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Abstract — Electric power network expanded rapidly in recent 
decades due of the excessive need of electricity in every aspect of 
life, including critical infrastructures such as medical services, 
and transportation and communication systems. Natural 
disasters are one of the major reasons of electricity outage. It is 
extremely important to restore electrical energy in the shortest 
time possible after a disaster. This paper proposes a decision 
support method for electric system operators to restore electricity 
to the critical loads in a distribution system after an earthquake. 
The proposed method employs Markov Decision Process to find 
the optimal restoration scheme based on the Probability of 
Failure of critical structures determined by using the Peak 
Ground Acceleration values recorded by observatories and 
earthquake research centers during earthquakes.  

Keywords — Decision Support, Disaster Management, 
Distribution Systems, Markov Decision Process. 

I.  INTRODUCTION 
Fast restoration of electricity after a disaster is extremely 

important, since modern life, as we know it, relies on the 
presence of electricity. Black-start is a hard problem to solve 
even if the considered system is not structurally damaged. 
However, after a disaster, it is highly probable that the field 
instruments may be destructed. Especially overhead lines and 
transformers at urban areas are prone to get damaged during an 
earthquake. In this study, a decision support method for 
distribution systems hit by an earthquake is developed. The 
proposed method determines the best strategy to energize the 
power lines based on the probability of exceeding the damage 
state of failure (Probability of Failure - PF) obtained by using 
the recorded peak ground acceleration (PGA) values. The 
method determines the optimal strategy using Markov decision 
process (MDP). 

Power system restoration and disaster management have 
been studied widely in various aspects in the last decade [1] – 
[9].  [1] and [2] aim to develop recovery plans for expected 
disasters and outages. [3] evaluates use of micro-grids for fast 
restoration of power systems. [4] – [7] propose online disaster 
management methods with the help of field information 
provided by sensors. However, those methods do not consider 
destruction of field components, such that they assume none of 

the transformers and transmission lines are damaged. 
Moreover, they require deployment of field sensors. Whereas, 
the proposed decision support mechanism for system 
restoration only requires basic SCADA data and PF, which is 
determined by using the real time earthquake data. In [8] and 
[9] planning strategies to improve the resilience of the power 
systems are presented. In this paper, rather than a planning 
strategy, a decision support method that will be utilized in the 
presence of a disaster is proposed. This method considers the 
properties of the realized earthquake and the existing 
infrastructure of the distribution system. 

In this paper, a novel framework based on MDPs to generate 
optimal restoration strategy, i.e. the strategy with minimum 
expected restoration time, for a medium voltage (MV) 
distribution system after an earthquake is presented. The 
proposed method models the restoration of electric distribution 
system as an MDP, such that a state of the MDP represents the 
overall information about the network. In particular, an MDP 
state shows the physical status of each branch, such that a 
branch is in either good (energized), damaged (broken/cannot 
be energized) or unknown condition. An action represents the 
set of branches that can be energized in a state and the 
transition probabilities are computed according to the recorded 
PGA data. The PGA data is recorded by observatories and 
earthquake research institutes, and the data is published after 
an earthquake is experienced. The PF values can be calculated 
easily once the PGA data is received.   

The proposed model reduces the synthesis of optimal 
restoration strategy to optimal policy synthesis problem for 
MDPs. Moreover, the new modeling formalism supports 
incorporation of further constraints into the synthesis of the 
restoration strategy. The method uses real time data based on 
PF to achieve its minimal restoration time goal by avoiding 
paths with the highest failure probability. The proposed 
method does not require any additional infrastructure. The 
MDP formulation enables assessment of each sequence of 
actions; therefore, it provides an optimal restoration strategy.  

II.  PROPOSED METHOD 
A.  Fragility Analysis 

Earthquakes, due to their randomness of the return period 
and the shaking intensity, are one of the most unpredictable 
natural hazard types. Therefore, it is required to perform 
seismic performance assessment of the existing structures in 
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order to compute the safety against seismic hazard. Fragility 
curves are used to represent the seismic risk exposure based on 
the risk and safety assessment of structural components. These 
curves show the probability of exceeding a structural 
performance level with respect to increasing earthquake 
intensity level [10]. There have been an increasing number of 
studies in the past two decades that focus on the use of fragility 
curves for estimating seismic damage levels after natural 
hazards [11] – [14]. In this paper, the structural performance 
levels are represented by the damage states and the earthquake 
intensity levels are shown in terms of PGA values. The 
proposed method supplies PF values, which are calculated 
based on PGA, to an MDP, in order to represent the possible 
current status of the field structures, i.e. overhead lines and 
transformer sub-stations. 

Fragility curves for varying damage levels represent the 
seismic damage vulnerability of structures. To obtain these 
curves, first, structures are modeled with software, and are 
analyzed under simulated earthquake loads. The fragility 
curves are then obtained by importing the obtained seismic 
response output into the fragility function. 

In order to formulate the analytical fragility function, it is 
required to investigate the probability of seismic demand (DM) 
exceeding a limit-state (LS) for varying seismic intensity 
measure (IM) values by using the “Total Probability Theorem” 
[15]. The results of this investigation demonstrate two major 
elements in seismic risk analysis; local seismicity, and the 
probability of seismic damage and structural fragility. Local 
seismicity is generally represented by readily available seismic 
hazard curves whereas the probability of seismic damage and 
structural fragility are denoted by fragility curves. To plot the 
mentioned fragility curves, a closed-formed solution for the 
fragility function is obtained by forming a relationship 
between motion intensity and the seismic demand [16].  Fig. 1 
displays a sample fragility curve collection that represents 
mean annual frequency (MAF) of seismic hazard estimated for 
a range of ground motion intensities with different magnitudes 
and epicentral distances versus IM. Each curve corresponds to 
a different structural performance.  

 
Fig. 1.  Sample fragility curves for slight to complete damage states [10].  

Note that only the fragility curves related to the complete 
damage (collapse) level that corresponds to the loss of 
functionality is considered with the assumption of definite 
power outage at this damage level. The effects of the preceding 
damage levels are considered to be benign on the electric 
distribution system. Thus, only the annual probability of 
exceeding the damage level of failure (PF) is computed and 

plotted. At the same time, since the investigated structures are 
assumed to be not located in liquefiable or landslide zones, the 
IM is selected as PGA, which is equal to the amplitude of the 
largest absolute acceleration recorded on an accelerogram at a 
site during a particular earthquake. The seismic fragilities of 
the investigated structures are computed and plotted 
accordingly. Data published by observatories and earthquake 
research institutes immediately after an earthquake can be used 
to determine the PGA values. 
B.  Markov Decision Process (MDP) 

MDP is a mathematical framework used to make decisions 
in probabilistic environments [17]. An MDP is composed of 
states, actions and transition probabilities that capture the 
dynamics of the actual system. An MDP policy determines the 
action to take in a state. In its simplest form, the goal of the 
Markov decision problem is to synthesize the policy 
optimizing the given criteria. This problem has been studied 
from various aspects such as maximizing the probability to 
reach a set of states, minimizing the expected time to reach a 
state [17], or minimizing the cost under additional constraints 
such as safety or formal specifications [18].  

An MDP is a tuple 𝑀 = (𝑆, 𝐴, 𝑝, 𝑐),	where 𝑆 is a set of states, 
𝐴 is a set of actions,  𝑝 is a state transition probability function, 
i.e., 𝑝(𝑠,|𝑠, 𝑎) is the probability of the system to transit to state 
𝑠, when action 𝑎 is applied in state 𝑠, and 𝑐: 𝑆 → ℝ is a state 
cost function that assigns a cost to each state. In a state 𝑠, 
actions from a certain set can be applied, which is denoted by 
𝐴(𝑠). A deterministic MDP policy 𝜋: 𝑆 → 𝐴 with 𝜋(𝑠) ∈ 𝐴(𝑠) 
determines the action to be applied in a state-s. A value 
function 𝑣5: 𝑆 → ℝ	represents expected cost obtained 
following policy 𝜋 from each state in S. The total expected cost 
incurred until a target set 𝐺 ⊆ 𝑆 is reached is computed with 
the following value function: 

 
𝑣5(𝑠) = 0				if			𝑠 ∈ 𝐺 

𝑣5(𝑠) = 𝑐(𝑠) +< 𝑝(𝑠,|𝑠, 𝜋(𝑠))
=,∈>

. 𝑣5(𝑠′) 
(1) 

Objective of the MDP is to synthesize an optimal policy. For 
a given state 𝑠A, the optimal policy 𝜋∗ is the policy that 
minimizes the value function: 𝜋∗ = argmin

5
𝑣5(𝑠A). 

C. The Proposed Decision Support Strategy 

The restoration of earthquake damaged electric distribution 
system is modeled as an MDP. Note that the paper focuses on 
the MDP based decision support framework; therefore, the 
problem is simplified using the following assumptions. 
1. Electrical load forecasts and generation forecasts of the 

distributed energy sources (DERs) are available. 
2. A power flow analysis tool runs to check if the bus 

voltages are within permissible limits.  
3. Low voltage system cannot be controlled. 
4. MV circuit breaker status can be monitored and controlled 

remotely via the SCADA system. 
In the proposed model, a state of an MDP represents the 

information about all branches of the network. A branch of the 
network can be in one of the following states: energized (E), 
damaged (D, cannot be energized) or unknown (U). The 
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unknown state implies that the branch is not attempted to be 
energized. Hence, the corresponding circuit breakers are open, 
and the physical status of the branch (damaged or healthy) is 
unknown to the decision maker (system operator). To exploit 
the available information after the disaster, the PF data is used 
to compute the probability of being damaged.  

A restoration action can be applied to a branch if it is at the 
unknown state (U) and connected to an energized branch (E) 
or a source.  The state of a branch can change to either D or E 
from U if the corresponding action is applied, i.e., the 
corresponding circuit breakers are closed. However, the state 
of a branch cannot change if it is D or E. Thus, there is no 
admissible action for the branch in D or E.  

The MDP model 𝑀 = (𝑆, 𝐴, 𝑝, 𝑟)	of the restoration process 
is defined as follows. Let m be the number of branches. The 
combination of all possible states of all branches is the state 
space of the model: 

 
𝑆 = {𝒔𝟎, 𝒔𝟏, … , 𝒔𝑵}	 

where	𝒔𝒊 = T𝑠UA, 𝑠UV, … , 𝑠UWXVY	and	𝑠U[ ∈ {𝑈, 𝐷, 𝐸} 
(2) 

As seen in (2), there can be at most 3W states, i.e. 𝑁 ≤ 3W. 
However, a large fraction of those states represents infeasible 
system states, e.g., a branch cannot be E if it is not connected 
to a source or an energized branch. Such states are never 
constructed. Hence the cardinality of 𝑆 is much less than its 
theoretical bound 3W in practice, thanks to the employed 
iterative construction method with reachability analysis.  

In a network, restoration action can be applied to multiple 
branches simultaneously if those are electrically distant 
enough such that the transients emerging after the closure of 
the circuit breakers do not cause significant effects. In this 
work, if none of the ends of branches are connected, then they 
are considered as electrically distant for the sake of simplicity. 

Action 𝒂 ∈ 𝐴 of model 𝑀 is the set of branches to be 
energized simultaneously and is defined as a subset of the 
branch indices 𝐴c = {0,1, … ,𝑚 − 1}, i.e., 𝒂 ⊆ 𝐴c and 𝐴 is the 
powerset of 𝐴c. The restoration action to branch j will be 
applied when a model action 𝒂 ∈ 𝐴 with 𝑗 ∈ 𝒂 is applied in the 
model level. During the model construction, the set of feasible 
actions (i.e., 𝐴(𝒔)) is defined with respect to the system 
structure and constraints. If two branches have a common end, 
they are said to be connected. The branches connected to 
branch j is denoted by	𝐶(𝑗). Let 𝐴c(𝒔𝒊) ⊆ 𝐴c denote the 
feasible branch actions for a state 𝒔𝒊 = [𝑠UA, 𝑠UV, … , 𝑠UWXV] ∈ 𝑆. 
The restoration action for branch j is feasible, i.e., 𝑗 ∈ 𝐴c(𝒔𝒊) 
if the following conditions hold; (i) 𝑠U

k is U (the status of branch 
j is U), (ii) 𝑠U[ is E for some 𝑘 ∈ 𝐶(𝑗) (branch j is connected to 
an E branch) or 𝑠U

k is connected to a source. 
If 𝐴c(𝒔𝒊) = ∅, then there is no feasible action. In other 

words, the system operator cannot change the state of the 
system by closing circuit breakers. This occurs when no branch 
in U state is connected to a source or an energized branch. 
These states are called terminal and the set of terminal states is 
denoted by 𝑆n = {𝒔 ∣ 𝐴c(𝒔) = ∅}. 

In order to restore energy in a distribution system, it is 
sufficient to create a spanning forest of energized branches 
with at least one power source (transmission grid or DER) 
connected to each tree. Note that, for operational purposes, 

meshed structures are avoided in distribution systems. 
Therefore, the resulting strategy should not include a loop of 
energized branches. The mesh constraint and the electrical 
distance constraint are integrated to the model 𝑀 via the 
feasible actions 𝐴(𝒔𝒊) such that a subset 𝒂 of 𝐴c(𝒔𝒊) is added 
to 𝐴(𝒔𝒊) only if the following conditions are satisfied: (i) 
energizing branches in 𝒂 does not generate a loop of energized 
branches, (ii) all branches in 𝒂 are electrically distant.  

The proposed method guarantees that all system properties 
and constraints are integrated into model 𝑀 via the feasible 
action set definition (𝐴(𝒔)). Consequently, when the 
distribution system is in a state 𝒔, any restoration action from 
𝐴(𝒔) can be applied without further computation. Furthermore, 
applying an action 𝒂 ∉ 𝐴(𝒔) is either infeasible or it can cause 
violation of the above-mentioned constraints. 

Next the computation of the transition probabilities from PF 
data as is explained. In state 𝒔 = [𝑠A, 𝑠V, … 𝑠WXV], when 
action	𝒂 ∈ 𝑨(𝒔) is applied, the probability of transitioning to a 
state 𝒕 = [𝑡A, 𝑡V, … 𝑡WXV] satisfying (3) is given in (4). 
Essentially, by 𝑨(𝒔) definition 𝑠U = 𝑈 for all 𝑖 ∈ 𝒂 and the 
status of these branches change to D or E according to 𝑃v. The 
transition probability that does not satisfy (3) is 0 as those 
states are not one step reachable from 𝒔 under the control 
action 𝒂. 

 𝑡U = 𝑠U		if	i ∉ 	𝒂, 𝑡U ≠ 𝑠U	if		𝑖 ∈ 𝒂 (3) 

 𝑝(	𝒕	|𝒔, 𝒂) =xy 𝑃v(𝑖)	if	𝑡U = 𝐷	
1 − 𝑃v(𝑖)	if	𝑡U = 𝐸	

U∈	𝒂

	 (4) 

In this study, the goal is to minimize the restoration time. 
This optimization criterion is integrated to the MDP problem 
via the minimization of the time to reach to a terminal state 𝒔 ∈
𝑆n, which is defined via the following cost function: 

 𝑐(𝒔) = z 0	if	𝑠 ∈ 𝑆
n

1	otherwise
	 (5) 

The value function computed for (5) gives the expected 
number of steps to restore energy. Hence, the value of the 
optimal strategy is the optimal expected restoration time.  
Remark1: Given the cost function (5), the optimal strategy 𝜋∗ 
ensures that all feasible actions will be applied in the minimum 
number of steps. This criterion guarantees that a proper 
superset of 𝜋∗(𝒔) does not belong to 𝐴(𝒔) for any 𝒔 ∈ 𝑆. This 
property is exploited in the model construction to reduce the 
model size. In particular, first, the set of all feasible control 
actions 𝐴(𝒔)	is computed as explained previously. Then, the 
actions 𝒂, ∈ 𝐴(𝒔) whose superset	𝒂, 𝒂, ⊂ 𝒂 ∈ 𝐴(𝒔), is also 
included in 𝐴(𝒔) is removed: 

 𝐴,(𝒔) = {𝒂 ∈ 𝐴(𝒔) ∣ 𝒂 ∩ 𝒂, ≠ 𝒂	for	each	𝒂,
∈ 𝐴(𝒔)	such	that	𝑎 ≠ 𝑎′} (6) 

The reachability analysis is performed according to 
reachable states computed from 𝐴′(𝒔). Note that the optimal 
strategy and the optimal cost does not change when 𝐴′(𝒔) is 
used instead of 𝐴(𝒔) since for the optimal strategy 𝜋∗ 
computed without the simplification it is guaranteed that 
𝜋∗(𝐬) ∈ 𝐴′(𝒔) 	⊆ 	𝐴(𝒔) for each state 𝒔. 
Remark2: In addition to the constraints 1 and 2 listed above for 
the construction of feasible actions, the limited capacity of a 
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DER should be considered as a third constraint. In particular, 
energizing branches in 𝒂 should not create an energized tree 
that is connected to a DER with the total demand exceeding 
the capacity of the DER. The constraint can easily be 
integrated in the model construction phase. However, in the 
policy synthesis phase, the infeasibility of energizing a U-
branch due to the DER capacity should be considered. This 
situation should be avoided as long as the branch can be 
energized via an alternative policy. Therefore, it can be 
achieved via a reach-avoid specification. Due to the space limit 
and for the sake of presentation, it is assumed that each DER 
has sufficient capacity to supply all loads. The method 
presented in this paper generates a suboptimal strategy when 
this assumption is violated. 

Example. The model construction method is illustrated on a 
toy system with 6 buses shown in Fig. 2. Node 1 is connected 
to the transmission substation and node 6 is connected to a 
DER. Before the earthquake the circuit breakers between buses 
4 and 5 are open. After the earthquake, system operator may 
utilize this branch in order to gain a leverage to supply energy 
to the customers. Therefore, the proposed method considers all 
available branches of the system, independent of their initial 
status. After the earthquake, initially, all the breakers are open 
and the states of the branches are unknown and P�(i) = 0.2 for 
each branch i. Thus, sA = [U, U, U, U, U, U] is the initial state, 
where the branches are defined in Fig. 2.  

   
Fig. 2.  Sample system with circuit breaker statuses. 

 As only branch-0 and branch-5 are connected to the energy 
sources and no branch is energized, 𝐴c(𝒔𝟎) = {0,5}. Since 
branches 0 and 5 are electrically distant, energizing these 
branches does not create a mesh or overload the DER, the 
restoration action can be applied simultaneously and 𝐴(𝒔𝟎) =
{{0}, {5}, {0,5}}. As {0}	and	{5} are proper subsets of {0,5}, 
the simplified action set defined in Remark1 is 𝐴′(𝒔𝟎) =
�{0,5}�. The transition probabilities for the reachable states are 
computed according to (4) for {0,5} and new states are added 
to 𝑆. The states that are reachable from 𝒔𝟎 under the control 
action {0,5} and their transition probabilities are shown in (7).  

 

𝑝(𝒔𝟏 = [𝐸, 𝑈, 𝑈, 𝑈, 𝑈, 𝐸]|𝒔𝟎, {0,5}) = 0.64	 

𝑝(𝒔𝟐 = [𝐸, 𝑈, 𝑈, 𝑈, 𝑈, 𝐷]|𝒔𝟎, {0,5}) = 0.16 

𝑝(𝒔𝟑 = [𝐷,𝑈, 𝑈, 𝑈, 𝑈, 𝐸]|𝒔𝟎, {0,5}) = 0.16 

𝑝(𝒔𝟒 = [𝐷,𝑈, 𝑈, 𝑈, 𝑈, 𝐷]|𝒔𝟎, {0,5}) = 0.04 

(7) 

After this computation, 4 new states are added to 𝑆. Note 
that 𝒔𝟒 is a terminal state since 𝐴c(𝒔𝟒) = ∅. The computation 
continues iteratively, i.e., action sets and transitions are 
computed for each new state. If 𝐴(𝒔𝟎) was used instead of 
𝐴′(𝒔𝟎), then 4 more new states would be added. However, 

according to the given criteria 𝜋∗(𝒔𝟎) = {0,5} (rather than {0} 
or {5}) independent of the rest of the model, and those states 
that are not added are not reachable when 𝜋∗ is applied. This 
simplification reduces the model size, hence the computation 
time, significantly. For this toy example, the numbers of states 
are 58 and 188, with and without the simplification, 
respectively. Although the model size is reduced, the expected 
restoration time (2.6588), which is the value of the optimal 
strategy, are the same, as expected. ∎ 

The proposed approach can be adapted to minimize the 
restoration time to some particular customers (e.g. a hospital 
or a data center) instead of the whole network. Let 𝑖 be the 
index of the bus supplying this customer, and let 𝑆n,U be the set 
of states that are reachable from the initial state and,  𝑆n,U =
{[𝑠A, 𝑠V, … , 𝑠WXV] 	∈ 𝑆 ∣ 𝑠k	𝑖𝑠	𝐸	𝑓𝑜𝑟	𝑎	𝑏𝑟𝑎𝑛𝑐ℎ −
𝑗	𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡	𝑡𝑜	𝑏𝑢𝑠 − 𝑖} (bus-	𝑖 is energized). When 𝑆n,U is used 
in (5) instead of 𝑆n, the resulting policy minimizes the 
expected restoration time for branch-i. Once the branch is 
energized (or found to be damaged), the method can be applied 
again to synthesize a strategy for the remaining parts.       

III.  SIMULATIONS AND RESULTS 
In this section, a simple system, shown in Fig. 3, is 

considered for 4 different PF scenarios, to validate the proposed 
method. Note that, in all simulations, the considered systems 
are hit by an earthquake, and hence experiencing an energy 
shortage.  

 
Fig. 3.  6-bus test system. 

Bus 1 is the MV side of the power transformer. When all 
the circuit breakers are open, intuitively, the restoration 
strategy first closes the circuit breakers of branch-0, and then 
needs to choose closing the circuit breakers of either branch-1 
or branch-2. As soon as the chosen branch is energized, then 
the restoration actions can be applied in both paths 
simultaneously (e.g. branches 2 and 3 can be energized after 
branch-1 is energized) thanks to the previously stated 
assumption of having enough electrical distance if two 
branches are not adjacent. To restore the energy in the 
minimum amount of time, it is clear that the breakers along the 
branches with less probability of destruction should be closed 
first for this simple example. As explained in the paper, the 
aforementioned constraints and the optimality criteria are 
integrated to the MDP problem and the optimal MDP strategy 
minimizes the expected restoration time considering 𝑃v for the 
whole network. To illustrate, four earthquake scenarios are 
considered and the corresponding 𝑃v data is show in Table I. 
Note that branch-0 is skipped, as it is assumed to be not 
damaged to continue operation. 
Scenario 1: The optimal strategy first produces action 
sequence {2}{1,4}{3}. This sequence will be applied unless a 
damaged branch is observed. If no damaged branch is 
observed, the corresponding MDP state sequence is: 

1

2

3

4

5

6Circuit breaker - open
Circuit breaker - closed

Branch-0

Branch-1

Branch-2
Branch-3

Branch-4

Branch-5
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3

4 5

6
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B
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5
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Branch-3Branch-1
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[𝑈𝑈𝑈𝑈𝑈] →A.�
{�} [𝑈𝐸𝑈𝑈𝑈] 	→A.V�

{V,�} [𝐸𝐸𝑈𝐸𝑈] →A.�
{�} [𝐸𝐸𝐸𝐸𝑈]		 

where →�
�  denotes that the circuit breakers for branches in set 

I will be closed and the probability to see the state on the right-
hand side after this action is p. If a damaged branch is 
observed, the action sequence will be updated according to the 
optimal MDP strategy. Note that, branch-0 is avoided in MDP 
state sequence, since it is assumed to be not damaged. 

TABLE I. PF VALUES FOR THE SCENARIOS 

Scenario PF  
Branch-1 Branch-2 Branch-3 Branch-4 Branch-5 

1 0.7 0.4 0.4 0.4 0.4 
2 0.4 0.7 0.4 0.4 0.4 
3 0.4 0.4 0.4 0.7 0.4 
4 0.4 0.4 0.7 0.4 0.4 

Assume that only branch-1 is damaged, then the action 
sequence will be updated after {1,4} is applied. The strategy 
will produce sequence {5}{3} and the following trace will be 
observed.  

[𝑈𝑈𝑈𝑈𝑈] →A.�
{�} [𝑈𝐸𝑈𝑈𝑈] 	→A.��

{V,�} [𝐷𝐸𝑈𝐸𝑈] →A.�
{�} [𝐷𝐸𝑈𝐸𝐸] →A.�

{�} [𝐷𝐸𝐸𝐸𝐸] 

Scenario 2: The optimal strategy produces the action sequence 
{1}{2,3}{4}. Note that the only difference between first and 
second scenarios is the failure probabilities for branch-1 and 
branch-2. The optimal strategy first energizes the one with 
higher probability of success. 
Scenario 3: The produced action sequence is {1}{2,3}{5}.  
Scenario 4: The produced action sequence is {2}{1,4}{5}.  

In scenarios 1 and 2, the optimal action can be decided 
according to the branches connected to the source. Whereas, in 
scenarios 3 and 4, the optimal action changes according to the 
𝑃v data of other branches that are not directly connected to the 
source. The example, while being extremely simple, illustrates 
that the optimal strategy obtained from the MDP problem 
considers future steps as well. For example, in scenarios 3 and 
4, the optimal strategy avoids branch-4 and branch-3 
respectively, as there is an alternative way to energize the 
whole network with less expected time (via branch-5).  

IV.  CONCLUSIONS 
This paper proposes an MDP based decision support 

method for systems that are experiencing interruption after an 
earthquake. The proposed method employs PF values in order 
to determine probability of failure of a distribution system 
component or a structure that is located close to the distribution 
system. PF is determined using real time data recorded during 
the earthquake by observatories and research centers. Note 
that, the proposed method does not require any additional 
infrastructure.   

The proposed method aims to find the best energy 
restoration strategy by minimizing the probability of 
unsuccessful actions.  As feedback on the topology of the 
system is gathered from the field, the proposed method updates 
the solution. 

The formed MDP problem is solved with a reasonable 
duration. As the operator receives feedback from the field, the 
updated optimum strategy can be found by updating the MDP 
state without considering the whole problem. Note that, the 
system operator runs the proposed method after the 

interruption to restore energy to customers, and hence no real 
time solution, which minimizes the total restoration duration, 
is required but rather a fast-enough solution is sufficient. 

V.  REFERENCES 
[1] A. Arab, A. Khodaei, S. K. Khator, K. Ding, V. A. Emesih and Z. Han, 

"Stochastic Pre-hurricane Restoration Planning for Electric Power 
Systems Infrastructure," in IEEE Transactions on Smart Grid, vol. 6, no. 
2, pp. 1046-1054, March 2015. 

[2] F. Qiu and P. Li, "An Integrated Approach for Power System Restoration 
Planning," in Proceedings of the IEEE, vol. 105, no. 7, pp. 1234-1252, 
July 2017. 

[3] Z. Zhao and B. T. Ooi, "Feasibility of fast restoration of power systems 
by micro-grids," in IET Generation, Transmission & Distribution, vol. 
12, no. 1, pp. 126-132, 1 2 2018. 

[4] A. Golshani, W. Sun, Q. Zhou, Q. P. Zheng and J. Tong, "Two-Stage 
Adaptive Restoration Decision Support System for a Self-Healing Power 
Grid," in IEEE Transactions on Industrial Informatics, vol. 13, no. 6, pp. 
2802-2812, Dec. 2017. 

[5] N. Ganganath, J. V. Wang, X. Xu, C. T. Cheng and C. K. Tse, 
"Agglomerative Clustering Based Network Partitioning for Parallel 
Power System Restoration," IEEE Transactions on Industrial 
Informatics, vol.14, no. 8, pp. 3325-3333, Aug. 2018. 

[6] L. H. T. Ferreira Neto, B. R. P. Júnior and G. R. M. da Costa, "Smart 
Service Restoration of Electric Power Systems," 2016 IEEE Power and 
Energy Society General Meeting (PESGM), Boston, MA, 2016, pp.1-5. 

[7] M. Ostermann, P. Hinkel, D. Raoofsheibani, W. H. Wellssow and C. 
Schneider, "A minimum-regret-based optimization approach for power 
system restoration in EHV grids," 2017 IEEE Power & Energy Society 
General Meeting, Chicago, IL, USA, 2017, pp. 1-5. 

[8] Wei Yuan, Jianhui Wang, Feng Qiu, Chen Chen, Chongqing Kang and 
Bo Zeng, “Robust Optimization-Based Resilient Distribution Network 
Planning Against Natural Disasters”, in IEEE Transactions on Smart 
Grid, vol. 7, no. 6, pp. 2817-2826, November 2016. 

[9] Xu Wang, Mohammad Shahidehpour, Chuanwen Jiang, Zhiyi Li, 
“Resilience Enhancement Strategies for Power Distribution Network 
Coupled with Urban Transportation System”, in IEEE Transactions on 
Smart Grid, Early Access. 

[10] Sfahani, M., Guan, H. and Loo, Y.-C., “Seismic Reliability and Risk 
Assessment of Structures Based on Fragility Analysis – A Review.” 
Advances in Structural Engineering, 18(10), 1653-1669, 2015. 

[11] Cimellaro, G. P., Reinhorn, A. M. and Bruneau, M. (2010). “Framework 
for Analytical Quantification of Disaster Resilience.” Engineering 
Structures, 32(11), 3639-3649. 

[12] Li, Y., Ahuja, A. and Padgett, J. E. “Review of Methods to Assess, 
Design for, and Mitigate Multiple Hazards.” Journal of Performance of 
Constructed Facilities, 26(1), 104-117, 2011. 

[13] Salman, A. M. and Li, Y. “Multihazard Risk Assessment of Electric 
Power Systems.” Journal of Structural Engineering, 143(3), 04016198, 
2016. 

[14] Salman, A. M. and Li, Y. “A Probabilistic Framework for Seismic Risk 
Assessment of Electric Power Systems.” Procedia Engineering, 199, 
1187-1192, 2017. 

[15] Benjamin, J. R. and Cornell, C. A. Probability, Statistics, and Decisions 
for Civil Engineers, McGraw-Hill, 1970. 

[16] Cornell, C. A., Jalayer, F., Hamburger, R. O. and Foutch, D. A. 
“Probabilistic Basis for 2000 SAC Federal Emergency Management 
Agency Steel Moment Frame Guidelines.” Journal of Structural 
Engineering, 128(4), 526-533, 2002. 

[17] D. Bertsekas, Dynamic Programming and Optimal Control, MA, 
Boston:Athena Scientific, vol. II, pp. 246-253, 2007. 

[18] X. Ding, S. L. Smith, C. Belta and D. Rus, "Optimal Control of Markov 
Decision Processes With Linear Temporal Logic Constraints," in IEEE 
Tran. on Automatic Control, vol. 59, no. 5, pp. 1244-1257, May 2014.  

 
 


