)

i is the set of patterns provided
by i in iteration k; a pattern specifies the demand in each
time interval. These pattern sets are initially empty: P(0)

i = ∅.
Variables y(k)qi indicate whether a particular pattern qi ∈ P(k)

i

is selected. Exactly one pattern must be selected for every i in
each k. The selected pattern qi contributes the pattern demand
pqi(t) to x(k)(t).

Next, we define an objective similar to that used within
the IDDP approach. Since multiple objectives are involved,
we consider their linear combination. The main objective is
minimizing peak demand. Therefore, we introduce a variable
x
(k)
max which expresses the maximum of all x(k)t (corresponding

weight: wPmax
). Next, the difference between the maximum

and minimum demand should be minimized. This difference
is expressed by a variable x(k)down (weight wPdown ).

Subsequently, rapid demand changes should be avoided: if
this is not added explicitly, CGDDP may provide impractical
solutions with instantaneous demand changes. To prevent
this, we introduce variables d(k)t which express the absolute
difference between consecutive values of x. The sum of these
values is added to the objective (weight wD). Furthermore,
a variable denoted as d(k)max is used to express the maximum
value of all absolute differences (weight wDmax ).

This formulation avoids large demand changes; however,
if a large demand change can not be avoided, it does not
spread the smaller demand changes. Indeed, the search tends
to find ‘optimal’ solutions with step changes between demand
plateaus. This could be solved by a nonlinear (e.g. quadratic)
cost function, or an approximation thereof; however, this is
computationally expensive. Instead, we estimate the ‘desired’
demand pattern: for a short horizon N ′t , we define x(k),αt′ as a
line with slope α(k−1), starting at the current demand level x0.
N ′t should be chosen small enough to form a good fit, yet large

enough to be useful in guiding the profile. We subsequently
minimize the sum of distances d(k),αt′ (weight wDα) and the
peak distance d(k),αmax (weight wDαmax

) to this pattern. The value
of α can be derived by the MIP; however, for efficiency we use
the value which best fits the solution of the previous iteration: it
stabilizes in a few iterations. Although this approach is affected
by a similar problem as the difference sum approach, it is far
more likely to find sensible solutions.

The primary objectives (minimization of the peak demand
and the maximum-to-minimum demand difference) are con-
sidered over a planning horizon of Nt intervals. The other
objectives are evaluated over a horizon N ′t ; to decrease the
problem size, this also limits the number of difference variables.
This horizon should be longer than the planning interval Ne,
but not longer than the planning horizon: Ne ≤ N ′t ≤ Nt.

2) Problem Formulation: The resulting master problem is
specified as follows (for a specific k). For conciseness and
clarity, common transformations are omitted.

min wPmax
x(k)max + wPdownx

(k)
down

+wD
∑
t′

d(k)(t′) + wDmaxd
(k)
max(t′) (1)

+wDα
∑
t′

d(k),α(t′) + wDαmax
d(k),αmax (t′)

s.t. x(k)(t) =
∑
i

∑
qi

y(k)qi pqi(t) ∀t (2)∑
qi

y(k)qi = 1 ∀i (3)

x(k)max ≥ x(k)(t) ∀t (4)

x
(k)
down ≥ x

(k)
max − x(k)(t) ∀t (5)

d(k)(t′) = |x(k)(t′)− x(k)(t′ − 1)| ∀t′ (6)

d(k)max ≥ d(k)(t′) ∀t′ (7)

x(k),α(t′) = x0 + α(k−1)t′ ∀t′ (8)

d(k),α(t′) = |x(k)(t′)− x(k),α(t′)| ∀t′ (9)

d(k),αmax ≥ d(k),α(t′) ∀t′ (10)

y(k)qi ∈ {0, 1} ∀i, qi (11)

α(k−1) ∈ R (12)
t ∈ {1 . . . Nt}, t′ ∈ {1 . . . N ′t}, i ∈ {1 . . . Ni} (13)

3) Patterns and Pricing: After solving the master problem,
new patterns are generated within the subproblems. The
subproblem patterns are derived with the local DPs, subject to
a price vector λ(k−1)

i (see Section III-C). Because the patterns
are homogeneous (i.e. simply added), we can omit the indexing
by i and derive λ(k−1) from the shadow prices π(k−1) of (2) in
the relaxation of the MIP from Section III-B2. This implies that,
unlike for IDDP, the pricing is the same for all subproblems:
column generation provides the needed price diversity implicitly.
As the first price vector, we use λ(0) = 〈−1, . . . ,−1〉, which
should avoid over-consumption during the first iterations.

The generated pattern q
(k)
i is only added to P(k)

i if the
reduced cost is positive. The search ends when no patterns are
added, or when a limit Nk on k is reached. Patterns which
have not been used or generated recently are pruned (LRU).
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Fig. 2. Difference between planning with IDDP and CGDDP.

C. Subproblem

1) Problem Formulation: The optimization subproblem used
to generate new patterns is defined as:

max (λ(k−1))ᵀ(p′q′i − pqi) (14)

s.t. . . . (15)

Here, q′i is the new pattern which has demand p′q′i
(t). The

current pattern of i is qi, which has demand pqi . The constraints
in (15) are device-specific and are not of relevance to this work.

We may simplify the problem by increasing (14) by
(λ(k−1))ᵀpqi , which is a constant. Next, we choose to negate
λ(k−1) and solve the equivalent minimization problem:

min (−λ(k−1))ᵀp′q′i (16)

s.t. (15)

For the reduced cost (see Section III-B3), we now require the
objective value to be smaller than −(λ(k−1))ᵀpqi .

2) Bootstrap Procedure: Preliminary simulations show that
the general column generation formulation is often inefficient at
finding good starting patterns due to overshoot. To reduce this,
we modify the price vector during the first Nb iterations of the
master problem. We use x(k−1)(t) as a heuristic to predict the
relative demand weight of the time intervals: the corresponding
element of λ(k−1) is decreased by B(k) (Nb−k+1)

Nb
x
(k−1)
t for

1 ≤ k ≤ Nb, where B(k) is chosen such that B(k)

x
(k−1)
max

≥ wPmax
.

When a modified price vector is used (i.e. k ≤ Nb), the
reduced cost termination condition is not applied, because the
condition may falsely conclude that improving patterns no
longer exist.

IV. SIMULATION: RESULTS AND EVALUATION

A. Flex Street Case

To demonstrate and validate CGDDP, we used the 400-house
FLEX STREET-MODERATE year simulation case described in [3]
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Fig. 3. Duration curves of results using IDDP and CGDDP.

and [7]. This case provides extensive demand-side flexibility.
The objective of this case is to minimize peak demand and to
flatten the demand profile. The case does not explicitly account
for household comfort; instead, this is guarded by constraints
(e.g. temperature limits and task deadlines). Forecast errors
are not considered here: although these can have a significant
effect on the results, the focus of this paper is on planning,
not on operational control. The work in [7] already shows that
control is essential for this scenario. Therefore, we use IDDP
rather than ‘no control’ as the reference case.

All simulations were performed on a system with dual Intel
Xeon E5645 processors (24 threads). The column generation
related MIPs were solved by CPLEX 12.5, with parallel mode
enabled, a MIP gap tolerance of 1% and a 20 second time-
out. Both IDDP and CGDDP are truncated after 10 feedback
iterations.

B. Simulation Results
The results suggest that replacing IDDP with CGDDP leads

to a demand peak reduction of about 10–15% and a significant
decrease in variability, as well as faster convergence of the
planning process. Since the results are similar for most of the
days, we illustrate the results with the aggregated electricity
demand on a typical winter day in Fig. 2a (on winter days,
the effects are clearer visible). The corresponding minimum
and maximum demand during the planning session at 18:00
on this day are shown in Fig. 2b.

The annual load duration curves (Fig. 3a) confirm this
peak reduction, although less strongly (-7.3%). Periods of
low demand are also better exploited (demand ‘valleys’ are
filled), leading to an increased base load. The overall slope
of the curve can be attributed to the demand and PV supply
difference over the course of a year.

The variability of demand is much smaller for CGDDP than
for IDDP; this is supported by Fig. 3b. In the presented results,
the sum of absolute differences between demand values is
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reduced by as much as 62.8%. The highest demand change
peaks appear to be improved as well, but this does not occur
consistently between simulations.

The year simulation applying IDDP consumed 3 hours and
29 minutes (real/wall time). The CGDDP simulation consumed
23 hours and 25 minutes. Clearly, the column generation master
problem demands more processing power.

C. Evaluation

The introduction of column generation improves the sched-
ules computed by the planning process significantly in compar-
ison with IDDP, both from the objective and subjective points
of view. Intuitively, we expected the difference between IDDP
and CGDDP to be larger than occurring in the case. Though
the optimal solution remains unknown, we believe that most
of the peak reduction potential for this scenario has now been
exploited, therefore leaving little room for further improvement.
Other scenarios may give different results, yet we believe that
a positive contribution is almost always present.

However, the presented approach still does not provide the
optimal solution of the basic MIP. For computational efficiency,
the MIPs are not always solved to optimality, subject to the
limits noted in Section IV-A. Also, we might not observe the
full solution space, due to the use of the relaxation for the
generation of shadow prices.

Looking at the DP modeling of devices in [2], not all local
flexibility is exposed; for example, EVs can be charged only
at a limited number of power set-points. This may become a
problem when (highly) local problems are considered.

Restricting the planning to short periods may lead to
situations where forcing the main objective (peak reduction)
to be minimized leads to critical situations for secondary
objectives, even though the real value of this period is far
from critical for a longer time period (e.g. over one month).

Having a generic mathematical framework for the planning
process has proven to be very valuable: it allows the problem to
be approached without the distraction of implementation details.
This abstraction makes it possible to reason about the use
and extension of general techniques. Without this framework,
column generation would never have been considered as a
possible solution strategy.

Although they do not cause immediate problems, the long
simulation times are not helpful during development. The
corresponding performance penalty is counter-productive in
achieving the goal of increasing the frequency of planning.
Also, the use of a commercial solver will be expensive due
to the licensing fees for non-academic use. Therefore, the
performance degradation caused by the column generation
approach, and in particular its dependence on a quite large
MIP, should be addressed in upcoming work.

V. CONCLUSION

Column generation with distributed dynamic programming
(CGDDP) is a very promising alternative to iterative distributed
dynamic programming (IDDP) for demand management in smart
grids. We observe a further peak reduction of 7.3% over IDDP

in the FLEX STREET scenario. By applying column generation,
demand variability is also significantly decreased.

However, these planning improvements come at the cost of
increased computational costs; therefore, these costs need to
be addressed in future work. The problem complexity can be
reduced by further partitioning of the problem. The column
generation equation may also be optimized in a way that is
different from MIP, or be applied only after a good solution
has already been found, for example by using IDDP.

The approach described in this paper suggests new smart grid
control applications. It has become possible to both express
and optimize more complex objective functions: the proposed
approach naturally handles problems with multiple, possibly
conflicting, objectives.

However, this paper does not consider forecast errors.
Therefore, such errors need to be addressed in future work;
otherwise, planning driven smart grids will remain an imprac-
tical, theoretical dream.
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