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Abstract—Accurate price predictions are essential for market
participants in order to optimize their operational schedules
and bidding strategies, especially in the current context where
electricity prices become more volatile and less predictable using
classical approaches. The Locational Marginal Pricing (LMP)
pricing mechanism is used in many modern power markets,
where the traditional approach utilizes optimal power flow (OPF)
solvers. However, for large electricity grids this process becomes
prohibitively time-consuming and computationally intensive. Ma-
chine learning (ML) based predictions could provide an efficient
tool for LMP prediction, especially in energy markets with
intermittent sources like renewable energy. This study evaluates
the performance of popular machine learning and deep learning
models in predicting LMP on multiple electricity grids. The
accuracy and robustness of these models in predicting LMP is
assessed considering multiple scenarios. The results show that
ML models can predict LMP 4-5 orders of magnitude faster
than traditional OPF solvers with 5-6% error rate, highlighting
the potential of ML models in LMP prediction for large-scale
power models with the assistance of hardware infrastructure like
multi-core CPUs and GPUs in modern HPC clusters.

Index Terms—Future Energy Markets, Locational Margin
Pricing, Machine Learning, Price Prediction, Uncertainty Man-
agement, High Performance Computing

I. INTRODUCTION

Nodal Pricing, also known as Locational Marginal Pricing

(LMP), is a widely-used pricing mechanism in energy markets

around the world, including the US, Ireland, New Zealand, and

Singapore [1]. It calculates nodal level remuneration based on

location, acknowledging the importance of location when it

comes to electricity price [2]. Accurate forecasting of LMPs is,

therefore, essential for market participants, such as balancing

and flexibility service providers, to optimize the scheduled

operation and bidding strategy [3]. A regular power system

is generally very large and complex, thus computing the LMP

of each node becomes prohibitively expensive. To address this

challenge, machine learning tools can be leveraged not only

to predict prices, but also to guide their operational schedules

based on changing market conditions.

The increasing penetration of renewable energy sources in

the energy mix, such as solar and wind, increases the volatility

and unpredictability of electricity prices. ML models can help

to mitigate these uncertainties and enable stakeholders in the

energy market to make more informed decisions. The LMP is

usually determined by solving the direct current optimal power

flow (DC-OPF) problem, a simplified version of optimal power

flow (OPF) which is a constrained nonlinear programming

problem [4]. The large-scale nature of OPF problems exhibits

excessive hardware and computational-time requirements, es-

pecially when dealing with real-time predictions of realistic

electricity grids [5]. In order to retain the operational standards

of the power grid operators or the market participants, they

need to re-run the OPF very often, following the forecast

updates of the renewable energy sources.

Price prediction and price forecasting tasks are increasingly

relying on ML methodologies to reduce processing time [2].

Solution of ML models can also be used as warm-start points

for solution using iterative solvers. Models can be tailored

towards solving for a subset of the OPF solution like system

voltages, generator scheduling or LMP prediction. With our

proposed ML model solution, the ML model can be pre-trained

on the data samples around the most-likely scenarios based on

grid-specific data and the on-line prediction for any updated

scenario can be obtained from the pre-trained ML model.

In previous studies, Graph Neural Networks were used in

[6] to create a topology-aware Neural Network (NN) so that

any changes to the grid do not trigger retraining of the model

or hamper prediction capabilities due to over-dependence on

historical data. In [7], the author tries to solve the AC-OPF

problem with random forests to predict voltage and generation

solutions that would serve as an intelligent, warm start for

further solving the AC-OPF. In [8], the authors use a NN

to predict optimal AC-OPF solution for 3 IEEE standard

electricity grids. They also comment on the feasibility of the
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solution and the amount of time saved. The authors of [9]

focuses further on implementing hard feasibility strategies to

ensure the predicted solutions are within the feasible space.

Their subsequent paper [10] uses similar strategies on the DC-

OPF formulation. DC-OPF formulation was directly solved

using a convex NN in [11] and used the KKT conditions

to construct a loss metric for training. In [12], the authors

use a blend of seasonal, weather, economic and operational

data to predict LMP value in Mexico using ANNs and

global senstivity analysis (GSA) to determine the importance

of external factors. Transformers, a well-known sequence to

sequence(seq2seq) architecture for deep learning, were used to

predict LMP in the PJM power market using historical data.

Accuracy of several popular ML and deep learning models

proposed in the literature is studied in context of LMP price

prediction based on data involving demand, supply and gen-

erator cost curves. Various edge-case scenarios and the grid

topology adjustments are considered to test model robustness

and assess the performance scalability to larger electricity

grids. The ML models considered in this study are Decision

Tree Regression (DTR), Gradient Boosting Regression (GBR),

Random Forest Regression (RFR), and Deep Neural Network

with multiple hidden layers (NN - 1 & 2). When assessing

the accuracy and robustness of different ML models, there

are a few key factors to consider. One important factor is the

model’s predictive performance, which can be measured using

metrics like Mean Absolute Percentage Error (MAPE). It is

also essential to consider the robustness of the model, which

refers to its ability to perform well on a wide range of input

data. This can be evaluated by testing the model on various

data sets that simulate changes in market conditions and other

external factors. The scalability of the accuracy and robustness

can be tested by running experiments on electricity grids of

various sizes.

The remaining part of this paper is structured as follows.

Sec. II explains the data generation methodology used to

generate training and testing data. Sec. III gives an overview

on the numerical experiments conducted and the results of the

experiments. Finally, Sec. IV provides concluding remarks and

directions for future work.

II. DATA GENERATION

All the training and testing ground truth data is generated

with the help of MATLAB. The electricity grids of choice

are chosen from PGLib-OPF [13]. The PGLib-OPF models

contain static data, i.e., a snapshot of the grid state in a single

time instance, consisting of individual voltage levels across

nodes, grid topology, power injection and power withdrawal

at nodes. This single snapshot translates into a single DC-OPF

optimization problem imported into MATPOWER [5] that is

solved using an optimization solver such as MOSEK [14]. The

choice of the electricity grid and their properties are detailed

in Tab. I.

The PGLib-OPF provides a single feasible snapshot for each

electricity grid. However, training a ML model will require

more than a single snapshot (or single instance) that have

TABLE I: Description of electricity grids under consideration.

Case # load buses # generator buses # branches

case30 30 6 41

case240 240 143 448

case1354 1354 260 1991

case1888 1888 296 2531

to be dissimilar from each other. In order to generate these

heterogeneous instances of data, perturbations at the nodal

level are introduced. When the active loads are perturbed at

all nodes, the resulting DC-OPF problem differs from the

base case also in terms of the nodal prices. The nodal level

perturbations sPd
are calculated using the following equation:

sPd
= 1 +

sgrid × snodal

100
, (1)

where the scalar sgrid is the nodal perturbation expressed in

percent relative to the base case and is constant for all the

grid nodes in a given problem instance. The scaling factor

snodal is a vector of uniformly distributed random numbers

in the range (0.9, 1.1) with the length equal to the number of

the grid nodes. The motivation behind the nodal perturbation

Eq. (1) is to simulate a given global trend (sgrid) in the grid,

such as an increase or decrease of the active load, but this

is not equal across all the nodes in the grid. Thus, we apply

random noise at the nodal level (snodal) to these global trends

to achieve the final scaling factor.

TABLE II: Range of the global perturbations sgrid.

Case Perturbation Range (%)

case30 {-30, 30}
case240 {-70, -10}
case1354 {-50, 0}
case1888 {-40, 10}

A. Training Data

The base snapshot of each grid is first manipulated with the

help of Eq. (1) to generate up to 5000 heterogeneous instances.

The sgrid parameter was randomly sampled from the given

range for each problem instance. Each instance corresponds to

a separate optimization problem solved with MATPOWER and

MOSEK. We extract the information to use as input features

xi for training the ML model. The input features of each node

(demand and generator nodes) on the electricity grid are active

power demands Pd at each load bus and transmission capacity

factor Pl is defined as

Pl =
Pd

Pmax
l

, (2)

where Pd represents nodal active power demand and Pmax
l

represents the maximum capacity of the connected transmis-

sion lines of a given node. The input features are not part of

the solution of MATPOWER and MOSEK, they are part of

the problem definition.



TABLE III: Test cases.

Test Case Description

1 Base case

2 10% reduction on transmission capacity

3 Missing 1 transmission line at random

4 Missing 1 generator at random

B. Testing Data

The generation of test data is crucial to our objectives of

measuring accuracy and testing robustness. We achieve this

by generating 4 testing datasets described in Tab III. Data

for each case was generated the same way our training data

was but for only 100 heterogeneous instances. We also choose

the same input features. However, the data for each instance

in this dataset has been generated by further manipulating the

electricity grid apart from introducing nodal perturbations.

The test cases aim to test the robustness of trained ML mod-

els under various edge-case scenarios. All the data has been

generated by first introducing the same grid level perturbations

shown in Tab. II. The test case 1 has no further manipulation.

It has the same characteristics as training data but the specific

instances have not been seen by the models during the training

case. The remaining cases have been chosen to mimic real

life scenarios like maintenance cycles or outages of the power

grid components and simulate additional edge-case scenarios

commonly occurring in security analysis of the power grid in

the literature.

III. NUMERICAL EXPERIMENTS

The simulations are performed on the ICS cluster at USI,

Lugano, which consists of 41 nodes equipped with two 10-

core Intel Xeon E5-2650 v3 with frequency 2.30GHz. The

nodes have 128 GB RAM memory. The language and library

stack used for this projects are: Python 3.7, MATLAB R2020a,

MATPOWER 7.1, MOSEK 10, PyTorch 10.1, Scikit-Learn

1.0.2, Bayesian Optimization 1.4.2 and Scikit-Optimize 0.9.0.

Training and testing data was generated using MATPOWER

and MOSEK. Hyper-parameters tuning for all our ML models

were conducted using bayesian optimisation using a subset

of the training data to decide the hyper-parameters used for

the experiments. The hyper-parameters of all the models are

shown in Tab. IV.

The generated data is first pre-processed such that all fea-

tures have zero mean and unit variance across all the instances

of that experiment. In each experiment, 100 instances of the

ML models were tested on the same testing dataset. Each

model is first trained. Next, the LMP value of the test cases

is predicted and the MAPE shown in Eq. (3) is calculated.

The error of the prediction is calculated against the ground

truth, which is the LMP value calculated by solving the DC-

OPF with MATPOWER and MOSEK. This metric expresses

the average error of the predictions in the 100 trained model

instances.

TABLE IV: Hyper-parameters for ML models

DTR max leaf nodes min samples leaf min samples split

case30 110 130 120

case240 60 190 170

case1354 60 190 170

case1888 110 130 120

RFR max leaf nodes min samples leaf min samples split n estimators

case30 100 100 140 100

case240 170 180 180 700

case1354 30 190 70 300

case1888 60 190 170 1200

GBR learning rate max depth n estimators subsample

case30 0.09 2 1500 0.2

case240 0.09 2 1600 0.1

case1354 0.01 4 200 0.1

case1888 0.08 2 1800 0.1

DNN-1 # hidden layers Topology Learning Rate Batch Size

case30 1 [128] 0.009 128

case240 2 [128,64] 0.006 128

case1354 2 [128,64] 0.004 128

case1888 3 [4096,512,32] 0.001 128

DNN-2 # hidden layers Topology Learning Rate Batch Size

case30 2 [512,32] 0.008 32

case240 3 [128,32,32] 0.005 128

case1354 3 [128,32,16] 0.005 128

case1888 4 [4096, 2048, 512, 32] 0.001 128

The MAPE is defined as

MAPE(ȳ, ŷ) =
100

NS

NS−1∑

i=0

|ȳi − ŷi|

|ȳi|
, (3)

where NS is the number of samples used in the experiments,

ȳi is the ground truth and ŷi is the model prediction.

We focus on 3 different aspects of our study, namely

processing time, training time and accuracy. Additionally, we

aim to investigate the feasibility, robustness and scalability of

using ML algorithms for the LMP predictions.

A. Processing Time

Processing time represents the time required to generate the

response by a pre-trained ML model for 5000 instances of

electricity grids representing LMP prediction. This measure

reveals how long the ML model will take to process the

data once the training is complete. In case of the ground

truth, the processing time represents the elapsed time to

solve the optimization problems of the same instances using

MATPOWER and MOSEK. Figure 1a presents a comparison

of the processing time for 5000 grid snapshots using the

classical optimization tools and the ML models considered

in this study.

As demonstrated in Fig. 1a, MATPOWER requires up to five

orders of magnitude more time than ML models to process the

data. Among the ML models we assessed, DTR exhibits the

lowest processing time. It is noteworthy that the processing

time does not increase significantly for ML models as the

grid size increases, which is not the case for MATPOWER

and MOSEK.

B. Training Time

Training time is defined as the average time it takes for

a ML model to learn from 5000 electricity grid snapshots.
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(b) Training Time.

Fig. 1: Timing statistics for MATPOWER and various ML models.

The time required for training is dependent on several factors,

such as the complexity of the model, chosen hyperparameters,

and the hardware used. Once trained, the model can process

new data, which is usually significantly faster than the training

process. Fig. 1b compares the training time of the ML models

with the processing time of MATPOWER and MOSEK for

5000 instances of electricity grid data.

The comparison in Fig. 1b shows that ML models take a

comparable amount of time to train as MATPOWER takes to

solve 5000 instances of electricity grid. Furthermore, for larger

grids, the ML models can be trained faster compared to the

time it takes to solve the instances using MATPOWER. This

observation is significant because as the size and complexity of

the grid increases, this difference is expected to become more

prominent. However, note that the training time excludes the

time necessary to generate the training data. The generation of

the training data is equivalent to the MATPOWER time shown

in the figure.

C. Performance

The performance of the models relies on the size of the

training dataset. The DTR model was trained on varying

dataset sizes ranging from 1000 to 50000 problem instances

to see the how the MAPE changes.

1000 2000 5000 10000 20000 50000
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Fig. 2: Accuracy of all models on test case 1 for case240.

As can be seen in Fig. 2, the model’s MAPE error decreases

as the number of training samples increases for test case 1.

The difference in performance between 5000 and 50000 points

amounts to only a minor improvement of 0.02% (GBR) to

0.6% (DTR) based on the model. The idea of increasing

training data points follows the law of diminishing returns. The

performance gains may not justify the increased computational

effort. Thus, the data set size of 5000 instances is considered

in the following experiments to balance computational costs

with accuracy.

Next, the performance of ML models are compared in terms

of the accuracy of their predictions on the various testing cases.

The error is evaluated using the MAPE % for all the grids for

different cases from tab III.

Test Case 1: Fig. 3a presents the performance of models on

data from test case 1. For the case30 grid, all ML models

have achieved the MAPE under 1%. The ML models show

a slighter lower accuracy on larger grid with MAPE under

2%, which is a trend that is consistent across all grids an

exception of case1354. The MAPE of the case1354 grid

ranges between 3.5% for DNN and RFR, while DTR and

GBR reached MAPE above 5%. However, this might be still

considered as acceptable error considering the trade-off with

processing time.

Test Case 2: The results shown in Fig. 3b indicate that

reducing the maximum transmission capacity by approxi-

mately 10% did not affect the performance of the ML models

compared to their accuracy in test case 1. The base case

electricity grid configurations in the PGLib-OPF definitions

do not typically operate at maximum capacity. As a result,

our data set includes very few instances where resources are

pushed to the maximum when introducing perturbations. This

could explain why similar levels of MAPE errors are observed

in the two test cases.

Test Case 3: Fig. 3c shows the results for test case 3, where

one transmission line in each electricity grid was removed. The

number of transmission lines varies across the different grids,

and we observed the highest performance drop in case30,

which has only 41 transmission lines, compared to case1888

with 2531 transmission lines. The drop in performance is more

likely to occur in smaller grids because the difference between

the base case and modified definitions may significantly alter

the topology of the grid and the feasible power flows in the

grid. Overall, the results suggest that the impact of shutting

off one transmission line on the performance of ML models

is grid-dependent.

Test Case 4: The results for test case 4 are shown in Fig. 3d.

This test case further amplifies the impact observed in case 3

by disconnecting a generator from the grid. Since each grid

has a limited number of generators, turning off a crucial one

can significantly affect the feasible region of the power flows.

As a result, the most significant performance drop is observed
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Fig. 3: Accuracy of the ML models in terms of MAPE % for all the grids for different test cases.

in the smallest grid, case30. However, the impact on model

accuracy is negligible for other grids compared to the first test

case.

IV. CONCLUSIONS

This study extends the previous literature by investigating

the feasibility and robustness of ML models in predicting LMP.

Comparing the processing and training time of ML models

with MATPOWER’s processing time revealed that ML models

are indeed feasible and offer a significantly faster alternative

once the ML is trained. ML models provide acceptable ac-

curacy, with MAPE within 6% for all test cases, indicating

the robustness of ML models even on data that simulates

edge-case scenarios. We found that the DTR tends to have the

highest MAPE error among popular ML models, while NN-

1 and NN-2 outperformed their peers. However, NNs have

a major disadvantage of considerably longer training time.

Overall, by significantly reducing the processing and training

time compared to traditional methods, ML models can help

to reduce the overall cost of LMP predictions and forecasting.

This is particularly important in future energy markets that will

have high penetration from renewable energy sources, which

can make prices more uncertain and volatile. These findings

suggest that the adoption of ML models for LMP prediction

has significant potential to improve the efficiency of energy

markets in the future.

REFERENCES

[1] J. Lin and F. H. Magnago, Pricing, Modeling, and Simulation of an

Electricity Market, pp. 211–238. John Wiley & Sons, 2017.
[2] S. Cantillo-Luna, R. Moreno-Chuquen, H. R. Chamorro, J. M. Riquelme-

Dominguez, and F. Gonzalez-Longatt, “Locational marginal price fore-
casting using svr-based multi-output regression in electricity markets,”
Energies, vol. 15, no. 1, p. 293, 2022.

[3] K. Zheng, Y. Wang, K. Liu, and Q. Chen, “Locational marginal price
forecasting: A componential and ensemble approach,” IEEE Transac-

tions on Smart Grid, vol. 11, no. 5, pp. 4555–4564, 2020.
[4] H. Bai, M. Yang, D. Song, Y. He, T. Su, and X. Jiang, “A review of

the application of locational marginal price theory in the new situation,”
in 2019 IEEE 3rd Conference on Energy Internet and Energy System

Integration (EI2), pp. 2126–2131, IEEE, 2019.

[5] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on power systems,
vol. 26, no. 1, pp. 12–19, 2010.

[6] S. Liu, C. Wu, and H. Zhu, “Topology-aware graph neural networks
for learning feasible and adaptive ac-opf solutions,” arXiv preprint

arXiv:2205.10129, 2022.
[7] K. Baker, “Learning warm-start points for ac optimal power flow,” in

2019 IEEE 29th International Workshop on Machine Learning for Signal

Processing (MLSP), pp. 1–6, IEEE, 2019.
[8] A. S. Zamzam and K. Baker, “Learning optimal solutions for extremely

fast ac optimal power flow,” in 2020 IEEE International Conference on

Communications, Control, and Computing Technologies for Smart Grids

(SmartGridComm), pp. 1–6, IEEE, 2020.
[9] T. Zhao, X. Pan, M. Chen, and S. H. Low, “Ensuring dnn solu-

tion feasibility for optimization problems with convex constraints and
its application to dc optimal power flow problems,” arXiv preprint

arXiv:2112.08091, 2021.
[10] X. Pan, “Deepopf: deep neural networks for optimal power flow,” in

Proceedings of the 8th ACM International Conference on Systems for

Energy-Efficient Buildings, Cities, and Transportation, pp. 250–251,
2021.

[11] L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for
dcopf with generalization guarantees,” IEEE Transactions on Control of

Network Systems, 2021.
[12] A. Livas-Garcı́a, O. M. Tzuc, E. C. May, R. Tariq, M. J. Torres, and

A. Bassam, “Forecasting of locational marginal price components with
artificial intelligence and sensitivity analysis: A study under tropical
weather and renewable power for the mexican southeast,” Electric Power

Systems Research, vol. 206, p. 107793, 2022.
[13] S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin,

C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang,
et al., “The power grid library for benchmarking ac optimal power flow
algorithms,” arXiv preprint arXiv:1908.02788, 2019.

[14] M. ApS, The MOSEK optimization toolbox for MATLAB manual.

Version 10.0.25, 2022.



This figure "fig1.png" is available in "png"
 format from:

http://arxiv.org/ps/2306.10080v2

http://arxiv.org/ps/2306.10080v2

	Introduction
	Data Generation
	Training Data
	Testing Data

	Numerical Experiments
	Processing Time
	Training Time
	Performance

	Conclusions
	References

