

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 01, 2024

Smart Grid Communication Comparison
Distributed Control Middleware and Serialization Comparison for the Internet of Things

Petersen, Bo Søborg; Bindner, Henrik W.; Poulsen, Bjarne; You, Shi

Published in:
Proceedings of 7th IEEE International Conference on Innovative Smart Grid Technologies

Link to article, DOI:
10.1109/ISGTEurope.2017.8260268

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Petersen, B. S., Bindner, H. W., Poulsen, B., & You, S. (2017). Smart Grid Communication Comparison:
Distributed Control Middleware and Serialization Comparison for the Internet of Things . In Proceedings of 7th
IEEE International Conference on Innovative Smart Grid Technologies (pp. 1-6). IEEE.
https://doi.org/10.1109/ISGTEurope.2017.8260268

https://doi.org/10.1109/ISGTEurope.2017.8260268
https://orbit.dtu.dk/en/publications/df1e8fa5-21b1-4aa7-a659-b8f48e84daa7
https://doi.org/10.1109/ISGTEurope.2017.8260268

Smart Grid Communication Comparison
Distributed Control Middleware and Serialization Comparison for the Internet of Things

Bo Petersen, Henrik Bindner, Bjarne Poulsen, Shi You

DTU Electrical Engineering, DTU Compute

Technical University of Denmark

2800 Lyngby, Denmark

{bspet, hwbi, sy}@elektro.dtu.dk, bjpo@dtu.dk

Abstract—To solve the problems caused by intermittent

renewable energy production, communication between

Distributed Energy Resources (DERs) and system operators is

necessary. The communication middleware and serialization used

for communication are essential to ensure delivery of the

messages within the required timeframe, to provide the necessary

ancillary services to the power grid. This paper shows that there

are better alternatives to using Web Services and XMPP as

middleware and that there are better alternatives than using

XML for serialization. The paper also gives guidance at choosing

the best communication middleware and serialization

format/library, aided by the authors’ earlier work, which

investigates the performance and characteristics of

communication middleware and serialization independently.

Given the performance criteria of the paper, ZeroMQ, YAMI4,

and ICE are the middleware that performs the best, and

ProtoBuf (ProtoStuff), and ProtoStuff are the serialization that

performs the best.

Keywords—Smart Grid; Internet of Things; Communication

Middleware; RMI; XML-RPC; CORBA; ICE; Web Services; OPC

UA; XMPP; WAMP; YAMI4; ZeroMQ; Serialization; XML;

JSON; YAML; FST; Kryo; JAXB; Jackson; XStream; ProtoStuff;

Gson; Genson; SnakeYaml; MsgPack; Smile; ProtoBuf; BSON;

Hessian; CBOR; Avro

I. INTRODUCTION

With the future Smart Grid, being production following
instead of a traditional power grid, which is load following,
communication to Distributed Energy Resources (DERs) is
necessary to efficiently use the power in the power grid when
it is available, and keep the power grid stable.

The reason the power grid needs to be production
following is because of the intermittent production of the
increasing share of renewable energy from sources like solar
and wind power [1].

The ancillary power system services, that need to be
provided by the DERs to efficiently use the power when it is
available, and keep the grid stable, such as primary frequency
control, require that the probability of delivery of
measurements and control commands within a given time
frame is as high as possible, which is determined by the data
connection, the processing unit in the DERs, the
communication middleware, and the serialization.

The data connection and the processing units in the DERs
depend on the owners and the manufacturer of the DERs
respectively and is outside the scope of the paper.

The paper focuses on the performance of the
communication middleware combined with the serialization,
which strongly affects the probability of delivery of the
measurements and control commands within the given
timeframe.

The current state of the art by previous papers [2] [3] [4]
including the earlier papers “Smart Grid Communication
Middleware Comparison” [5] and “Smart Grid Serialization
Comparison” [6] investigate the performance of the
communication middleware and serialization individually.

This paper combines the communication middleware from
the earlier paper “Smart Grid Communication Middleware
Comparison” [5] with the serialization formats/frameworks
from the earlier paper “Smart Grid Serialization Comparison”
[6], with the arguments for including these communication
middleware and serialization formats/frameworks found in the
earlier papers.

The aim of this paper is to determine the performance of
combining the communication middleware and the
serialization previously investigated to show the combined
performance of the combinations, and to show if the combined
performance is as expected.

This paper does not cover the characteristics of the
middleware and the serialization formats/libraries, as they are
covered in the earlier papers.

The hypothesis of the paper is that with careful
consideration for choosing the right communication
middleware and serialization format/library, the performance
and therefore probability of delivery of measurements and
control commands within the given timeframe can be vastly
improved. Especially compared to the recommendations by
prevalent communication standards for Smart Grids, including
the IEC 61850 [7], OpenADR [8] and CIM [9] standards.

II. METHODS

The tests were performed in Java using Oracle JDK

1.8.0_111, on a pair of Raspberry Pi 3’s (Model B) with a 1

Sponsored by the project, PROActive INtegration of sustainable energy

resources enabling active distribution networks (PROAIN).

Gbit/s data connection, but the Raspberry Pi’s only have 100

Mbit/s network interfaces.

The middleware and serialization framework/libraries

included in this comparison are taken from the earlier papers

“Smart Grid Communication Middleware Comparison” [5]

and “Smart Grid Serialization Comparison” [6], which

consists of 10 middleware and 25 serializers.

The measurements consist of the average number of

messages sent from one device to another (throughput), and

the average time it takes for a message to get from one device

to another (latency), summarized as:

• Throughput (messages per second)

• Latency (milliseconds per message)

The messaging patterns measured consist of Request-

Reply, which is used for legacy systems to retrieve

measurements, without knowing when it is available. Push-

Pull that is used to send control commands, and Publish-

Subscribe used in newer systems, where a device subscribes to

measurements and gets them when they are available,

summarized as:

• Request-Reply

• Push-Pull

• Publish-Subscribe

The results come from executing each test, for each

pattern, and each combination of middleware and serialization,

10 times and taking the average of the measurements.

Each test takes an IEC 61850 [7] class (logical node) with

randomly generated data, de-/serializes it using the current

serializer and transfers it using the current communication

middleware, using the current messaging pattern.

The tests are performed by giving the sending device 10

seconds to send and then counting the number of messages

received for 10 seconds on the receiving device, from the time

the first message arrives.

Throughput is measured by using a server on one device
and a client on the other, with Request-Reply going from the
client to the server and back, Push-Pull going from the client
to the server, and Publish-Subscribe going from the server to
client, with the final receiving device measuring the number of
messages received during the 10 second interval.

With Push-Pull and Publish-Subscribe the sending and
receiving devices are not the same, which is a problem for
measuring time, with different clocks, therefore the data is
sent back again to the original sending device, so the same
clock is used for both time measurements, and the time is then
divided by 2. For Request-Reply, the sending and receiving
device is always the same device, but the data was still sent
again, and divided by 2, to make sure the results are
comparable to the other patterns.

For Request-Reply, only a tiny request message is sent

with the full message payload being returned which differs

from the approach from the earlier paper on communication

middleware.

III. RESULTS

The throughput tests using Request-Reply (Fig. 1) shows
that ICE and ZeroMQ perform great, YAMI4, RMI, and
CORBA perform very well, XML-RPC and WAMP perform
adequately, and Web Services, XMPP, and especially OPCUA
struggles to keep up.

They also show that the 6 best serializers that perform
better than adequately include only 1 string serializer, which is
JSON (ProtoStuff), which uses an incompatible JSON format.
In addition, the 3 serializers that perform the best are all part
of the ProtoStuff library. On the other hand, the 12 serializers
that perform the worst include all XML serializers, and result
in a reduction in throughput of at least 3 times compared to the
3 best, with the 7 best middleware.

When looking at the throughput tests using Push-Pull (Fig.
2), ZeroMQ, WAMP, ICE, and YAMI4 perform great,
CORBA performs well, XMPP and XML-RPC perform
adequately, and RMI, Web Services, and OPCUA struggle to
keep up, especially Web Services and OPCUA.

For the serializers, the worst 16 serializers include all
XML serializers and all string serializers except for JSON
(ProtoStuff). The 2 best serializers are part of the ProtoStuff
library and perform at least 7 times better than the worst 16
serializers, for the 4 best middleware.

The Publish-Subscribe throughput tests (Fig. 3) show that
XMPP and again especially OPCUA perform terribly, while
ZeroMQ really shows its performance advantage in these tests.

Even fewer serializers perform well for Publish-Subscribe,
only 7 of the 25, with all string serializers performing badly.
Only 2 serializers perform great, both of which are part of the
ProtoStuff framework, and perform at least 3 times better than
the worst 18 serializers for the 3 best middleware.

The latency tests for all messaging patterns (Fig. 4-6) show
that using OPCUA, XMPP or Web Services as middleware, or
XML (JAXB) or MsgPack for serialization ruins the latency.
For these middleware, for all patterns, the fastest combination
is at least 13 times slower than the fastest combination for all
middleware. While for these serializers, for all patterns, the
best combination is 70 times slower than the fastest
combination for all serializers.

 The Request-Reply tests (Fig. 4) show that the latency for
45 percent of the combinations is below 20 milliseconds, for
29 percent it is below 10 milliseconds, and for 5 combinations,
it is below 2 milliseconds.

The Push-Pull tests (Fig. 5) show that the latency for half
the combinations is below 20 milliseconds, for a third, it is
below 10 milliseconds and for 12 combinations it is below 2
milliseconds.

The Publish-Subscribe tests (Fig. 6) shows that the latency
for a third of the combinations is below 20 milliseconds, that
20 percent of the combinations is below 10 milliseconds and
that for 2 combinations it is below 2 milliseconds.

Fig. 1. Request-Reply throughput ordered by the sum of middleware and serialization throughput.

Fig. 2. Push-Pull throughput ordered by the sum of middleware and serialization throughput.

Fig. 3. Publish-Subscribe throughput ordered by the sum of middleware and serialization throughput.

Fig. 4. Request-Reply latency ordered by the sum of middleware and serialization latency.

Fig. 5. Push-Pull latency ordered by the sum of middleware and serialization latency.

Fig. 6. Publish-Subscribe latency ordered by the sum of middleware and serialization latency.

IV. DISCUSSION

A. Communication Standards

One thing that is clear from the performance
measurements of throughput using all messaging patterns is
that Web Services and XMPP are far from being the best
middleware available.

The performance measurements of latency for all
messaging patterns also show that using XMPP with all
serializers or Web Services with the fastest serializers results
in the latency being much higher than with all other
middleware except for OPCUA.

This should be proof enough that there are much better
alternatives for middleware than using Web Services or
XMPP as recommended by the prevalent communication
standards, at least in the case of the processing unit being a
Raspberry Pi and a 100 Mbit/s data connection.

For serialization, the throughput and latency tests using all
messaging patterns show that JSON is generally a better
alternative to using XML, binary serializers are generally
faster than string serializers are, and even though they show
that the serialization format is more important than the library,
the library still makes a big difference, especially for JSON.

This shows that there are better alternatives for serializers
than the ones used by the prevalent communication standards,
which are all based on XML.

B. Guidance

The choice of middleware and serialization makes a huge
difference in both throughput and latency performance, with
the best combinations having a throughput that is at least 8
times higher than the average, and a latency that is at least 75
times faster than the average, for all messaging patterns.

The best results for middleware come from using ZeroMQ,
YAMI4 or ICE, with the first two, also enabling Publish-
Subscribe. In addition, WAMP performs quite well for Push-
Pull and Publish-Subscribe on throughput and does adequately
on latency for the same messaging patterns, making it a good
alternative for newer systems not using Request-Reply.

For serialization, the best results come from using
ProtoBuf (ProtoStuff) or ProtoStuff, with the advantage of
ProtoBuf (ProtoStuff) being compatible with Google ProtoBuf
serializers. Smile (ProtoStuff) and Fast-Serialization, do
however do a really good job and are good alternatives.

C. Real World Cases

It is quite interesting that a throughput of 500 messages per
second for Request-Reply and 400 messages per second for
Push-Pull and Publish-Subscribe can be achieved using IEC
61850 logical node classes.

Moreover, the fact that an average latency of under 2
milliseconds for all messaging patterns can be achieved with
the right combination of middleware and serialization is quite
promising.

D. Compared to Previous Results

Compared to the performance results from the paper
“Smart Grid Communication Middleware Comparison” [5],
which compares middleware using random binary and string
data, of different sizes, the message sizes used for this paper
range from 2 to 13 kB, and the time used for serialization is
now part of the performance measurements. This takes away
the big advantage with Request-Reply that ZeroMQ, ICE, and
RMI had for small message sizes.

The results for middleware compared to earlier (Fig. 7) are
as expected, with ZeroMQ, YAMI4 and ICE still leading in
performance, but when looking at the difference between
Request-Reply and the other messaging patterns, the
difference is huge. The previous results showed that the other
patterns are up to 10 times faster than Request-Reply, which
because of the increased message sizes and the change from
sending a full message in both directions for Request-Reply to
only sending it back, makes the difference between the
patterns quite small, with Request-Reply being the fastest.

For getting measurement data, Publish-Subscribe still has the
advantage over Request-Reply, that it gets data when it is
available instead of having to do polling to see if new data is
available.

For serialization, the results compared to those from the
earlier paper “Smart Grid Serialization Comparison” [3] (Fig.
8), show that the speed of the serializers is much more
important than the size of the resulting serialized output. This
is especially clear when looking at the bad performance of
MsgPack and Avro (Jackson), which produce very small
messages but are slower than most other binary serializers are.

Generally, the results compared to the previous results are
as expected with ProtoBuf (ProtoStuff) and ProtoStuff being
the fastest, but one thing that is quite surprising is that Kryo
does significantly worse than Fast-Serialization, and is no
longer one of the fastest serializers.

Fig. 7. Middleware throughput (10 kilobyte messages). [5]

V. CONCLUSION

The paper shows that there are much better middleware
alternatives than XMPP & Web Services and that there are
much better serialization alternatives than XML. All of which
are advocated for by prevalent communication standards.

The choice of middleware makes a significant difference
in performance, with ZeroMQ, YAMI4, and ICE being the
best, and being much better than XMPP and Web Services.
The eventual choice should be determined by the
characteristics of the middleware, which can be found in the
earlier paper “Smart Grid Communication Middleware
Comparison” [5].

The choice of serialization is even more important than the
choice of middleware, especially because of the loss of
performance with most serializers compared to using ProtoBuf
(ProtoStuff) and ProtoStuff, which are by far the best choices,
with a Raspberry Pi and a 100 Mbit/s data connection.

The throughput measurements of up to 400 messages per
second, and the latency measurements below 2 milliseconds,
both for all messaging patterns, show how fast measurements
and control commands could be delivered for distributed
control systems. However, it should be considered that the
distance between the actual devices will be longer, and
therefore the throughput and latency will not be as good as for
these tests, though a lot better than for a centralized control
system with much longer distances.

Compared to previous results the same middleware
perform the best, with the only real difference being that
Request-Reply performs much better with the current tests
than for the earlier tests.

For serialization, it was previously unknown whether the
serializers with the smallest output size or the ones with the
fastest serialization time would have the best performance
when sending measurements and control commands using

communication. For the current setup, the serialization time is
much more important than the size of the message, but the
chance of a future DER having a processing unit with the
performance of a Raspberry Pi is a lot bigger than it having a
100 Mbit/s data connection to the other DERs.

Therefore, an important thing to investigate in the future is
the impact of different processing units and different data
connections, which could shift the balance for serialization
between the importance of the size of the output and the
serialization time.

With the current setup, the potential impact of compression
would most likely be that the best results would come from
using no compression, as the time used for compression would
offset the gain from smaller messages, however, if the
processing unit was stronger compared to the data connection,
the results would probably be quite different.

When using the results, it should be considered that the
objects that are serialized and sent are IEC 61850 logical node
classed filled with random data for the required properties,
which add a lot of overhead compared to more compact and
primitive objects.

The memory used by the middleware and serialization is
outside the scope of this paper, but it can be seen for
middleware and serialization individually from the earlier
papers, along with data loss.

REFERENCES

[1] "Scientific American," [Online]. Available:
http://blogs.scientificamerican.com/plugged-in/renewable-energy-
intermittency-explained-challenges-solutions-and-opportunities/.
[Accessed 27 09 2016].

[2] M. Albano, L. L. Ferreira, L. M. Pinho, A. R. Alkhawaja, "Message-
oriented middleware for smart grids," in Computer Standards &
Interfaces 38: 133-143., 2015.

[3] L. Qilin, L. Mintian, "The state of the art in middleware," in Information
Technology and Applications (IFITA), 2010.

[4] A. Dworak, M. Sobczak, F. Ehm, W. Sliwinski, P. Charrue, "Middleware
trends and market leaders 2011," in Conf. Proc.. Vol. 111010. No.
CERN-ATS-2011-196. 2011., 2011.

[5] B. Petersen, H. Bindner, S. You, B. Poulsen, "Smart Grid
Communication Middleware Comparison," in SmartGreens, Porto, 2017,
in press.

[6] B. Petersen, H. Bindner, S. You and B. Petersen, "Smart Grid
Serialization Comparison," in SAI Computing Conference, London,
2017, in press.

[7] R. E. Mackiewicz, "Overview of IEC 61850 and Benefits," IEEE PES
Power Systems Conference and Exposition, Atlanta, GA, pp. 623-630,
2006.

[8] C. McParland, "OpenADR open source toolkit: Developing open source
software for the Smart Grid," IEEE Power and Energy Society General
Meeting, San Diego, CA, pp. 1-7, 2011.

[9] M. Uslar, S. Rohjans, S. Specht, J. M. G. Vázquez, "What is the CIM
lacking?," IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT Europe), Gothenburg, pp. 1-8, 2010.

Fig. 8. Serialization time & size. [3]

