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Abstract—The proposed model analyzes the profit of a
demand response (DR) aggregator from trading DR in the
day-ahead electricity market in a way that it tends to gain
profit from the favorable deviations of the uncertain
parameters. Two types of DR programs are implemented in
this model, i.e., time-of-use and reward based DR program.
The information-gap decision theory is being employed as a
risk measure to address the uncertainties. Two uncertain
parameters from both sides of the aggregator have been taken
into account in this model, such as the participation rate of the
consumers in reward-based DR program in the consumer-side
of the aggregator and the day-ahead market prices in the
wholesale-side of it. The program is simulated in GAMS
software using the available commercial solver. Real data is
considered to check the feasibility of the proposed program.
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NOMENCLATURE
Indices
t Time horizon index
j RBDR steps index
p Period index
c Consumer index
Parameters
APA(t) Expected day-ahead market price [$/MWh]
PR(t) Demand-side consumers’ Participation rate
in RBDR program
Do(c,t) Initial demand of consumer ¢ in time
interval t
E(ctp) Consumer c elasticity in time interval t in
period p
Ao(c,p) consumer c initial price in period p
Alc,p) consumer ¢ TOU price in period p
d(t) Duration of each period
By Deterministic expected profit of DRA [$]
B, Desired target profit of the DRA [$]
o Profit deviation factor
PREPR(1) Load reduction step in the reward-based
DR [MWh]
RFEPR (1) Given reward in the reward-based DR
[$/MWh]
Variables
B Horizon related to uncertain parameter
I The function of optimal opportunity value
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PR(t) Consumers’ participation rate in RBDR
program

TOU(t) Obtained TOU volume from consumers
within time horizon t [MWh]

APA() Day-ahead market price [$/MWh]

PPA(L) Day-ahead power [MWh]

Binary Variable
vfEPR(t)  The reduced load’s level in RBDR

I. INTRODUCTION

The traditional solution of the independent system
operator to mitigate the power misbalancing matters due to
the peak periods was to rely on the generators. However,
many solutions have been introduced and even employed in
the power system, i.e., demand response (DR). Demand
response is being used as one of the main key solutions of
the general demand-side methods in the smart grids [1] and

(2].

Several studies have been done in DR in order to enhance
the participation of the end-user consumers in the electricity
market environment. Aggregation of the obtained DR from
the demand-side is known as one of these solutions.
However, the willingness of the end-user consumers in the
DR programs plays an essential role to this end.

Therefore, considering their behavior as one of the
uncertain parameters in the model is one of the main
motivations of this work. Besides that, in order to increase
the effectiveness of the model, the aggregator needs to
consider the uncertainty of the electricity market prices too.
Since the DR aggregator (DRA) has an intermediary role in
trading the obtained DR into the electricity market [3], [4].

Two uncertain parameters are taken into account in this
study, the participation rate of the consumers in the DR
program and the electricity market prices. That one of these
uncertainties belongs to the demand-side, and the other one
belongs to the other side.

Several DR programs are implemented in the smart grids
which could be classified in two main categories, i.e.,
incentive-based DR programs and price-based DR
programs [5]-[8]. In order to employ a comprehensive
model, in this study, one DR program from each category
has been defined, i.e., time-of-use (TOU) and reward-based
demand response (RBDR). Further, DR programs can be
modeled for different types of loads. For instance, in Ref.
[9], the residential consumers are considered as the main
participators in DR programs.



The authors in [10] investigate the feedback of the
commercial and industrial loads participating in DR
programs. To observe the effects of the proposed model in
the loads, all types of consumers are assumed
simultaneously, i.e., industrial, commercial and residential.

To address the uncertain parameters, information-gap
decision theory (IGDT) is applied as a risk measure, which
its advantages in comparisons with other methods like
scenario-based models has studied comprehensively in [11].

Employment of IGDT method in various areas of the
power system and smart grid are discussed in [12]. There
are two main IGDT functions, robust function and
opportunity function. The robust one is used for risk-averse
decisions makers, and the opportunity function is utilized
for risk-seeking purposes. Therefore, the behavior of a risk-
seeker DRA is modeled in this work through opportunity
IGDT.

The contribution of this work is studying the behavior of
the risk-seeker DRA considering two DRP, i.e., TOU and
RBDR in the demand-side of the aggregator and day-ahead
electricity market on the other side of it. Further, the
uncertainty of both side of the aggregator is taken into
account. And for the risk management of the problem,
IGDT method is applied.

1L PROBLEM FORMULATION

First, it is supposed that there is not any uncertain
parameter. In other words, we assume that the day-ahead
market price and participation factor of consumers in
RBDR program are determined. This section is considered
a deterministic formulation. Then, in the second section of
formulation, the uncertainties are considered, i.e., day-
ahead market prices and participation rate of the consumers
in RBDR program. The opportunistic IDGT model is being
used to address the uncertainties.

A. The deterministic formulation

In this section, the deterministic problem formulation is
written as follows:
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It is necessary for DRA to know its schedule for trading
in the day-ahead market. It has to be noted that in this part,
the DRA can predict the uncertain parameters, i.e., the
participation rate of consumers in RBDR program and day-
ahead market prices.

The objective function is indicated in equation (1) which
is a profit-maximization problem. The 1st term belongs to
the revenue which is gained from trading the DR in the day-
ahead market. The second term refers to the cost of
participation in the RBDR program. The power balance
equation is considered in (2). The amount of power which
is traded in the day-ahead market must be equal to the
amount of obtained DR from consumers for each type of
consumer and each time steps. In (3), the TOU program is
being defined. In this program, consumers receive different
price tariffs during a day, for instance, two tariffs for two
time periods: low-peak and high-peak. Thus, the
consumers’ power usage is being regulated according to

this change in the tariffs. £ (c,t, P ) shows the elasticity of

the consumer type c in the time step t and period p. The
RBDR program is indicated in (4). As stated in Fig. 1, the
volume of the load reduction will be increased as the
aggregator offers higher rewards to the consumers in a
stepwise manner.

The total value of the reduced load based on RBDR

RBDR

program is specified by P . PR, shows the participation

rate of the consumers in this program, which used as the
uncertain parameter in this model and varies from 0 to 1.
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Fig. 1. The RBDR program curve.



High values in PR, , shows a high rate of participation of
consumers in that time step. For instance, PR; = 1 means
that all the forecasted DR through RBDR program is
attainable. In (5), the total amount of reward in each time
step based on the RBDR program is being calculated. The
level of the reward in each step j and each time ¢ is shown

RBDR

in (6). Note that according to constraint (7), v, 1is a
binary variable, and the aggregator can choose only one
level j in each time step .

As stated in (8), the aggregator can only trade an amount
of /ItDA which is not less than its minimum or not more than

its maximum capacity.

B. The opportunistic IGDT formulation

The opportunistic IGDT model is formulated in (10)-(16)
as follows:

Obj Func. : B=min (10)
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In this section, the uncertain parameters are taken into
account. It is considered that the day-ahead market prices
and the participation rate of consumers in RBDR program
as the uncertain parameters. In order to address these
uncertainties, opportunistic IGDT approach is being
implemented.

Note that the forecasted values of the uncertain
parameters are available at the moment of modeling, i.c.,

PR, and /itm . The aim of this program is to minimize the

horizon of the uncertainties ( 4 ) while the requirements are

being fulfilled. In constraints (15) and (16), the
uncertainties have been addressed.

The framework of this model is depicted in Fig. 2. In the
first stage, the model calculates the deterministic value of
the objective function (the profit of the DRA). In this step,

the forecasted values for the uncertain parameters (PR,
and 1) is employed to derive the deterministic results. In

the next stage, by utilizing the deterministic profit of the
aggregator and the profit deviation factor (o), the uncertain
parameters are being addressed through opportunistic IGDT
method.

\
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Objective Function:

Maximizing the DR aggregator profit
Constraints:
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Fig. 2. The proposed model framework.

III. CASE STUDY

This problem is a mixed-integer nonlinear programming
(MINLP) model. As explained before, its aim is to
minimize the horizon of the opportunity function value
while the constraints are satisfied or met. Various
commercial solvers, i.e., SBB could be used to solve this
problem wusing General Algebraic Modeling System
(GAMS) [13].

The model is simulated in a PC with 6 GB RAM and
2.43 GHz CPU speed. The model has 3745 variables and
3827 constraints and simulation running time was less than
a second, i.e., 0.9. Reference [14] is used for implementing
the load data. High-peak and low-peak periods are
considered as periods for each day (p=2). The high-peak
period is assumed from 08 to 22. Accordingly, from 23 to
07 is assumed as the low-peak period. Industrial,
commercial and residential are the types of consumers
which are taken into account (¢= 3).

The aggregator can offer the obtained DR from the end-
user consumers during the high-peak period to the day-
ahead market and vice versa during the low-peak. TOU and
RBDR program is modeled on the lower side of the
aggregator. The data regarding the elasticity matrix which
is required for TOU model is employed from [15].
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Fig. 3. Optimal opportunity function value for different profit
deviation factors.

800
700
600
500
400
300
200
100
0
-100
-200
-300

Reduced Energy (kWh)

Time Horizon (h)

Fig. 4. Amount of reduced energy using RBDR program.

As stated before, the profit deviation factor is utilized as
the risk measure in the IGDT procedure. As the profit
deviation factor increases, our model results become more
risk-seeker. And o = 0 give the deterministic results of the
programming. We change the ¢ from zero to 0.85 and each
optimum value of the opportunity value is depicted in

Fig. 3. Higher profit deviation factors result in higher 4 .

To investigate more in detail about the results of the
problem, an arbitrary value of o= 0.15 is chosen.

To gain the target profit B, =(14+0)X By =
(1 + 0.15) X 344,800 = 396,500, the fis 44% or 0.44,

which means that if the observed uncertain parameters be
44% more than the forecasted values, the aggregator will
gain $396,500.

The curve in Fig. 4 indicates the results regarding the
acquired DR through RBDR program. During high-peak
period, the amount of DR which is obtained through this
program is at its maximum when they are the usual work
starting time (=9 AM) and also in the time that the night
starts (=7 PM).
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Fig. 5. The results about Time-of-Use program.
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Fig. 6. The day-ahead traded power through the aggregator.

Results from implementing TOU program is
demonstrated in Fig. 5. As obvious in the figure, the
amount of TOU in industrial consumers is much higher
than the other consumers including residential and
commercial. The industrial end-user plays the main role in
the deployment of TOU program.

The day-ahead traded power through the aggregator is
also presented in Fig. 6. During the high-peak period, the
amount of power which is offered to the pool market is
around 1000 kW in the early hours of the high-peak period.
It is easily noticeable that the amount of the acquired DR
from the consumers through RBDR and TOU programs are
equal to the traded power in the day-ahead market, which
proves the accuracy of the simulation.

IV. CONCLUSION

The behavior of a DRA was studied in the proposed
model which tends to gain higher profits due to the
favorable deviations of the uncertain parameters in the day-
ahead electricity market. To this end, opportunity IGDT
method was applied as a risk measure. Two uncertain
parameters from each side of the aggregator (upper-side and
down-side) were assumed simultaneously as follows: 1- the
day-ahead market prices and 2- the participation rate of the
consumers in the RBDR program.



The model was simulated for various values of the profit
deviation factors. The direct relation between the profit
deviation factor and the optimum opportunity function
value was shown in the results. To analyze the model
effects more in detail, one arbitrary value of the profit
deviation factor was chosen, and the correlated results were
demonstrated comprehensively. The amount of electric
power which was traded in a day-ahead market through the
DRA was equal to the obtained DR from the consumers’
side. Moreover, three types of consumers, i.e., industrial
commercial and residential, industrial consumers played the
main role in employing the TOU program.
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