
HAL Id: hal-04434231
https://hal.science/hal-04434231

Submitted on 18 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Pricing for Electric Vehicle Parking Duration
under Uncertainty

Alix Dupont, Yezekael Hayel, Tania Jiménez, Jean-Baptiste Breal, Raphaël
Payen, Olivier Beaude

To cite this version:
Alix Dupont, Yezekael Hayel, Tania Jiménez, Jean-Baptiste Breal, Raphaël Payen, et al.. Optimal
Pricing for Electric Vehicle Parking Duration under Uncertainty. Innovative Smart Grid Technologies
(ISGT) Europe 2023, IEEE Power & Energy Society (PES); University Grenoble Alpes, Oct 2023,
Grenoble, France. pp.1-5, �10.1109/ISGTEUROPE56780.2023.10407699�. �hal-04434231�

https://hal.science/hal-04434231
https://hal.archives-ouvertes.fr


Optimal Pricing for Electric Vehicle Parking
Duration under Uncertainty

Alix Dupont
LIA, Avignon University, France
EDF Lab, Paris-Saclay, France

alix.dupont@edf.fr

Yezekael Hayel
LIA, Avignon University, France
yezekael.hayel@univ-avignon.fr

Tania Jiménez
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Abstract—The growing adoption of Electric Vehicles (EVs)
has led to a rise in demand for public Charging Points (CPs),
resulting in congestion in terms of availability. This study suggests
implementing a pricing strategy with the objective of optimizing
the utilization of CPs, in order to tackle the aforementioned
issue. The policy entails assessing a fixed overstay fee for the
EV users whose parking duration exceeds a pre-set threshold,
thereby encouraging the EV users with a lower parking duration
to charge which enables to free up CPs for other EV users. The
study incorporates the uncertainty of parking duration upon
arrival into the decision to use a CP, applying the expected
utility hypothesis. The expected profit is derived using a multi-
class queueing model, which captures the heterogeneity in the
charging need and parking duration estimated by the EV users.
Numerical analysis is conducted to determine the optimal pricing
values, enabling a Charging Point Operator (CPO) to maximize
the expected profit. The results show, on a realistic use-case, that
an overstay fee improves the CPO’s expected profit by over 10%
compared to an simple admission fee, that is when all the EV
users joining the CS pay a fee, both optimally chosen by the
CPO.

Index Terms—Charging station, electric vehicle, queueing the-
ory, charging behavior, pricing

I. INTRODUCTION

The exponentially increasing penetration of Electric Vehi-
cles worldwide creates congestion in terms of availability at
the public Charging Points (CPs) [1]. This requires reducing
the parking duration of the EVs at a parking space equipped
with a CP, thereby allowing a greater number of EV users to
share the existing CPs. Moreover, increasing the availability
of the CPs can alleviate the well-known range anxiety of
EV users, i.e. the fear of running out of energy [2]. In
order to assess the impact of pricing into EV users’ charging
decision, considering a utility function for EV users quality of
charging service allows to better understand how they make
and quantify their choices, i.e. whether to charge or not, and
which type of CP. In [3], a web-based survey is conducted
in order to capture EV users charging mode choices, i.e. fast
or slow charging, as well as their sensitivity to the charging

price, among other factors. In contrast to [3], the authors in
[4] consider a nonlinear utility function to model the charging
behavior and their travel habits, in particular with respect to the
State of Charge (SoC) upon arrival. However, the issue of CP
availability is not discussed. In [5], the Charging Station (CS)
optimal pricing is investigated in a competitive environment
with two Charging Point Operators (CPOs). EV users choices
consider many factors such as the pricing, i.e. a parking
admission and energy consumption fee, or the convenience
to find an available CP. In [6], a CS manager suggests several
charging offers in order to customize EV users charging
demand and to lower their parking duration in order to free up
the CPs. However, in this model all factors such as the parking
duration is supposed known by EV users before making their
choices, which is not necessarily the case in practice.

Queueing theory can be used in order to capture the
stochastic nature of arrival and departure times of EV users.
For example, in [7] a queueing game analysis in which EV
users chose between two CSs at a given site is presented. In
[8], a M/G/s queue is used to develop a pricing policy in order
to lower the EV charging demand during peak hours. The CS
sizing problem is investigated in [9] using a M/M/s/N queue,
but the charging decision only depends on the SoC upon
arrival, and no pricing policy is proposed. In [10], arriving
EV users choose between two charging modes, and a M/M/N
queue is formed for each of these modes. The probabilistic
choice of each charging mode is assumed to be linearly
decreasing with respect to the service fee, and does not depend
on any other factor.

In our work, the problem of CP availability is investigated
by considering a pricing policy on the parking duration.
The main contributions are summarized as follows: (i) a
charging behavior model at a public CS is proposed, with
unknown parking duration and heterogeneity in the charging
demand; (ii) The optimal parking pricing policy in terms of the
CPO’s expected profit is investigated in a multi-class M/G/N/N
queueing framework.

The rest of the paper is organized as follows. In Section
II, the model and scenario of EV users arrival and behavior978-1-6654-4875-8/21/$31.00©2023 European Union



is described. In Section III, the main metrics such as the
CPO’s expected profit are studied analytically. In Section IV,
a use-case with realistic parameter values is considered and
the associated numerical results are presented and discussed.
Finally, perspectives are given in conclusive Section V.

II. MODEL DESCRIPTION

A. Scenario with EV users heterogeneity

Upon arriving at a given commercial site equipped with a
CS, the EV users decide whether or not they want to join
the CS, taking into consideration factors such as their SoC at
arrival, their estimated parking duration, and the pricing. The
willingness to charge is made without knowledge of the CS
occupancy. Considering this, the EV users who decide not to
join the CS are called the balking EV users. Some of the EV
users willing to charge might be blocked because all the CPs
at the CS are currently in use. These EV users are called the
blocked EV users. In this case, and similarly for the balking EV
users, these EV users go to a parking space without a CP. The
other EV users, i.e. the ones willing to charge and who find an
available CP, are called the joining EV users. The proportion
of balking, blocked, and joining EV users are respectively
denoted αbalk, αblock, and αjoin. The scenario is illustrated
in Fig. 1 These proportions are formally determined in the
following section III, depending on the model’s parameters.

Fig. 1: Schematic diagram of the model.

1) Stochastic model for parking duration: The arrival times
of the EV users at the site follow a Poisson process with rate
λ. EV users are divided into I classes, as in [8]. The classes
differ by their parking duration distribution. For each EV user
in class i, his/her parking duration is independently determined
from other EV users and follows a random variable with a
continuous Probability Density Function (PDF) fpark

i (.) with
mean D̄i. Upon arrival at the CS, EV users do not know their
parking duration, but they are aware of their PDF fpark

i (.).
An arriving EV user belongs to class i ∈ {1, ..., I} with a
probability θi. Given this, the arrival times of the class-i EV
users follow a Poisson process with parameter λi := θi λ, and
the mixed PDF fpark(.) of an EV user parking duration is then
fpark(.) =

∑N
i=1 θi f

park
i (.), with mean D̄ =

∑N
i=1 θi D̄i.

2) Energy demand distribution: The SoC at the time of
arrival, denoted Sarr ∈ [0, 1], is continuously distributed

among the population of EVs, with a cumulative density
function FSarr (.). Unlike the parking duration, EV users are
aware of their SoC at arrival. This value mainly depends on
the distance traveled in order to reach the site since the last
charging session, and many other exogeneous parameters [11].
EV users leave the CS only when their parking duration is
elapsed, independently of the current SoC, as the primary
purpose of their visit to the site is for other activities such
as dining, shopping, etc.

B. CS description

1) Charging Power: The CS is composed with Ncp parking
spaces, each one of them equipped with a single CP offering a
maximum nominal charging power pmax. This power depends
on the physical characteristics of the chargers, as explained in
[12]. Due to battery constraints, when the SoC S reaches a
transition SoC Ŝtrs ∈]0, 1[, the charging power p(S) drawn
by each EV reduces, which is formalized by the following
two-step function as in [13]:

p(S) =

{
pmax if S ≤ Ŝtrs,
1−S

1−Ŝtrs
pmax if S > Ŝtrs.

(1)

2) Parking duration pricing policy: Upon leaving the CS,
EV users pay a fee based on their parking duration. The pric-
ing policy C(.) is the following piece-wise constant function
with two pieces with respect to the parking duration:

C(d) = a 1d≥dthr
,

where a and dthr are non-negative parameters which fully
determine the pricing policy. This type of pricing is nowadays
more and more deployed in public CPs, see for example [14].
The parking duration of an EV user is exogeneous: it depends
only on his/her activities at the site. This is a reasonable
assumption because the parking demand is very inelastic [15].
This form of pricing is expected to motivate the EV users with
a short estimated parking duration to join the CS.

C. Charging behavior under parking duration uncertainty

The perceived satisfaction R(S) associated with the current
SoC S is a quadratic function, as in [16]:

∀S ∈ [0, 1], R(S) = ωBcapa (S − 1

2
S2), (2)

where Bcapa is the battery storage capacity of the EVs, and
ω is a weight coefficient (in C/kWh) that describes the value
given to the energy received. The marginal satisfaction given
to the energy received decreases linearly in the current SoC
value. For a given SoC at arrival Sarr and parking duration
d, the utility function Ui(S

arr, d) for any class-i EV users
depends on the the variation in SoC ∆S(Sarr, d) due to the
energy received during the parking duration, and the pricing
policy C(d) as follows:

Ui(S
arr, d) = R(Sarr +∆S(Sarr, d))−R(Sarr)− C(d),

where R(Sarr + ∆S(Sarr, d)) − R(Sarr) represents the
perceived benefit of increasing the SoC from Sarr to Sarr +



∆S(Sarr, d). The formula of ∆S(Sarr, d) can be obtained
using the linear differential equation (1), and is given in [13].
EV users’ utility function is random, due to the uncertainty
of their parking duration d at the time they arrive. For this
reason, any class-i EV user consider his/her expected utility
Ūi(S

arr) with respect to the parking duration distribution. In
particular, a class-i EV user joins the CS if Ūi(S

arr) > 0,
with:

Ūi(S
arr) =

∫ +∞

0

R(Sarr +∆S(Sarr, x)) fpark
i (x) dx

−R(Sarr)− C̄i, (3)

where C̄i = a (1−
∫ dthr

0
fpark
i (x)dx) is the expected parking

cost for the class-i EV users. Given this, the characteristics of
EV users joining the CS are analyzed in next Section III.

III. CHARGING BEHAVIOR ANALYSIS AND CS PROFIT

In this section, the influence of the SoC at arrival Sarr

and the pricing policy parameters (a, dthr) on the charging
decision of each class of EV users is investigated.

Proposition III.1. There exists a unique SoC threshold Sthr
i ,

defined by:

Sthr
i =

{
Unique solution of Ūi(S

arr) = 0 if Ūi(0) > C̄i,
0 otherwise,

(4)
and such that any class-i EV user is willing to join the CS iff
Sarr < Sthr

i .

Up to a SoC Sthr
i at arrival, any class i EV user needs

enough energy so that they are willing to pay the expected
parking duration cost in order to get charged. Otherwise,
they prefer to balk from the CS. Given this, FSarr (Sthr

i )
corresponds to the proportion of EV users willing to charge,
i.e. willing to pay the expected parking fee in order to get
charged, among class-i EV users. By applying the implicit
function theorem, it is straightforward to shown that, for each
class i, the SoC threshold Sthr

i strictly increases with respect
to the expected cost C̄i, for C̄i ∈]0, Ūi(0)[. In other words, the
proportion of balking EV users increases when the parking fee
a increases, or when the parking duration limit dthr decreases.

By Bayes formula, the probability θjoini that a parked EV
at the CS is from class i is:

θjoini =
θi FSarr (Sthr

i )∑I
i=1 θi FSarr (Sthr

i )
. (5)

It is expected that in average the parking duration at the
CS is lower than among the whole population of EV users at
the site, because the pricing discourage EV users with a high
expected parking duration to park at the CS.

Proposition III.2. The proportion αblock (resp. αjoin) of
blocked (resp. joining) EV users are:

αblock = (
∑I

i=1 θi FSarr (Sthr
i ))×

ρ
Ncp

Ncp!∑Ncp
j=0

ρj

j!

,

αjoin =
∑I

i=1 θi FSarr (Sthr
i ))× (1−

ρ
Ncp

Ncp!∑Ncp
j=0

ρj

j!

),

with ρ =
(
λ (

∑I
i=1 θi FSarr (Sthr

i ))
)
×

(∑I
i=1 θ

join
i D̄i

)
the CS utilization rate.

Based on Proposition III.2, the proportion αbalk of balking
EV users is:

αbalk = 1− αblock − αjoin = 1−
I∑

i=1

θi FSarr (Sthr
i ).

The expected profit per time unit Γ of the CPO is defined
as the expected rate of EV users joining the CS times the
expected cost per EV user, i.e.:

Γ = αjoin × λ×
I∑

i=1

θjoini C̄i, (6)

where θjoini and αjoin and respectively given by (5) and
Proposition III.2. The pricing policy parameters (a, dthr) can
then be adjusted in order to optimize the expected profit of the
CPO. This optimization problem is investigated numerically in
next Section IV.

IV. NUMERICAL ILLUSTRATIONS AND DISCUSSION

The main metrics of the model described are numerically
illustrated in this section, and the optimal pricing is investi-
gated.

A. Use case description at a commercial site

In this illustrative use-case scenario, EV users are divided
into Nc = 5 classes equally distributed, i.e. θi = 1

5 for all
i ∈ {1, . . . , 5}. The random parking duration of the different
classes follows a gamma distribution respectively among the
classes with means 0.5, 1, 2, 3, 5 hours, and standard deviation
1
6 , 1

3 , 2
3 , 1, and 5

3 hours: the parking duration uncertainty
proportionally increases with the mean parking duration, as
stated in [6]. The SoC at arrival is distributed among the whole
population of EV at the site, i.e. all classes together, according
to a beta distribution, as in [8] and [17], with mean 0.5 and
standard deviation 0.2. The other parameters of the system are
the same for all EV classes and are shown in Table I.

TABLE I: Parameters description and values. Starting from
an empty battery, it takes about 3.5 hours to reach a SoC of
Ŝtrs = 0.8, after which the power starts to decrease.

Definition Notation Value
Exp. frequency of EV arrivals (h−1) λ 12

Value given to energy (C/kWh) ω 0.2
Battery storage capacity (kWh) Bcapa 50

SoC power transition Ŝtrs 0.8
Static max. charging power of the CPs (kW) pmax 11

Number of CPs Ncp 10

B. Sensitivity analysis of the EV users willingness to charge:
a trade-off between the energy received and the parking cost

Fig. 2 shows the expected utility with respect to the SoC at
arrival. As stated in the proof of Proposition III.1 in Section
VI, the incentive to charge decreases with the SoC at arrival,
as the expected perceived benefit of using a CP decreases.



Fig. 2: Expected utility, defined in (3), for different classes,
for a pricing policy a = 3C and dthr=45min. EV users
of class 1 (resp. 2 and 4) decide to charge if their SoC at
arrival is lower than 78% (resp. 20% and 37%). Given that
the parking duration has a positive impact on energy received
but a negative one regarding the probability to pay the parking
fee, the relation between Sthr

i and D̄i is not trivial, here not
monotonic.

Fig. 3: Proportion of EV users willing to charge and joining,
see Proposition III.2, with respect to the parking duration limit
dthr, for a parking fee a = 3C. The proportion of blocked EV
users, i.e. the difference between the blue curve and the green
curve, increases with dthr because it creates more congestion
at the CS. As a consequence, the proportion of EV users
actually joining the CS can decrease in dthr.

The decision to charge can be analyzed by two factors: (i)
The EV users willingness to pay in order to get charged,
which depends on the fee a, the energy received, and the
values accorded to the energy parameterized by ω and; (ii) the
probability to pay the fee a, which depends on the EV users
parking duration, and on the parking duration limit dthr. Fig. 3

shows the influence of dthr on the proportion αjoin + αblock

of EV users willing to charge, and the proportion αjoin of
EV users actually joining the CS. When dthr ≳ 30min, some
class-1 EV users are willing to charge because the probability
that they pay is significantly decreased.

C. CPO’s expected profit

Fig. 4: CPO’s expected profit Γ with respect to the pricing.
When the parking fee a is high, the profit increases each time
dthr approaches the mean arriving time of a new class of EV
users as some of this class are willing to charge.

Fig. 4 displays the CPO’s expected profit per hour with
respect to the pricing (a, dthr). The influence of dthr on the
CPO’s expected profit is coupled with a. When a is low, a
high proportion of EV users is willing to charge, although
they may pay the fee a. On the opposite, when a is high, the
EV users want to join the CS only when they are sure to have
a sufficiently low parking duration so that they will not pay
the fee a. Although not optimal in terms of profit, choosing a
high value for a can significantly lower the congestion at the
CS because only the EV users with a short estimated parking
duration compared to dthr will join the CS.

A CPO may aim at adjusting the pricing policy parameters
(a, dthr) in order to maximize its expected profit Γ, defined
by Equation 6. In order to highlight the effectiveness of
introducing the free of charge parking duration threshold, two
maximization problems are considered:

Γopt = max
dthr≥0,a≥0

Γ,

Γ̃opt = max
dthr=0,a≥0

Γ,
(7)

where Γopt (resp. Γ̃opt) is the optimal expected profit with
(resp. without) the parking duration threshold dthr. The solu-
tions of (7), denoted (aopt, doptthr) for Γopt and ãopt for Γ̃opt, are
computed using the heuristic simulated annealing algorithm1

[18] because the expected CS profit Γ, as seen in Fig. 4, is

1the algorithm is stopped after 500 iterations, and the temperature parameter
is initialized to 1, with a discount factor at every iteration of 0.98.



Fig. 5: Optimal pricing policy in (7). The CPO should increase
the parking fee when the demand grows. doptthr ≈ 0.6 is set to
incentivize the class-1 EV users to join the CS because their
low parking duration does not create much congestion.

not convex and possesses many local optima. The optimal
pricing and CPO’s expected profit are shown with respect
to the expected frequency of arrivals at the site, that is the
potential demand, in Fig. 5. Introducing a parking duration
threshold dthr > 0 enables to increase the number of EV
users willing join the CS while maintaining low congestion,
and then increases CPO’s expected profit Γopt by over 10%
compared to Γ̃opt.

V. CONCLUSION

In order to effectively manage a Charging Station (CS),
this paper suggests a threshold-based parking duration pricing
strategy. The impact of this pricing strategy on EV users’
willingness to charge at the CS is analyzed. According to
the proposed model, the EV users are willing to charge only
if their SoC at arrival is low enough, as this allows them
to receive more energy. Additionally, the pricing policy is
shown to reduce the average parking duration among EV users
who are willing to use a CP. This mechanism increases the
availability of public charging points (CPs) and leads to an
increase in the CPO’s expected profit by over 10% compared to
a fixed admission fee, which encourages further investigations
of such pricing policies. For future research, the proposed
model could be extended to include different types of CPs
with different charging power capacities and pricing policies,
while also integrating an energy-based pricing scheme.

VI. APPENDIX

Proof of Proposition III.1
Due to the strict convexity of the reward function (2), the

expected utility Ūi(S
arr) of each class i is strictly decreasing

with respect to the SoC at arrival Sarr, so that the solution of
Ūi(S

arr) = 0 is unique. Moreover, Ūi(S = 1) ≤ 0 because
C̄i ≥ 0, there exists a solution if Ūi(0) > C̄i.

Proof of Proposition III.2
The probability that all the Ncp CPs are in use is known as

the Erlang loss formula
ρ
Ncp

Ncp!∑Ncp
j=0

ρj

j!

. Due to the PASTA property

[19], it is also the proportion of blocked EV users among

the EV users willing to charge, i.e.: αblock

αblock+αjoin =
ρ
Ncp

Ncp!∑Ncp
j=0

ρj

j!

.

Combined with the fact that the proportion of EV users willing
to charge is: αblock + αjoin =

∑N
i=1 θi FSarr (Sthr

i ), it is
sufficient to determine the values of αblock and αjoin, which
concludes the proof.
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