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Abstract—Renewable energy is increasingly being curtailed,
due to oversupply or network constraints. Curtailment can be
partially avoided by smart grid management, but the long term
solution is network reinforcement. Network upgrades, however,
can be costly, so recent interest has focused on incentivising
private investors to participate in network investments. In this
paper, we study settings where a private renewable investor
constructs a power line, but also provides access to other
generators that pay a transmission fee. The decisions on optimal
(and interdependent) renewable capacities built by investors,
affect the resulting curtailment and profitability of projects, and
can be formulated as a Stackelberg game. Optimal capacities rely
jointly on stochastic variables, such as the renewable resource at
project location. In this paper, we show how Markov chain Monte
Carlo (MCMC) and Gibbs sampling techniques, can be used to
generate observations from historic resource data and simulate
multiple future scenarios. Finally, we validate and apply our
game-theoretic formulation of the investment decision, to a real
network upgrade problem in the UK.

I. INTRODUCTION

Renewable energy sources (RES) play a key role in the
climate change mitigation agenda. RES are variable, depend on
weather patterns and are difficult to predict, hence raise techni-
cal challenges regarding network management. Moreover, grid
infrastructure is often inadequate to support RES development,
especially in the area of distribution networks. For instance,
often RES projects are clustered in remote areas of the grid,
where planning approval may be favourable and renewable
resources abundant. Typically, in the UK, such areas are windy
islands with constrained connections to the main grid. In these
areas, technical limitations and imbalance of renewable supply
to demand, often result in RES curtailment, i.e. the energy
that could have been generated is wasted as the system cannot
absorb it or transfer it where required. Curtailment can affect
implementation of future RES projects, result in lost revenues
and instigate socio-economic challenges, especially when local
community-owned projects are involved.

Typically, RES generators are granted firm connections to
the grid and receive compensation for incurred curtailment, the
cost of which is eventually borne by all system users. However
in several occasions, RES generators are offered interruptible,
non-firm connections, as an alternative to expensive or time
consuming reinforcements. The so-called flexible commercial
arrangements are increasingly offered by network operators, as
an alternative, and are creating a shift in network access rules.
A detailed review on flexible commercial arrangements can be
found in [1], [2]. As shown in [3], arrangements that are fair

and equally share curtailment and access among generators,
can maximise the generation capacity built at a certain location
and minimise discouragement for future investors.

Solutions to reduce curtailment include demand side man-
agement, energy storage or smart grid techniques such as
Dynamic Line Rating (DLR) or real-time monitoring of the
thermal state of the lines [4] and Active Network Management
(ANM), i.e., the automatic control of the power system by
control devices and data that allow real time operation and
optimal power flows [5]. The long term solution, however,
is network upgrade. Anaya & Pollit (2015) compared smart
interruptible connections to traditional grid reinforcements
in [5]. It is estimated that, by 2030 in the US alone, up to
$2 trillion will be required for network upgrades [6]. As grid
expansion is expensive, it is desirable to provide incentives to
private parties for taking part in such investments. Private
network upgrades have been studied in several works [7],
[8]. However, they raise the question for system operators
of defining the framework within which these private lines are
incentivised, built and accessed by competing generators.

New private lines constructed, often follow a ‘single access’
principle, i.e. lines for sole-use that suffice only to accommo-
date the RES capacity of each project. However, as shown
in [3], it is possible for system operators to encourage RES
generators to install larger capacity lines under a ‘common ac-
cess’ principle, i.e. a private investor is licensed to build a line
only if it grants access to smaller generators, which are subject
to transmission charges. In these settings, curtailment and line
access rules can play a significant role in the resulting grid
expansion. Crucially, this leads to a leader-follower or a Stack-
elberg game between the line investor and local generators
respectively. Stackelberg games in network upgrades and RES
settings have been presented in [9], [10]. Our previous work
was one of the first to introduce Stackelberg game formulations
in settings that combine network upgrades, curtailment and
line access rules, however the model presented in [3] did not
take into account stochastic generation and demand required
for equilibrium estimation. Subsequent work [11] improved
by utilising real data, however, followed a one-shot, single
scenario approach. We build on this work by developing a
principled framework, based on game-theoretic and state-of-
the-art sampling techniques, i.e. Markov chain Monte Carlo
(MCMC). Several authors used MCMC for modelling of wind
speeds or wind power outputs [12], [13]. Our framework
allows modelling multiple renewable investment scenarios that
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reduce the uncertainty of future generation and demand. In
more detail, the main contributions of the work are:

• We develop a new methodology that generates observa-
tions from renewable resource data. While historic data,
such as wind speeds may be available, they might have
considerable gaps and joint distributions cannot be ex-
pressed in simple, closed-form equations. For this reason
we develop a MCMC methodology (Gibbs sampling) that
can draw samples from available data and run multiple
scenarios of potential futures.

• We establish a methodology that can determine optimal
generation capacity investments through use of real de-
mand and wind speed data. This work is one of the first to
combine Stackelberg equilibria to a large-scale realistic
game with MCMC techniques. Our model designates
players’ actions, depending on RES output correlation
and expected curtailment, and studies the cost parameters
effects on the equilibrium of the game.

• Previous work has been extended to account for varying
demand data instead of an average approach followed in
both [3], [11]. The model is applied and validated in a
real network upgrade problem in the UK.

Section II of the paper presents the theoretical formulation of
the game, Section III introduces Gibbs sampling, Section IV
demonstrates the methodology based on a real-world case
study, Section V shows the results and Section VI concludes.

II. STACKELBERG GAME MODEL DESCRIPTION

Consider a simplified two-node network: location A is a
net consumer (area of high demand) and location B is a net
producer (area of high wind resource). Moreover, consider two
players: a line investor, who can be merchant-type or a utility
company and is building i) the AB interconnection and ii) PN1

renewable capacity at B, and a local player representing all
local RES generators located at B, and who builds renewable
capacity equal to PN2

. This second player can be thought of
as investors from the local community, who do not have the
technical/financial capacity to build a line, but may have access
to cheaper land, find it easier to get social approval to build
turbines etc., hence may have lower costs for RES deployment.

Building the line will elicit a reaction from local investors.
Crucially, the line investor has a first mover advantage in
building the grid infrastructure, which is expensive, technically
challenging, and only few investors (e.g. DNO-approved) have
the expertise and regulatory approval to carry it out. From a
game-theoretic perspective, this is a bi-level Stackelberg game,
between the leader (line investor or first player) and follower
(local generators or second player). We assume that players’
actions are driven by profit maximisation criteria. The profit
functions of players can be expressed as in [11]:

Π1 = (EG1
−EC1

)pG−EG1
cG1

+(EG2
−EC2

)pT −CT (1)

Π2 = (EG2
− EC2

)(pG − pT )− EG2
cG2

(2)

In these equations, EGi represents player’s i expected energy
produced over the project lifetime, if no curtailment occurred,

while ECi is the energy lost through curtailment. Line cost
is estimated as CT = IT +MT , where IT is the cost of
building the line (or initial investment) and MT the cost
of operation and maintenance. The monetary value of the
power line is proportional to the energy flowing from B to
A, charged for local generators and ‘common access’ rules
with pT transmission fee per energy unit transported through
the line. Moreover, the cost of expected generation per unit
is defined as cGi

= (IG,i +MGi
)/EGi

, where IGi
is the cost

of building the plant and MGi
the operation and maintenance

costs. Finally, the energy generated by a RES unit is sold at
a constant generation tariff price, equal to pG.

As seen in Eq. (1), the line investor has two streams of
revenue, the self-produced energy and the energy produced
by local generators and transported through the line. The costs
of the line investor relate to installing and operating the RES
capacity (cG1

) and to building the power line (CT ). Similarly
from Eq. (2), the profits of the local generators depend only
on the energy produced (generation cost cG2 ) and transmitted
through the line at a charge of pT .

The research question our model tries to answer is ‘How to
determine the optimal generation capacities PNi

built by the
two players, so that profits are maximised?’ To answer this
question, the profit equations, Eq. (1) and Eq. (2), need to be
expressed in terms of generation capacities.

Following the analysis presented in [11], expected genera-
tion EGi

and curtailment ECi
can be expressed as functions

of the players’ generation capacities. If xi is the per unit
power generated by i player, then this represents a stochastic
variable that depends on the wind speed distribution, and is
equal to xi = PGi/PNi , where PGi is the actual power output
of i generator and PNi its rated capacity. If E(PGi,t) is the
expected power generated at time interval t, then the total
energy generated for duration equal to the project’s lifetime
is EGi =

∑
t

xiPNi =
∑
t

E(PGi,t),∀t. Similarly, the total

energy curtailed is EC =
∑
t

E(PCt
),∀t, where E(PCt

) is the

expected power curtailed at time step t.
The resulting curtailment depends on wind resources at

location B and demand at A, denoted as PD,t. Curtailment
events happen when x1PN1

+ x2PN2
− PD,t > 0. Players’

generating plants are located at neighbouring locations at B,
therefore experience correlated wind speeds. The stochastic
variables x1 and x2, follow a joint probability distribution
function f(x1, x2) and expected curtailment at time interval t
can be expressed as (detailed analysis shown in [11]):

E(PC,t) =

∫ 1

0

∫ 1

PD,t−x1PN1
PN2

(x1PN1 + x2PN2)f(x1, x2)dx2dx1

− PD,t
∫ 1

0

∫ 1

PD,t−x1PN1
PN2

f(x1, x2)dx2dx1

(3)
Crucially, Eq. (3) shows that curtailment depends on both
players’ strategies i.e. the generation capacities built. Curtail-
ment expressions for each player under a ‘common access’



regime can be reasonably can be approximated by ECi
=

EGi

EGi
+ EG−i

EC . This concludes the expression of profit

equations as functions of players’ rated capacities.
Optimal capacities installed are determined in the equilib-

rium of the game, which is found by backward induction.
The line investor or leader assesses and evaluates the second
player’s reaction, in order to determine his strategy (i.e. PN1 )
and influence the equilibrium price. The leader estimates the
follower’s best response, given his own capacity PN1

:

P ∗
N2

= arg max
PN2

Π2(PN1
, PN2

) (4)

Next, the leader estimates which solution from the set of the
local generators’ best response P ∗

N2
maximises his own profit:

P ∗
N1

= arg max
PN1

Π1(PN1 , P
∗
N2

) (5)

In other words, the leader moves first by installing their own
capacity. In the second level, followers respond to the capacity
built, as anticipated by the leader. The equilibrium of the game
(P ∗
N1
, P ∗

N2
) satisfies both Eq. (4) and Eq. (5) and is given by

the notion of the subgame perfect equilibrium.
In practical settings the joint distribution of stochastic

renewable resources is often unknown, but historic data may
be available. In addition, due to the interdependency in re-
sulting curtailment and multiple parameters a nice closed-
form solution of the game cannot be found or expressed
analytically. In [11] we presented an empirical algorithm that
utilises directly real data and approximates the solution of the
game following a one-shot approach. In addition, data may
experience important gaps. In this paper we show how we can
utilise real data to simulate scenarios that approximate the real
distribution with a state-of-the-art MCMC technique.

III. GIBBS SAMPLING

Markov chain Monte Carlo (MCMC) is a class of methods
for simulation of stochastic processes. Gibbs sampling can be
thought of as a particular case of the Metropolis-Hastings
algorithm used for MCMC [14]. The Gibbs sampler uses
the conditional distributions as proposal distributions with
acceptance probability equal to 1 [15] and can be easily imple-
mented in various applications. Using this technique we can
generate, from historic data, observations that are dependent.
Wind data samples from the project locations form a Markov
chain (MC). We can experiment with the length of the chain
or sampling size n and we can repeat the process for multiple
MCs or number of realisations N . In practice, n and N need to
be determined in such way that the resulting MC converges to
the real distribution, is ergodic and computationally efficient.
Ergodicity means that all possible states of the MC can be
visited and are independent of the starting state [15]. The
methodology applied is described in detail in the next sections
with the help of the Kintyre-Hunterston case study.

Fig. 1. Kintyre-Hunterston project map1

IV. CASE STUDY ANALYSIS

A. Kintyre-Hunterston link

The case study analysis is based on a real £230m grid rein-
forcement project in the UK that links the Kintyre peninsula
to the Hunterston substation on the Scottish mainland (see
Fig. 1). Kintyre is a region that has attracted vast renewable
investment, predominantly wind generation, resulting in the
necessity of a newly built power line, which provided space
for 150 MW of additional renewable capacity.

Following the analysis described in Section II, we assume
that the demand region or Location A is Hunterston and
location B is the geographical region covering the Kintyre
peninsula. The line investor and local generators install gen-
eration capacities at different sub-regions of B. Two weather
stations were selected by the UK Met Office database2, the
station with ID 908 located in the Kintyre peninsula (wind
farm of line investor) and with ID 23417 located in Islay
(wind farm of local generators), with a distance between
them of 44 km. These weather stations provide data over a
common period of 17 years (1999–2015). Demand data used
in simulations are based on real UK National Demand data 3 in
the time period of 2006–2015. UK demand data are normalised
to represent a lower local demand. More details on the case
study and data processing can be found in [11].

Literature in wind forecasting commonly uses Weibull dis-
tributions for the representation of actual wind distributions.
However, the joint probability distribution of the wind speed
(and of the players’ power outputs), exhibits correlation and in
practice is not known. If there are sufficient wind speed mea-
surements for both players locations, then the joint probability
distribution can be approximated directly from the available
historic data. The method described in the following section
can be used to draw observations from available data and
simulate different scenarios. The technique can generate large
datasets as required for the intended analysis.

B. Gibbs sampling applied

We apply Gibbs sampling to the joint bivariate distribution
of wind speeds at the players’ locations. Players’ wind speeds

2https://badc.nerc.ac.uk/search/midas stations/
3http://www2.nationalgrid.com/UK/Industry-information/

Electricity-transmission-operational-data/Data-Explorer/

https://badc.nerc.ac.uk/search/midas_stations/
http://www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-operational-data/Data-Explorer/
http://www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-operational-data/Data-Explorer/


TABLE I
RESULTS FOR N = 100 REALISATIONS AND AN INCREASING NUMBER OF OBSERVATIONS n

Sample size w̄1 σw̄1 WCI w̄1 ME w̄1 w̄2 σw̄2 WCI w̄2 ME w̄2 P̄D σP̄D
WCI P̄D ME P̄D

n = 1, 000 12.1321 0.6569 0.2607 18.91% 12.2297 0.6226 0.2470 17.61% 108.5722 0.7859 0.3119 2.63%
n = 5, 000 12.0853 0.2903 0.1152 6.65% 12.1762 0.2797 0.1110 6.47% 108.6271 0.3395 0.1348 1.49%
n = 10, 000 12.0929 0.2262 0.0897 4.63% 12.1842 0.2187 0.0869 4.36% 108.6000 0.2403 0.0953 1.03%
n = 50, 000 12.1125 0.0874 0.0347 2.02% 12.2028 0.0857 0.0340 1.97% 108.5979 0.1033 0.0410 0.73%
n = 100, 000 12.1155 0.0631 0.0251 1.28% 12.2075 0.0602 0.0239 1.16% 108.5954 0.0663 0.0263 0.70%
n = 200, 000 12.1065 0.0441 0.0175 0.80% 12.1986 0.0427 0.0169 0.76% 108.5915 0.0453 0.0180 0.62%
n = 500, 000 12.1049 0.0272 0.0108 0.68% 12.1968 0.0262 0.0103 0.62% 108.5930 0.0288 0.0114 0.57%

TABLE II
RESULTS FOR n = 5, 000 SAMPLING SIZE AND AN INCREASING NUMBER OF REALISATIONS N

Realisations w̄1 σw̄1 WCI w̄1 ME w̄1 w̄2 σw̄2 WCI w̄2 ME w̄2 P̄D σP̄D
WCI P̄D ME P̄D

N = 100 12.0850 0.2774 0.0840 6.64% 12.2017 0.2671 0.0809 6.01% 108.5703 0.3037 0.0919 1.34%
N = 170 12.1120 0.2217 0.0879 5.35% 12.1812 0.2145 0.0851 5.15% 108.6275 0.3279 0.1301 1.26%
N = 500 12.0867 0.2709 0.0476 7.22% 12.1764 0.2618 0.0460 7.16% 108.5932 0.3052 0.0536 1.47%
N = 1, 000 12.1097 0.2764 0.0343 8.20% 12.2025 0.2666 0.0331 7.57% 108.5949 0.3198 0.0397 1.47%
N = 5, 000 12.1044 0.2793 0.0155 9.06% 12.1966 0.2717 0.0151 8.81% 108.5951 0.3244 0.0180 1.58%
N = 10, 000 12.1032 0.2754 0.0108 9.41% 12.1956 0.2672 0.0105 8.60% 108.5917 0.3268 0.0128 1.70%
N = 50, 000 12.1022 0.2787 0.0049 9.87% 12.1943 0.2707 0.0048 9.26% 108.5901 0.3241 0.0057 1.70%

Algorithm 1 GIBBS SAMPLING

1: w1,w2,PD . wind speed 1,2, power demand
2: T . number of samples
3: 〈w(k)

1 , w
(k)
2 , P

(k)
D 〉, k ∈ {1, 2, ..., kmax} . historic data

4: F (w1, w2) . wind distribution from data

5: G

(
PD,

w1 + w2

2

)
. demand cond. distrib. on mean

wind
6: t← 1
7: 〈w(t)

1 , w
(t)
2 , P

(t)
D 〉 ← sample(w1, w2, PD) . initialise

8: repeat
9: w

(t+1)
1 ← sample F (w1 |w(t)

2
)

10: w
(t+1)
2 ← sample F (w2 |w(t+1)

1
)

11: P
(t+1)
D ← sample G

(
PD |w(t+1)

1 +w
(t+1)
2

2

)
12: t← t+ 1

13: until t > T
14: return 〈w(t)

1 , w
(t)
2 , P

(t)
D 〉, t ∈ {tburn, tburn + 1, ..., T}

at each time t form a MC. The methodology is described
in Alg. 1. From available historic data, we create a joint
distribution table of wind speeds at the players’ locations. For
every possible wind speed w1 of first player, we record the
subset of w2 wind speed, and vice versa (Line 4 in Alg. 1).
This represents the conditional distributions. In practice,the
probabilities for certain combinations of wind speeds can
be low (e.g. it is unlikely to have extremely high wind at
one location and low wind speed to a proximal location),
therefore some subsets can be sparse, either because some
of observations represent rare events or due to correlation.
We overcome this difficulty by merging sparse bins of rare
events and outliers, and ensure ergodicity of the MC. The
MC is initialised by randomly selecting a sample from the
joint distribution table (Line 7 in Alg. 1). Each iteration step

involves replacing the value of one variable by a value se-
lected randomly by the conditional F (wi |w−i(t)). In addition,
demand is randomly selected by the conditional distribution of
demand over the average wind speed (Line 11 in Alg. 1). The
procedure is cycled through the variables forming n samples of
〈w(t)

1 , w
(t)
2 , P

(t)
D 〉, t ∈ {1, 2, ..., T = n}. To ensure that the MC

converges, we run Alg. 1 for several sampling sizes n (small,
moderate, large) and repeat the procedure for N realisations.
Results are shown in Tables I and II. Columns represent
the sample mean, standard deviation of the sample mean,
width of the 95% confidence interval (WCI) and maximum
error (ME) from mean of historic data, i.e. µw1

= 12.1029,
µw1

= 12.1950 and µPD
= 108.1830. As the sampling size

increases the sample mean follows a normal distribution and
the standard deviation decreases, as expected by the central
limit theorem (Table I). We perform the same analysis for an
increasing number of realisations that use a different starting
point (Table II). We also adopt a burn-in or warm-up period of
20% of samples to make sure that our results are independent
off the starting state [15]. The results show that MC converges
to the distribution from data and that a large n is required but
N can be chosen to be relatively small. For this reason and
driven by computational limitations, for the estimation of the
Stackelberg equilibrium, we selected n = 50, 000, N = 170
and burn-in of 10, 000 samples.

C. Stackelberg equilibrium estimation

Wind speed data generated by the Gibbs sampler are used to
estimate the per unit power output of wind generators. Estima-
tion is based on a generic power curve4 and a sigmoid function
approximation (see Alg. 2 Line 4). Players’ strategies are the
capacities they can install. The maximum feasible solution for
a single player was set equal to PNmax = 500.5 MW and the
incremental capacity to step = 0.5 MW. For every possible

4Parameters derived by a 2.05 MW Enercon E82 wind turbine: http://www.
enercon.de/en/products/ep-2/e-82/

http://www.enercon.de/en/products/ep-2/e-82/
http://www.enercon.de/en/products/ep-2/e-82/


Algorithm 2 GENERATION & CURTAILMENT ESTIMATION

1: PNmax . max rated capacity in search space
2: PNi ← [0 : step : PNmax ] . strategy space i=1,2 player
3: α, β . power curve sigmoid parameters

4: P
(t)
Gi
← 1

1 + e−α(w
(t)
1 −β)

· PNi
. generation i player

5: for all PN1
∈ {0, ..., PNmax} do

6: for all PN2 ∈ {0, ..., PNmax} do
7: RD ← PD − (PG1 + PG2) . residual demand
8: if RD > 0 then . no curtailment
9: RD ← 0

10: end
11: PC1

← PG1 ·RD
PG1

+ PG2

. curtailment gen 1

12: PC2
← PG2 ·RD

PG1
+ PG2

. curtailment gen 2

13: end
14: end
15: EGi

(PNi
)←

∑
PGi

. total gen i

16: EC1
(PN1

, PN2
)←

∑
PC1

. total curt 1

17: EC2(PN1 , PN2)←
∑

PC2 . total curt 2
18: return (EG1

, EG2
, EC1

, EC2
)

combination of the rated capacities installed (PN1
, PN2

), we
estimate the power generated and curtailed for each player
on an hourly basis. Next, we estimate the aggregate power
generated and curtailed by each player as the summation of
40, 000 data points. The procedure is described in Alg. 2.

For several cost parameters (cG1
, cG2

, pT ) and feed-in tariff
price pG, we estimate the profits as defined in Eq. (1) and
Eq. (2). For every possible PN1

, we find the capacity P ∗
N2

that
maximises the follower’s profits Π∗

2 (follower’s best response).
From this set of solutions, the leader selects the one that
maximises its own profit i.e. P ∗

N1
(leader’s best response). The

equilibrium of the game is given by the pair (P ∗
N1
, P ∗

N2
), which

satisfies best response functions as described in Alg. 3.

V. RESULTS AND DISCUSSION

The methodology described in previous sections was fol-
lowed to run several experiments. Fig. 2 shows the optimal
rated capacities built by the players at the equilibrium of
the game for N = 170 realisations. Recall here that every
realisation represents a completely different MC generated.
The results are satisfactory and show a 10 MW range in the
estimated solutions for optimal rated capacities. Similar results
were observed for the optimal profits derived.

Moreover, we study how the equilibrium results depend
on varying cost parameters. Fig. 3 shows the dependence
on line investor’s cost (first column), local generators’ cost
(second column) and the transmission fee (third column). We
assume that both players can sell the energy generated for
pG = £74.3/MWh. For each scenario, the key parameter
varies, while other parameters remain fixed (Scenario 1:
cG1 = 0.16 . . . 0.68pG, cG2 = 0.30pG and pT = 0.26pG,

Algorithm 3 PROFIT & STACKELBERG EQUILIBRIA

1: pG, pT . feed-in tariff, transmission fee
2: CT . cost of line
3: cGi . i player’s generation cost
4: for all PN1 ∈ {0, ..., PNmax} do
5: for all PN2 ∈ {0, ..., PNmax} do
6: Π1 ← (EG1

− EC1
)pG − EG1

cG1
+

7: (EG2 − EC2)pT − CT
8: Π2 ← (EG2 − EC2)(pG − pT )− EG2cG2

9: end
10: end
11: for all PN1

∈ {0, ..., PNmax
} do . best response gen 2

12: Π∗
2 ← max

PN2

Π2(PN1
, PN2

)

13: P ∗
N2
← arg max

PN2

Π2(PN1 , PN2)

14: end
15: Π∗

1 ← max
PN1

Π1(PN1
, P ∗

N2
) . best response gen 1

16: P ∗
N1
← arg max

PN1

Π1(PN1
, P ∗

N2
)

17: return Π∗
1,Π

∗
2, P

∗
N1
, P ∗

N2

Number of iterations n
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Fig. 2. Optimal generation capacities of each player for several realisations
(cG1 = 0.3pG, cG2 = 0.28pG, pT = 0.26pG and pG = £74.3/MWh)

Scenario 2: cG1 = 0.30pG, cG2 = 0.08 . . . 0.54pG and
pT = 0.26pG and Scenario 3: cG1 = 0.26pG, cG2 = 0.20pG
and pT = 0 . . . 0.80pG). The results in Fig. 3 show the
average equilibrium solution and min-max solutions, found
for N = 170 realisations of the simulation procedure.

In all sets of scenarios, the total capacity installed by all
players decreases as the tested parameter value increases. Each
player installs less capacity as their generation cost increases,
while the other player benefits by increasing their capacity. The
cost of local generators has a larger impact on the capacities
installed for both players, as shown by comparing the first to
the second column. Profits have similar behaviour to the op-
timal rated capacities, but local generators face the additional
cost of transmission charges. If the followers’ generation cost
is much lower than the line investor’s (assuming for example
that local generators might have access to cheaper land), the
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Fig. 3. Rows (1) and (2) show generation capacity built and profits at Stackelberg equilibrium, respectively, column (1) shows dependency on generation cost
of line investor, (2) on on generation cost of local generators and (3) on transmission fee

line investor needs to charge a high transmission fee to have
positive earnings. On the contrary, if the leader’s cost is much
lower, the generation capacity will mostly be installed by the
line investor, as there is no room for profitable investment
from local renewable producers. As shown in Scenario 3,
pT ' 0.16pG or ' £12MWh is the minimum value of
transmission charges that allows profit for the line investor.
Similarly, if the transmission fee is set too high, then it is not
profitable for local investors to invest in renewable genera-
tion. As pT is set by the system regulator, the methodology can
be useful to determine a feasible range of charges that allows
both transmission and generation investments to be profitable.

VI. CONCLUSIONS & FUTURE WORK

In this work we show how privately developed network
upgrade for DGs can lead to a leader-follower game between
the line and local investors. Curtailment and line access rules
play a key role in the strategic game, the equilibrium of which
determines optimal generation capacities and their profits.
Settings where this model can be applied include numerous
locations where demand and generation are not co-located.
When real historic data is available, we can use MCMC
and Gibbs sampling to simulate multiple future scenarios and
reduce the uncertainty of the investment decisions. In the
future, we plan to extend the model to multi-location settings
and introduce energy storage, which enables using renewable
energy to satisfy more of the outstanding demand, and hence
reduces curtailment, changing the joint investment game.
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