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Abstract—We consider the problem of automated anomaly
detection for building level heat load time series. An anomaly
detection model must be applicable to a diverse group of
buildings and provide robust results on heat load time series with
low signal-to-noise ratios, several seasonalities, and significant
exogenous effects. We propose to employ a probabilistic forecast
combination approach based on an ensemble of deterministic
forecasts in an anomaly detection scheme that classifies observed
values based on their probability under a predictive distribution.
We show empirically that forecast based anomaly detection pro-
vides improved accuracy when employing a forecast combination
approach.

Index Terms—Anomaly detection, heat load forecasting, fore-
cast combination, probabilistic forecasting, predictive models,
buildings

I. INTRODUCTION

With further integration of electric and heat energy systems

and the increased use of smart meters on building level, the

analysis of heat load time series plays an increasing role in

local smart energy grids. These time series can be utilized,

for example, in load forecasts for scheduling problems or to

identify and reduce energy waste. One important part in energy

monitoring is the detection of anomalies, such as unusual

consumption, system failures, or measurement errors. For large

scale monitoring infrastructures, in our case 40 university

campus buildings with multiple measured energy forms, a

manual anomaly detection is hardly feasible on a daily basis.

This makes an automated anomaly detection necessary.

The literature provides various methodologies for anomaly

detection in building energy time series, see [1] for an ex-

tensive review. Several works present building level anomaly

detection methods based on probabilistic load forecasts. The

main idea is to use a probabilistic model to issue a predictive

distribution over the expected load and classify an observed

value as anomalous if this value is unlikely under the predicted

distribution. The authors of [2] apply a dynamic regression

model to predict the load one hour ahead and select an

anomaly threshold from observed percentage errors. In [3] the

load is predicted with an autoregressive neural network and

anomaly thresholds are derived from a constant Gaussian error.

[4] first predict the day-ahead load with a generalized additive

model (GAM) based on exogenous variables and then fit an
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autoregressive conditional heteroscedasticity (ARCH) model

on the forecast residuals to obtain a conditional distribution

over the forecast errors.

However, these works do not address the specific challenges

associated with anomaly detection in heat load time series on

the building level: A considerable number of observed values

is zero or close to zero, seasonalities and exogenous variables,

such as the temperature, have a significant effect on the load,

and by considering single buildings, random effects, such as

user behavior, have a large influence on the observed load.

Furthermore, the model must be flexible enough to model a

diverse set of buildings. Finally, the assumption of a standard

homoscedastic or heteroscedastic Gaussian error distribution

is too simplistic for a reliable anomaly detection.

Our proposed anomaly detection methodology consists of

three steps. First, we create an ensemble of diverse point

forecasting models based on different regression techniques

and training set sizes. The forecasts of these models serve

as inputs for probabilistic forecast combination techniques to

obtain a predictive distribution conditional on the ensemble

predictions. These distributions are then used to classify the

observed load values into normal and anomalous based on a

selected interval. This also allows to tune the aggressiveness of

the anomaly detection by varying the size on the non-anomaly

interval.

The efficacy of our method relies on the quality of the

predictive distributions produced by the selected forecasting

model. The classic approach to the model selection problem is

to pick a single model ex-ante based on validation set perfor-

mance. This might be computationally expensive, especially

when one wants to forecast many time series, and requires

large data sets to reliably estimate the out-of-sample accuracy.

The latter point is especially true for building level energy

time series as they are usually characterized by a low signal-

to-noise ratio and show daily, weekly, and yearly seasonality.

Furthermore, the assumption that a single best model for a

time series exists at all is questionable and different models

might perform well for different regions of the input space.

This motivates our forecast combination approach. While the

the combination of point forecasts is a well researched topic,

probabilistic forecast combination is considered a current

frontier in energy forecasting [5]. To our knowledge this work

is the first to propose an anomaly detection methodology based
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on probabilistic load forecast combination techniques.

We empirically test our approach on the heat load time

series of two real university campus buildings. To quantify

the anomaly detection performance, we insert artificial anoma-

lies into the time series. We find that a carefully designed

probabilistic forecast combination model based on generalized

additive models for location, scale, and shape (GAMLSS) [6]

improves over simple averaging approaches and individual

models not only in terms of the statistical forecast error mea-

sures but also leads to significant improvements in anomaly

detection performance.

The remainder of the paper is structured as follows. In

the next section we formalize the problem and introduce the

necessary notation. We then present our ensemble of point

forecasting models and the considered probabilistic forecast

combination approaches. The setup and results of our empiri-

cal study are explained in Section III. We conclude in Section

IV.

II. METHODOLOGY

A. Problem definition

The anomaly detection should answer the question whether

an observed load value yt at time step t is an anomaly given the

vector of previous observations yl and a vector of explanatory

variables xt.

The core idea of forecast based anomaly detection is to

classify observed values based on the probability to observe

them under a distribution p issued by a probabilistic regression

model f . Given the distribution p, we can compute the

probability that the random variable Y lies in the interval

(a, b] as Pr(a < Y ≤ b) = FY (b) − FY (a), where FY is

the cumulative distribution function (CDF) of the distribution

p.

Based on this, we define an anomaly detection model that,

given a predictive CDF F̂ (yt), classifies yt as an anomaly if

F̂ (yt) < τlower ∨ F̂ (yt) > τupper (1)

holds true, with τlower and τupper being lower and upper

threshold levels of a plausibility interval. To this end, we first

need to estimate the CDF F̂t of the conditional distribution

p(yt|yl,xt). If p belongs to a parametric family, F̂ is usually

available in closed form. Alternatively, F̂ could be approxi-

mated by a set of predicted quantiles.

In case of forecast combination, we take a two step ap-

proach to estimate F̂ . We use a set of M point forecasting

models {fm}Mm=1 from which we can obtain predictions

ŷm,t = fm(yl,xt). We then use the vector of predictions

ŷt = [ŷ1,t, ..., ŷm,t] in a second model to obtain F̂t = g(ŷt).
We present the deterministic and probabilistic models in the

following.

B. Deterministic forecast ensemble

We arrange the deterministic forecast ensemble ŷt with

M = 9 forecasts. These are yielded from three different

forecasting methods, each of which is trained with a 60, a

90, and a 365 day training window of size Dtrain, consisting

of Ntrain = 24Dtrain training samples. The effectiveness

of combining forecasts of different training window sizes is

shown in [7], where it is applied to electricity price forecasting.

We selected the forecasting methods based on their ability to

flexibly model load time series of a diverse group of buildings.

To obtain the forecast time series we re-train the models

each day to predict the hourly load of the complete next day,

with the training window consisting of the directly preceding

Dtrain days, i.e. we perform day-ahead forecasting with a

rolling training window.

For each model, we consider one hyper-parameter as tuning

parameter. We separately employ a grid search to determine

the tuning parameter value that minimizes the mean absolute

error (MAE) in a rolling window cross-validation.

We present the three employed deterministic forecast meth-

ods in the following.
1) Lasso linear regression (Lasso): The first method is a

linear regression model with Lasso regularization [8]. It is

commonly applied in the forecasting literature, e.g. to electric

load forecasting in [9]. Lasso regression performs automatic

feature selection and parameter shrinkage, which allows us

to flexibly model all building time series without ex-ante

assumptions about feature relevancy. We model the load as

yt =β0 +

7
∑

i=1

(βiyt−24i) + β8Tt + β9Tt−24 + β10T
peak
t−24

+ β11T
avg + β12y

peak
t−24 + β13y

avg
t−24 + β14HDH

avg
t−24

+ β15HDH
avg
t + β16HDHt−24 + β17WDt

+ β18WTt + εt,

(2)

where β0 is an intercept coefficient, β = [β1, ..., βk] the re-

gression coefficients, yt the observed load, Tt the temperature,

and εt the model error, each at time step t. We define the

heating degree hour as HDHt = max(18◦C−Tt, 0), which is a

linearization of the non-linear temperature effect. Superscripts

avg and peak denote the average and the peak value of

the respective day. WDt and WTt are binary variables that

represent working days and working hours, which we define

as from 9:00 to 17:00. The model is trained to minimize
1

Ntrain

||ε||22 + λlasso||β||1. We consider the lasso parameter

λlasso as the tuning parameter.
2) Gradient boosting regression (GBR): The second point

forecasting method are gradient boosted regression trees. This

method combines an ensemble of weak estimators, in this case

decision trees, to form a strong estimator. The tree structure

allows data-driven modeling of feature interactions [10]. [11]

apply GBR to electricity load forecasting. We consider the

feature vector

x
GBR
t = (yt−24, yt−48, yt−72, yt−168, y

peak
t−24, y

avg
t−24,

Tt, Tt−24, T
peak
t−24 , HDD

avg
t , HDDt,

HODt, DOWt,WOYt),

(3)

of which HODt, DOWt, and WOYt are integer values that

represent the hour of the day, the day of the week, and the

week of the year, respectively.



We use 300 estimators, a learning rate of 0.1, and minimize

the least squares loss in the training. We allow the maximum

tree depth to be between 3 and 6 and consider it the tuning

parameter.

3) Generalized additive model (GAM): The third method

is based on a GAM, which allows flexible modeling of non-

linear feature effects with penalized b-spline functions [12].

GAMs are applied to electric load forecasting for example in

[13].

The model reads as

yt =β0 + f1(yt−24) + f2(yt−168) + f3(y
peak
t−24)

+ f4(Tt) + f5(T
avg
t−24) + f6(HODt) + f7(WOYt)

+

6
∑

i=1

βiDOWi,t + εt,

(4)

where functions f1, ..., f7 are penalized b-spline functions, of

which f1, ..., f5 are defined with 10 b-splines and f6 with

24 b-splines. We only add f7, defined with 5 b-splines, in

the 365 days model. DOWt is expressed as a set of six

dummy variables. Functions f1, f2, and f3 are constrained to

be monotonically increasing, f4 and f5 to be monotonically

decreasing. The model considers the squared error in the

training. The different number of splines mitigates over-fitting

of feature effects. The smoothing parameter λGAM is set equal

for each function and considered the tuning parameter.

The mean forecast is the hourly mean of the ensemble

forecast ȳens,t =
1

M

∑M
m=1

ŷm,t.

C. Probabilistic forecast combination

We compare four different probabilistic forecast combina-

tion approaches.

1) Ensemble average (EA): This model assumes a Gaus-

sian distribution centered at the ensemble mean fore-

cast ȳens,t and a constant variance equal to the variance

of the in-sample residuals of this mean forecast σ̄2 =
1

Ntrain−1

∑Ntrain

t=1
(yt− ȳens,t)

2, i.e. the predictive distribution

would read N (ȳens,t, σ̄
2). However, since yt ≥ 0, such a

standard Gaussian distribution would assign non-zero proba-

bilities for physically impossible values below zero. Therefore,

we employ a mixture distribution where the probability mass

for negative values is reassigned to a point mass at 0. We

denote this mixture distribution as N 0(ȳens,t, σ̄
2). Note that

this is different from a zero-truncated distribution where the

probability mass is assigned proportionally to all values > 0.

See e.g. [14] for an application to electricity load forecasting.

2) Ensemble average and ensemble variance (EA-EV):

The ensemble variance s2t = 1

M−1

∑M

j=1
(ȳt,ens − yj)

2 can

be interpreted as a proxy for the uncertainty of the mean

prediction and can be used to model a distribution with

conditional variance. Hence, the predictive distribution of this

model is given by N 0(ȳens,t, s
2
t ). However, we expect the

predictive distribution of this model to be under-dispersed, i.e.

the predicted variance is likely too small on average.

3) GAMLSS-based forecast combination (GAMLSS):

GAMLSS [6] are univariate distributional regression models

where all parameters of the assumed distribution for the re-

sponse can be modeled as additive functions of the explanatory

variables. The GAMLSS framework also allows to fit censored

regression models. Such models are appropriate when the

target variable is naturally censored above and/or below a

certain value, see e.g. [15] for an application to probabilistic

wind speed and precipitation forecasting.

We assume that the heat demand follows a t-distribution

with a point mass at zero denoted by yt ∼ t0(µt, σ
2
t , ν). The

t-distribution accommodates the large signal-to-noise ratio of

the time series given its ability to model heavy tails when the

degrees of freedom parameter ν is small. The mean model is

a linear combination of the ensemble forecasts

µ̂t = β0 +

M
∑

m=1

βmŷm,t (5)

and the log-standard deviation is modeled as a nonlinear

function of the ensemble standard deviation

log(σ̂t) = β0 + f(st), (6)

where st is the standard deviation of the ensemble and f is

a penalized b-spline function with 20 equidistant knots that

is constrained to be monotonically increasing. The degrees

of freedom ν are estimated as a constant. Parameters are

estimated via maximum likelihood using a 0-censored t-

likelihood.
4) Quantile Regression Averaging (QRA): Quantile regres-

sion [16] offers a flexible approach to probabilistic forecast-

ing as it allows to estimate the τ -quantile qτ of a CDF

without making parametric assumptions about the underly-

ing distribution. Hence, we can approximate the CDF of a

conditional predictive distribution by a vector of K quantiles

q = [qτ1 , ..., qτK ].
QRA [17] is a forecast combination technique that builds

on this idea. The predictive quantile q̂t,τ for level τ at time t

is given by a linear combination of the ensemble forecasts

q̂t,τ = β0,τ +

M
∑

m=1

βm,τ ŷm,t. (7)

Note that one has to estimate a separate model for each

quantile, i.e. we estimate 99 models, one for each τ ∈
{0.01, 0.02, ..., 0.99}, to obtain q̂t. We sort the estimated

quantiles to ensure monotonicity and clip all negative values.

A predictive CDF F̂t can then be obtained by interpolation of

q̂t. QRA has been applied to to the problem of electrical load

forecasting in [18].

We additionally test two benchmark models that do not rely

on forecast combination.
5) Naive: This model is a naive baseline and uses the

observed demand of the last day ŷnaive,t = yt−24 as the

mean forecast. The constant variance is estimated using the

observed residuals of this mean forecast, i.e. σ̂2
naive =

1

Ntrain−1

∑Ntrain

t=1
(yt − ŷnaive,t)

2. The predictive distribution

reads N 0(ŷnaive,t, σ̂
2
naive).
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(b) Building B

Fig. 1: PIT histograms of each probabilistic forecast in the test period. The points indicate the bin value and are positioned in its center,
with each bin having a width of 0.1. The dashed line represents an optimal calibration.

6) Gradient Boosted Quantile Regression Trees (GBQRT):

As we observed the GBR model with a 365 day training

window to be one of the best point forecasting models, we

chose this model as a strong benchmark for the forecast com-

bination approaches. The model uses the same features and

hyper-parameters as the point forecasting model but minimizes

the quantile loss instead of the squared error. As for the QRA

model, negative values are clipped and the quantiles are sorted

in ascending order.

All probabilistic models are re-estimated daily with a rolling

window of 365 days.

D. Benchmarking metrics

We benchmark point forecasts with the MAE =
1

Ntest

∑Ntest

t=1
|yt − ŷ+t | and the root mean squared error

RMSE =
√

1

Ntest

∑Ntest

t=1
(yt − ŷ+t )

2, where Ntest is the

number of samples in the test set and ŷ+t = max(ŷt, 0)
a point forecast clipped at 0. To compare the performance

of the probabilistic forecasts we use the continuous ranked

probability score (CRPS), which is defined as

CRPS(F̂t, yt) =

∫

∞

−∞

(F̂t(z)− 1{yt ≥ z})2dz. (8)

Closed form for solutions for (8) are available for some

distributions such as the Gaussian. Alternatively, the CRPS

can be estimated based on samples as CRPS(F̂t, yt) =
1

S

∑S

i=1
|Ŷt,i − yt| − 1

2S2

∑S

i=1

∑S

j=1
|Ŷt,i − Ŷt,j | where

{Ŷt,i}Si=1 is a set of S independent samples from the pre-

dictive distribution [19]. We use S = 1000 samples for each

observation to estimate the CRPS and report the average value

over the test period.

We benchmark the anomaly detection by true positive rate

TPR = TP
TP+FN

and false positive rate FPR = FP
FP+TN

. TP,

FP, FN, and TN are the number of true positive, false positive,

false negative, and true negative classifications, respectively.

III. EMPIRICAL EVALUATION

A. Data & software

We apply our methodology to the hourly load data of two

buildings on the university campus. The temperature data

was obtained from a near-by weather observation station of

Deutscher Wetterdienst [20]. We use the data of the year 2017

as the initial training set for the deterministic models. 2018 is

the validation set for the deterministic models and the initial

training set for the probabilistic models. 2019 is the test set

for point forecasts, probabilistic forecasts, and the anomaly

detection. In each year we only consider the heating period,

which we define as between September 1st and May 31st.

We don’t consider time steps in which an input value or an

observed value is missing. The test set contains 5383 samples

for building A and 5340 samples for building B. In the test

period, building A and B have an average load of 394.8kW

and 121.9kW, respectively.

We use the Python packages scikit-learn [21], pyGAM [22],

and statsmodels [23] as well as the R package gamlss [6].

B. Artificial anomaly generation

To quantify the anomaly detection performance, we replace

5% of the observed load values in the test period with artificial

TABLE I: MAE and RMSE of each point forecast in the test set.
The lowest values in each column is marked in bold. The three best
ensemble forecasts, per building and error measure, are marked by a
superscript.

Building A Building B

Days Model RMSE MAE RMSE MAE

60 Lasso 55.8 35.7 17.5(1) 12.1(1)

60 GBR 56.5 32.0(3) 17.6(3) 12.2(2)

60 GAM 59.5 37.8 19.8 13.7

90 Lasso 52.7(2) 32.9 18.2 12.5

90 GBR 60.9 31.8(2) 17.5(1) 12.2(2)

90 GAM 58.3 36.3 20.2 14.1

365 Lasso 53.0(3) 34.5 19.2 13.3

365 GBR 49.3(1) 30.4(1) 18.7 13.0
365 GAM 57.3 39.9 21.2 14.5

Mean forecast 48.6 29.7 16.7 11.5



���� ���� ���� ���� ����

�����������!������

���

���

���

���

��	

���

��
 �

��
��
���
!�
��
��
�

�

�
���

�
����
��


���!�
�����

(a) Building A

���� ���� ���� ���� ����

�����������!������

���

���

���

���

��	

���

��
 �

��
��
���
!�
��
��
�

�

�
���

�
����
��


���!�
�����

(b) Building B

Fig. 2: ROC curves for each anomaly detection model with each point representing the result for one quantile level as threshold. Square
and triangle mark the thresholds τlower = 0.01 and τlower = 0.05, respectively. Dashed lines represent quantile levels τlower < 0.01. The
results are averages of 30 runs.

anomalies. We create anomalies as deviations of 20% from the

observed load but at least 20% of the average observed load.

Otherwise the artificial deviations for very low load values

would resemble the usual random fluctuations in the data. If

a deviation results in a negative value, we replace it with a

deviation in positive direction. We run the anomaly detection

30 times. For each run the artificial anomalies are placed at

different random positions and the average performance is

reported. The forecast models are trained, validated, and tested

without artificial anomalies.

C. Forecast results

Table I presents the MAE and the RMSE of the point

forecasts and the ensemble mean forecast in the test period.

Notably, different point forecasts of the ensemble perform

best for each building and, depending on which error measure

we consider, even differ in rank for just one building. The

mean forecast, on the other hand, performs best for each

building, irrespective of chosen error measure. This supports

our motivation for employing forecast combination and is in

line with literature [14].

Table II shows the mean test set CRPS score for the

probabilistic forecasts. The GAMLSS model performs best,

followed by the QRA model. For building A GBQRT performs

better than the simple forecast combination models.

The probability integral transform (PIT) histogram in Figure

1 shows the relative amount of observed values in equally

sized intervals of the predictions’ quantile levels and hence

provides information about the calibration of the forecasts

TABLE II: Average test set CRPS values with the lowest per building
in bold.

Building EA EA-EV GAMLSS QRA Naive GBQRT

A 25.51 22.00 20.34 21.20 62.95 21.36
B 8.55 8.88 7.99 8.54 21.47 9.48

[19]. GAMLSS and QRA models show the best calibration.

Calibration in the upper quantile levels suggests that the

distributions of the GAMLSS forecast are over-dispersed in the

upper half. The other forecasts show worse calibrations, with

the EA-EV and GBQRT forecast distributions being under-

dispersed and the naive forecast being over-dispersed.

D. Anomaly detection results

In the following, when presenting results by threshold quan-

tile levels, we choose thresholds so that τupper = (1−τlower).

The receiver operating characteristic (ROC) curve in Figure

2a shows the TPR vs. the FPR yielding from different anomaly

thresholds for each model. The best anomaly detection max-

imizes the area under the ROC curve. The GAMLSS model

outperforms the other models and offers interpretable threshold

levels. With good calibration, the quantile level offers an ex-

ante interpretable threshold as the FPR should be close to

2τlower. EA-EV performs better than its CRPS suggests, but

due to the inadequate calibration, the quantile levels offer

only ex-post interpretability and the threshold levels can’t

be generalized over different buildings. All models perform

worse on building B, see Figure 2b. The GAMLSS model

still performs best. For both buildings, all models based on

forecast combination, except EA-EV for building B, perform

better than the benchmark models. In summary, a decreased

CRPS does not strictly lead to an increased anomaly detec-

tion performance. A reason might be that over- and under-

dispersion reduce the interpretability of the quantile levels but

are not as important when one chooses thresholds ex-post

based on the TPR-FPR ratio. Nevertheless, GAMLSS, with

the lowest average CRPS, offers the best anomaly detection

for both buildings.

Figure 3a shows an example of the detection of artificial

anomalies. The load time series has no recognizable period-

icity and the presented anomaly values would be plausible
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(a) Real load with inserted artificial anomalies
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(b) Real load containing an anomaly

Fig. 3: Examples of the anomaly detection, when using the GAMLSS model with τlower = 0.05. a) The blue line depicts the observed load
from real measurements and the orange line the observed load but altered by inserting artificial anomalies. These are depicted as green dots
if detected and red if not. The interval between the anomaly thresholds is depicted in gray. b) The blue line depicts the observed load from
real measurements and the gray area depicts the interval between anomaly thresholds.

in other time steps. Nevertheless, most of the anomalies are

detected. Figure 3b shows an example where we know the

original data to contain an anomaly. It is correctly detected.

Considering that a similar steep decline and value is part of a

plausible load pattern on the next day, this anomaly can not be

trivially identified at the time of measurement. This confirms

that the proposed methodology offers valuable results in an

actual use-case.

IV. CONCLUSION AND OUTLOOK

This work presented a novel methodology for anomaly de-

tection in heat load time series based on probabilistic forecast

combination techniques. An empirical study showed that prob-

abilistic forecast combination based anomaly detection outper-

forms even a strong benchmark. Of all considered models, the

GAMLSS-based forecast combination model yielded the best

probabilistic forecast and anomaly detection performance.

Further research could be focused on improving the compo-

sition and accuracy of the point forecast ensemble as well as

refining the GAMLSS model, e.g. by considering other types

of distributions. The empirical evaluation could be extended

to more buildings or other smart meter data sets.
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