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Abstract—Federated Learning (FL) has demonstrated a sig-
nificant potential to improve the quality of service (QoS) of
EV charging stations. While existing studies have primarily
focused on developing FL algorithms, the effect of FL on the
charging stations’ operation in terms of price competition has
yet to be fully understood. This paper aims to fill this gap
by modeling the strategic interactions between two charging
stations and EV owners as a multi-stage game. Each station first
decides its FL participation strategy and charging price, and
then individual EV owners decide their charging strategies. The
game analysis involves solving a non-concave problem and by
decomposing it into a piece-wise concave program we manage to
fully characterize the equilibrium. Based on real-world datasets,
our numerical results reveal an interesting insight: even if FL
improves QoS, it can lead to smaller profits for both stations. The
key reason is that FL intensifies the price competition between
charging stations by improving stations’ QoS to a similar level.
We further show that the stations will participate in FL when
their data distributions are mildly dissimilar.

Index Terms—Electric vehicles (EV), charging stations, game
theory, competitive pricing, federated learning (FL)

I. INTRODUCTION

With significant emission benefits over traditional gasoline
cars, electric vehicles (EVs) are becoming increasingly im-
portant in realizing the vision of carbon neutrality [1]. As
the transportation electrification process continues, multiple
providers are actively deploying charging infrastructures to
provide charging services for EV owners [2]. In many cases,
multiple service providers participate in price competition,
which results in lower prices for EV owners and further
motivates service providers to improve their quality of service
(QoS) [3].

A charging station’s QoS crucially depends on its data avail-
able (e.g., charging sessions and user behaviors). For example,
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a charging station can use the data to train a machine learning
model to predict EV users’ beahvior and charging demand,
which helps improve QoS [4], [5]. In practice, however, each
charging station typically has a limited amount of data, making
the improvement of QoS difficult [6].

Recently, Federated Learning (FL) is experiencing rapid
growth and is becoming a promising solution for model
training where stations’ data are limited and private [7].
Specifically, FL enables multiple organizations to train a
shared model that learns from all stations’ data while keeping
their confidential business data local and private [8]. In FL,
stations train models locally and only communicate the model
updates (instead of raw data) with a trusted central server.
Then the server can aggregate the update to the global model
and sends it back to each station. This process iterates until
the global model converges [9].

As discussed, FL has great potential to improve charging
stations’ QoS. However, how FL affects the charging stations’
price competition is unclear, which is our key research ques-
tion in this paper:

Question 1. How does FL affect charging stations’ price
competition?

One may expect that stations can utilize FL to improve their
QoS and hence set higher charging prices, leading to larger
profits. As will be shown, counter-intuitively, FL can lead to
lower profits for both stations.

To gain insights into Question 1, we start with a duopoly
market scenario with two charging stations (or charging ser-
vice providers). Duopoly exists in practice. For example, in
France, Schneider Electric and Groupe Renault are two major
service providers in the EV charging market, competing for
EV customers [10]. We will study the multiple charging
service provider case in our future work.

There have been some research studies on designing pricing
schemes for EV charging stations. Yuan et al. [11] analyzed
the pricing equilibrium of two competing charging stations.
Zhang et al. [12] analyzed the pricing strategies of fast
charging and slow charging services considering users’ deci-
sions in both monopoly and duopoly markets. However, these
studies did not analyze the potential FL collaborations between979-8-3503-9678-2/23/$31.00 ©2023 IEEE
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stations.
Recently, with the release of real-world EV charging ses-

sions (e.g., [13] and [14]), researchers have looked into the
potential benefit of such data for analyzing and developing
efficient EV charging solutions in practice. There have been
a few studies that investigate the viability of FL approach
leveraging real data for power and energy applications. Sa-
putra et al. [15] showed that FL could be utilized to improve
energy demand prediction accuracy in EV networks. Wang et
al. in [16] proposed an FL approach for electricity consumer
characteristics identification. However, these works did not
analyze the fundamental problem of when charging stations
would participate in FL, and how it affects the pricing com-
petition.

In contrast to the existing results, our model jointly consid-
ers strategic FL collaboration and pricing competition of EV
charging stations.

A. Main Results and Contributions

Our main results and contributions are summarized as
follows:

• FL collaboration and price competition: To the best of
our knowledge, this is the first work that investigates
how FL collaboration affects price competition among
charging stations. Our study has important practical im-
plications for the operation of charging stations in a
competitive EV charging market.

• Three-stage game formulation: We formulate the interac-
tions between two charging stations and heterogeneous
EVs as a novel three-stage game. The analysis involves
solving a challenging non-concave problem. By decom-
posing the problem into a piece-wise concave program,
we managed to fully characterize the game equilibrium.

• Equilibrium analysis: We show that there exists a sce-
nario where a station’s optimal price increases not only
with its own QoS, but also other station’s QoS, which
demonstrates the potential benefits of FL to both stations.

• Practical insights: However, numerical results based on
real-world dataset show a somewhat surprising result:
even if FL improves QoS, it can lead to a lower profit
for both stations by intensifying their price competition.
We further show that the stations will participate in FL
when their data distributions are mildly dissimilar.

II. SYSTEM MODEL

We first introduce the decisions and objective functions of
the charging stations and EV users. Then, we formulate their
game-theoretical interactions.

A. EV Charging Stations and EV Owners

We consider a duopoly setting where they are two charging
stations I = {A,B} belonging to different operators. Each
station i ∈ I owns a private local dataset Di, which contains,
for example, EV users’ charging sessions, price elasticity,
and demand. The charging station can use the dataset to
train machine learning models (e.g., for charging demand

prediction) to improve its QoS. Let qi ≥ 0 denote station
i’s QoS based on its own data Di.

1) FL Collaboration: The two charging stations may col-
laborate to train FL models and improve the model perfor-
mance (and hence QoS), without the need to share their local
data. Let r := {ri : i ∈ I} denote the stations’ participation
strategies where ri = 1 means station i participates in FL
and ri = 0 means no participation. A typical FL training
collaboration contains two steps:

• Global iteration: The stations train a shared global model
iteratively until convergence. The shared model learns
from both stations’ data, and hence is likely to outperform
the model trained by a station’s own dataset.

• Local personalization: The stations further fine-tune the
converged global model using local data for better per-
formance. This is particularly useful when stations’ data
are non-independently and identically distributed [17].

Let qi ≥ 0 denote station i’s QoS after FL training collabora-
tion. Each station uses its final model to enhance charging-
related service (e.g., data-driven charging scheduling) and
improve QoS. We define station i’s QoS qi(r) as:

qi(r) =

{
qi, if ri · rI\i = 1,

qi, if ri · rI\i = 0.
(1)

Note that in Eq. (1), FL collaboration happens only when both
stations participate.

2) Price Competition: Besides the potential FL collabora-
tion, the charging stations may compete for potential EV users
who seek charging services. Specifically, let pi ≥ 0 denote the
unit charging price of station i, and p := {pi : i ∈ I}. In this
paper, we assume that the stations offer substitutable charging
services. That is, an EV user only chooses either of the two
stations for charging service.

3) EV Owners: We consider a Hotelling model where there
is a continuum of EVs distributed along a line characterized
by [0, 1]. Let x ∈ [0, 1] be a random variable denoting the
location of a type-x EV, where x has pdf hx(·) and cdf Hx(·).
Stations A and B reside at x = 0 and x = 1, respectively.
Let sx ∈ {∅, A,B} denote the type-x EV owner’s decision. If
sx = ∅, the EV owner does not use any charging service. If
sx = A (B), the EV owner uses the charging service provided
by station A (B). We assume that all EVs have the same
battery capacity.

Next, we define the EV owners’ payoff and stations’ profit.

B. EV Owners’ Payoff
A type-x EV owner’s payoff Ux (p, r) consists of three

aspects: charging-related utility, charging cost, and traveling
cost. The charging-related utility f(qi) is defined as a function
of the station i’s QoS, i.e., f(qi) = wlqi. Intuitively, if a station
has a higher QoS (e.g., shorter waiting time), the EV owner
receives a higher utility. The charging cost is defined as wppi,
which is linear in the charging price pi. The traveling cost is
defined as wdx. Here, wl, wp, and wd are positive coefficients,
and without loss of generality, we assume wd = 1. We define
the payoff as zero if neither of the stations is selected.



Stage I Each CS 𝑖 determines its FL collaboration strategy 𝑟!.

Each CS 𝑖 determines its pricing strategy 𝑝!.

Each type-x user determines its CS selection strategy 𝑠".

Stage II 

Stage III 

Fig. 1: Three-stage system model.

Therefore, given the charging stations’ price p and QoS
q(r), the payoff of a type-x EV is defined as:

Ux (p, r) =


0, if sx = ∅,
wlqA(r)− wppA − x, if sx = A,

wlqB(r)− wppB − (1− x), if sx = B.

(2)

C. Charging Stations’ Profit

Charging stations owned by different companies compete
for EVs via competitive pricing. The profit is composed of
two parts: revenue and FL-related cost.

1) Revenue: Let oi denote the electricity cost with oi ≤ pi.
The revenue of the charging station i ∈ I is:

Πi(p, r) =

∫
x

(pi − oi) · 1sx(p,r)=i · hx(·)dx, (3)

where 1 is an indicator function.
2) FL-related cost: When a charging station i decides to

participate in FL collaboration, there is an associated cost (e.g.,
communication and computation costs) defined as

Ci(r) = wcri. (4)

With Eq. (1)-(4), we define the charging station i’s profit as:

Wi (p, r) = Πi(p, r)− Ci(r). (5)

Similar to [11], we assume that the EVs are uniformly dis-
tributed along the line. Hence we have hx(·) = 1.

D. Three-Stage Game

Now we present the three-stage game as shown in Fig. 1
to model the interaction between EVs and charging stations
(CS). In Stage I, each charging station determines its FL
participation strategy. In Stage II, the stations decide their
charging prices based on their QoS. In Stage III, the EV
owners choose their charging strategies. The game formulation
in each stage is given below.

Game 1. (EV owners’ station selection game in Stage III)
Each type-x EV owner decides sx ∈ {∅, A,B} to maximize
its payoff Ux (p, r) in Eq. (2)

Game 2. (Station Price Competition Game in Stage II)
Each charging station i ∈ I decides price pi ≥ 0 to maximize
its profit Wi (p, r) in Eq. (5).

Game 3. (Station FL Participation Game in Stage I)
Each charging station i ∈ I decides its FL participation
strategy ri ∈ {0, 1} to maximize its profit Wi (p, r) in Eq. (5).

We will solve the three-stage game via backward induction.

𝛿!
𝒑,𝒓0 1 0 1

A B

𝜏𝒑,𝒓0 1

A Bopt 
out

A B

0 1

(a)

(b)

(c)

A B
opt 
out(d)

𝛿%
𝒑,𝒓 𝛿!

𝒑,𝒓

Fig. 2: Illustration of four market partition scenarios.

III. EQUILIBRIUM ANALYSIS

In this section, we first solve the station selection game
in Stage III. Then, we analyze how the charging stations
determine the equilibrium price in Stage II. Next, we solve
the FL participation game in Stage I.

A. Stage III’s Solution: Duopoly Charging Market Partition

To facilitate presentation, we define δp,ri := wlqi(r)−wppi
for all i ∈ I. Without loss of generality, we assume that δp,rA ≥
δp,rB for the analysis in Stages III and II. We further define
τp,r = (1 + δp,rA − δp,rB )/2.

We give each type-x EV’s optimal decisions in Lemma 1.

Lemma 1. Given p, r, a type-x EV’s optimal charging station
selection strategy is:

s∗x(p, r)=


A, if x ∈ [0,max(min(δp,rA , τp,r, 1), 0)],

B, if x ∈ [min(max(1− δp,rB , τp,r, 0), 1), 1],

∅, otherwise.

(6)

We defer all the proofs to the online Appendix [18].
To gain more insights, we show the four possible market

partitions in Theorem 1.

Theorem 1 (Market Partition Equilibrium in Stage III). The
charging market partition equilibrium, denoted by π∗

A(p, r)
and π∗

B(p, r), has the following four cases:
(a) If δp,rA + δp,rB ≥ 1 and δp,rA − δp,rB < 1:

π∗
A(p, r) = [0, τp,r], π∗

B(p, r) = [τp,r, 1]. (7)

(b) If δp,rA + δp,rB < 1, δp,rB > 0:

π∗
A(p, r) = [0, δp,rA ], π∗

B(p, r) = [1− δp,rB , 1]. (8)

(c) If δp,rA − δp,rB ≥ 1, δp,rB > 0:

π∗
A(p, r) = [0, 1], π∗

B(p, r) = ∅. (9)

(d) If δp,rA > 0, δp,rB ≤ 0:

π∗
A(p, r) = [0,min (δp,rA , 1)], π∗

B(p, r) = ∅. (10)

We discuss Theorem 1 below (see also Fig. 2).
• In (a), stations A,B compete for the market, which we

denote as the bifurcated market scenario.
• In (b), which we denote as the segmented market sce-

nario, some type-x users with x ∈ [δp,rA , 1−δp,rB ] choose
to use neither of the charging services, i.e., either the
stations’ prices are high or their QoS is low.

• In (c)-(d), only one station attracts EV users in the market,
which we denote as monopoly scenario.



B. Stage II’s Solution: Competitive Pricing Strategy

In Stage II, the charging stations determine the prices
p, given their FL participation strategy in Stage I and the
charging market partition equilibrium in Stage III. The game is
challenging to analyze (due to the non-concavity introduced by
Lemma 1). Nonetheless, we fully characterize the equilibrium
by decomposing the problem into a piece-wise concave one.

Theorem 2 (Pricing competition equilibrium in Stage II).
Denote ∆i(r) := wlqi(r) − wpoi and −i := I \ i, i.e., the
other station. The pricing competition game has different types
of equilibrium, listed as follows:

1) When ∆i(r) + ∆−i(r) ≥ 3, ∆i(r) − ∆−i(r) ≤ 3,
∆i(r) > 0 and ∆−i(r) > 0:

p∗i (r) = oi +
1

wp
+

∆i(r)−∆−i(r)

3wp
, ∀i ∈ I. (11)

2) When 2 < ∆i(r) + ∆−i(r) < 3, ∆i(r) > 0 and
∆−i(r) > 0:

p∗i (r) =
wlqi(r) + wlq−i(r)− 1

2wp
(12)

3) When ∆i(r)+∆−i(r) ≤ 2, ∆i(r) > 0 and ∆−i(r) > 0:

p∗i (r) =
wpoi + wlqi(r)

2wp
, ∀i ∈ I (13)

4) When ∆−i(r) ≤ 0 or ∆i(r) − ∆−i(r) > 3, station −i
obtains zero market share:

p∗i (r) =

{
wpoi+wlqi(r)

2wp
, if qi(r) ∈ (

wpoi
wl

,
wpoi+2

wl
],

wlqi(r)−1
wp

, if qi(r) ≥ wpoi+2
wl

.
(14)

We discuss the key implications as follows.
• In case 1), both stations’ QoS are relatively high. The

optimal price of station i depends on the difference of
the QoS qi(r) − q−i(r). Specifically, if station i’s QoS
is higher, the optimal price is higher than the other
station. In addition, p∗i (r) decreases when station −i’s
QoS q−i(r) increases.

• In case 2), both stations’ QoS are moderate and they
equally share the charging market. A station’s optimal
price not only increases in its own QoS, but also in the
other station’s QoS, demonstrating the benefits of FL to
both stations.

• In case 3), both stations’ QoS are relatively low. Some
users choose to opt-out, and the optimal price no longer
depends on the QoS of the other station.

• In case 4), i.e., when station −i’s QoS is too low, station i
dominates the charging market and acts like a monopoly.

C. Stage I’s Solution: FL Participation Strategy

In stage I, each station i decides the FL participation
strategy ri ∈ {0, 1}. Based on Theorems 1 and 2, we obtain
station i’s profit in Eq. (15) with ∆i(r) ≥ ∆−i(r). Then,
the FL participation game can be represented by a two-by-
two matrix in Table I. Based on the matrix, the stations

choose to participate in FL if for each i ∈ I, we have
Wi(ri = 1, rI\i) ≥ Wi(ri = 0, rI\i).

TABLE I: Profit Matrix in Stage I.

CS-B
rB = 1 rB = 0

CS-A rA = 1 WA(1, 1),WB(1, 1) WA(1, 0),WB(1, 0)

rA = 0 WA(0, 1),WB(0, 1) WA(0, 0),WB(0, 0)

Theorem 3 (Strategic FL Participation). rA · rB = 1 is not
always the optimal FL participation strategy.

Interestingly, Theorem 3 is true even if FL does not incur
any cost (i.e., wc = 0). The intuition is that FL participation
may lead to a higher QoS for both stations, but it also
intensifies the price competition (e.g., Case 1 in Theorem 2).
That is, a station’s price may decrease due to FL (since the
other station’s QoS improves), leading to a lower profit.

IV. EXPERIMENTS

In this section, we provide numerical results to study how
FL affects stations’ QoS and profits. We further study when
clients will choose to participate in FL.

Dataset and Learning Task: We use the dataset from
the city of Dundee [13] on EV charging sessions to solve
a demand prediction task. The dataset contains 20k transac-
tions, where we use EVs’ charging date and time (including
start and end) as features, and consumed energy (in kWh)
as the target. We use root mean squared error (RMSE) to
calculate the loss. We consider that the two stations have non-
independently and identically distributed (non-iid) data. To
this end, we sample data using the widely adopted Dirichlet
distribution with a controlling parameter β > 0, where a
smaller β indicates a higher degree of non-iidness between
stations. We sample 3 · 103 data points for each station using
β ∈ {0.01, 0.1, 1, 10, 50, 75, 100}. 1

Functions and Parameters: We use a linear function to
model the relation between a station’s QoS and its model
performance, i.e., qi = qmax−θϵi, where qi is station i’s QoS
in (1), and ϵi is station i’s average RMSE for the demand
prediction task.2 We set wl = 10, wp = 1, oA = 1, oB =
1, qmax = 100, θ = 10, cA = 0.1, and cB = 0.1.

We report the training results (averaged RMSE over 10 runs)
in Table II. We plot the stations’ profits calculated by Eq. (15)
in Fig. 3a. In Table II and Fig. 3a, w/o FL means stations
do not participate in FL and only perform local training (i.e.,
rA = rB = 0), and with FL means the stations perform FL
collaboration (i.e., rA = rB = 1).

Impact of FL on stations’ QoS: In Table II, we observe
that both stations obtain a better model (smaller RMSE) with
FL than without FL. FL enables a shared global model to learn
from both stations’ data, leading to a better model and QoS.

Impact of FL on stations’ profits: Interestingly, we ob-
serve in Fig. 3 that both stations’ profits can be lower with FL

1We leave the experiments with iid data setting to the full version.
2We have also done experiments using various functions such as quadratic

and logarithmic functions. We find that the results continue to hold.



Wi(r) =



1
2wp

(
∆i(r)−∆−i(r)

3 + 1
)2

− Ci(r), if ∆i(r) + ∆−i(r) ≥ 3, 3−∆i(r) ≥ ∆−i(r) > 0,

(p∗i (r)− oi)(wlqi(r)− wpp
∗
i (r))− Ci(r), if 2 ≤ ∆i(r) + ∆−i(r) < 3,∆i(r) > 0,∆−i(r) > 0,

∆2
i (r)
4wp

− Ci(r), if ∆i(r) + ∆−i(r) ≤ 2,∆i(r) > 0,
∆i(r)−1

wp
− Ci(r), if ∆i(r) ≥ 2,∆−i(r) ≤ 0 or ∆i(r)−∆−i(r) > 3.

(15)

TABLE II: Average RMSE with Non-IID data.

β 0.01 0.1 1 10 50 75 100

Station A w/o FL 6.59 6.79 6.63 6.88 6.93 6.81 6.68
Station A with FL 6.40 6.68 6.43 6.74 6.68 6.65 6.58

Station B w/o FL 6.04 6.88 6.68 6.82 6.75 6.76 6.90
Station B with FL 5.89 6.81 6.56 6.42 6.60 6.63 6.67

than without FL (e.g., β = 0.01). The key reason is that even
if FL improves both stations’ model performance and QoS, it
also intensifies their price competition. One can see from Eq.
(15) (the first case) that the station’s payoff depends on the
QoS difference. FL results in higher QoS for both stations,
but it may also decrease their QoS difference. A smaller QoS
difference induces the stations to participate in more intense
price competition. This results in lower equilibrium prices and
hence lower station profits.

Optimal FL participation: Based on Fig. 3a, we plot
the stations’ optimal FL participation strategies in Fig. 3b,
where Y means r∗A · r∗B = 1 and N means r∗A · r∗B = 0.
We observe that the stations choose to participate in FL
when β is moderate (e.g., β = 1), which corresponds to a
mild level of data heterogeneity (dissimilarity). When stations’
data are too dissimilar (e.g., β = 0.01) or too similar (e.g.,
β ≥ 50), both stations achieve quite similar error reductions
(QoS improvements). Such benefits can be offset by price
competition, which decentivizes stations’ FL participation.

V. CONCLUSION

This paper presents the first study that explores how FL
affects price competition among charging stations in a duopoly
market. We formulate a novel three-stage game-theoretic
model between charging stations and EV owners. The game
analysis involves solving a non-concave problem and we
characterized the equilibrium. Our preliminary results using
real-world datasets show a somewhat surprising result: even if
FL improves both stations’ model performance, it can reduce
both stations’ profits by intensifying their price coopetition.
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