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Abstract—The increasing application of voltage source con-
verter (VSC) based high voltage direct current (VSC-HVDC)
technology in power grids has raised the importance of incor-
porating DC grids and converters into the existing transmission
network. This poses significant challenges in dealing with the
resulting optimal power flow (OPF) problem. In this paper, a re-
cently proposed nonconvex distributed optimization algorithm—
Augmented Lagrangian based Alternating Direction Inexact
Newton method (ALADIN), is tailored to solve the nonconvex
AC/DC OPF problem for emerging voltage source converter
(VSC) based multiterminal high voltage direct current (VSC-
MTDC) meshed AC/DC hybrid systems. The proposed scheme
decomposes this AC/DC hybrid OPF problem and handles it
in a fully distributed way. Compared to the existing state-of-
art Alternating Direction Method of Multipliers (ADMM), which
is in general, not applicable for nonconvex problems, ALADIN
has a theoretical convergence guarantee. Applying these two
approaches to VSC-MTDC coupled with an IEEE benchmark AC
power system illustrates that the tailored ALADIN outperforms
ADMM in convergence speed and numerical robustness.

Index Terms—VSC-MTDC meshed AC/DC grids, AC/DC
OPF, distributed optimization, Alternating Direction Method of
Multipliers (ADMM), Augmented Lagrangian based Alternating
Direction Inexact Newton method (ALADIN)

I. INTRODUCTION

Due to AC grid expansion being limited by legislation and
the capacity of long-distance transmission, high voltage direct
current (HVDC)—especially voltage source converter (VSC)
based multiterminal high voltage direct current (VSC-MTDC)
technology—is being considered as an alternative solution.
HVDC applications have traditionally been restricted to the
transmission of power between two buses in the AC grids,
which are almost exclusively built using thyristor based LCC-
HVDCs. The main drawback of LCC-HVDC is that it cannot
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independently control the active and reactive power and suffers
from commutation failure under inverter AC faults. Therefore
it cannot be connected to very weak AC systems. On the
contrary, VSCs can connect to very weak AC systems, they
are able to independently control active and reactive power.
This is benefical for controlling the voltage and frequency
when connecting to renewable dominated grid. Another great
advantage of VSC over LCC is that it can be employed
in systems with more than two terminals, thereby forming
a multi-terminal DC system. The world’s first commercial
operational MTDC system, Italy-Corsica-Sardinia, was built in
1988 [1]. Now there are 35 VSC-HVDC systems in operation
and 51 projects planned until 2019 [2], [3]. In Europe, a pan-
European supergrid project is proposed for off-shore wind
power transmission utilizing VSC-HVDC [4]. In China, com-
missioned VSC-MTDC projects, such as Nanao VSC-MTDC
project [5], Zhoushan VSC-MTDC project [6], and Zhangbei
VSC-MTDC project [7] are built. These projects suggest that
the VSC-MTDC system has become a realistic solution for
domestic and international power transmission.

Such VSC-MTDC system provides several advantages, in-
cluding increased reliability of power transmission (by pro-
viding alternative paths), improved balancing services through
AC interconnections (by controlling power flow), and reduced
generation variability (by sharing the diverse portfolio of
intermittent energy resources) [8]–[10]. Given that MTDC
grids offer unique capability in terms of regulating power flow,
which means that the VSC-MTDC meshed AC/DC system can
be operated more flexibly and cost-effectively compared with
point-to-point HVDC connections. As a result, the optimal
power flow (OPF) problem of meshed AC/DC systems is
becoming an urgent task to be investigated carefully. For the
purpose of economic efficiency, OPF is used to determine the
operating points of the meshed AC/DC grid. In [11], the first
OPF algorithm was introduced for AC grids incorporating
point-to-point HVDC connections, which is formulated as
a quadratic programming problem without consideration for
converter losses, converter transformers, and filters. In [12]
and [13], a nonlinear AC/DC OPF model was proposed
including a quadratic loss model for HVDC converters. In fact,
the converter losses can add up to a significant fraction of the
overall system losses. Thus, the converter losses should be
carefully considered in the AC/DC OPF problem. In various
literature [14]–[18], the converter losses are more accurately
approximated by a quadratic function of its current magnitude.
The AC/DC OPF problem is a nonconvex problem due to
the nonlinear power flow equations and the highly nonlin-
ear operating constraints imposed by the converters. Several
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methods have been proposed to address the AC/DC OPF with
VSC-HVDC connections such as heuristic and interior point
methods [14], Newton-Raphson method [19], second-order
cone programming [20], sequential quadratic programming
methods [21], or semidefinite programming relaxation meth-
ods [22]. Although the above literature has investigated the
OPF of AC/DC systems, they are formulated in a centralized
manner without fully considering the multilevel structure of
VSC-MTDC meshed AC/DC systems.

Although regional grids are physically connected in this
context, they make their generating plans independently, with
very limited interactions with their neighbours. If a cen-
tralized optimization approach is adopted, all the generation
information and network topology data needs to be acquired
by a single central entity. This centralization may create
substantial regulatory and political issues because the local
system operators have to give up their governance and control
to the central entity, which becomes almost impossible un-
der the deregulated electricity market [8]. Hence, distributed
optimization approaches have drawn significant attention in
recent times. The most well-known distributed algorithms
for tackling the AC OPF problems are Optimality Condi-
tion Decomposition (OCD) [23], Auxiliary Problem Principle
(APP) [24], and Alternating Direction Method of Multipliers
(ADMM) [25]–[27]. OCD applies a modified Lagrangian relax-
ation decomposition. The original problem is partitioned into
several subproblems, in which the local variables are decision
variables and all foreign variables are fixed to the values
of the previous iteration. By penalizing coupling constraints,
OCD can converge to a solution with moderate accuracy under
certain assumptions, e.g., relative weakly coupled subprob-
lems, which cannot be guaranteed in general. In contrast to
OCD, each subproblem shares the coupling variables with
their neighbors and reformulates their objective function by
using Augmented Lagrangian Relaxation in the context of
both APP and ADMM. Compared to APP, ADMM reduces
necessary information exchange and only requires neighbor-
to-neighbor communication such that ADMM surpasses APP in
terms of communication effort. In [27]–[29], ADMM has been
adopted to deal with the AC OPF problem. However, there
are no generic convergence guarantees for AC OPF using the
standard ADMM. Although [28] shows the convergence under
some technical assumptions, the branch flow limits were not
considered and these additional nonlinearities always result
in divergence of ADMM. Recently, [30] proposed a two-
level ADMM approach, which as an exception, can deal with
AC OPF problem with branch flow limits while guaranteeing
convergence. Nevertheless, the AC OPF was formulated as a
Quadratically Constrained Quadratic Program (QCQP) problem
at the cost of accuracy, and it numerically converges slowly
to a modest accuracy.

Different from these existing approaches, the Augmented
Lagrangian based Alternating Direction Inexact Newton
method (ALADIN) presented recently in [31] for distributed
nonconvex optimization can provide a local convergence guar-
antee. As a distributed approach, the local agents’ associated
subproblems are solved in the parallelizable step of ALADIN
while an equality constrained quadratic program (QP) is solved

in the consensus step, which is in principle close to a Se-
quential Quadratic Programming (SQP) step such that the
convergence is sped up. At the expense of communication
effort, ALADIN obtains locally quadratic convergence for non-
convex problems if suitable Hessian approximations are used,
and a global convergence guarantee can also be achieved if
the globalization strategy proposed in [31, Algorithm 3] is
implemented.

Based on the existing literatures, there are still research gaps
that need to be studied.

1) The traditional highly nonlinear and nonconvex OPF
problem for meshed AC/DC hybrid systems is usually
solved in a centralized manner. In reality, the differ-
ent regional AC grids and the MTDC grid are owned
and operated by different utilities under the deregulated
electricity market, which is an independent decision-
making process. Thus, the distributed optimization is
much more preferable. Regarding the special structure of
VSC-MTDC meshed AC/DC hybrid systems, it can be
partitioned according to the grid-type naturally, and the
resulting separated AC/DC OPF problem can be solved
by applying a distributed algorithm.

2) In a practical VSC-MTDC meshed AC/DC hybrid sys-
tems, considering the AC branch flow limits, the DC
branch flow limits, and the dynamic VSC operating
constraints for meshed AC/DC hybrid systems leads to
additional highly nonlinear and nonconvex inequality
constraints in the resulting optimization problem such that
the existing state-of-art distributed algorithms, such as
ADMM, cannot guarantee the convergence. Recently, an
exceptional distributed nonconvex optimization algorithm
ALADIN has been investigated to deal with distributed
AC OPF in [32] and distributed AC/DC hybrid OPF
in [33] with convergence guarantee. The first is our
previous work [32] that studied AC-OPF problem for
the AC transmission system, which is the first journal
paper applying ALADIN to deal with AC-OPF problem
in a distributed manner. However, the most challenging
AC branch flow limits were not considered. The second
is literature [33] that adopted ALADIN to deal with the
distributed AC/DC OPF problem for an oversimplified
AC/DC hybrid system. However, the necessary and most
challenging AC branch flow limits, DC branch flow lim-
its, and highly nonlinear and nonconvex VSC operating
constraints are all ignored. In terms of physical model,
ignoring the AC and DC branch flow limits may lead to
line overload; ignoring the essential dynamic operating
constraints of VSC stations is unacceptable in the practi-
cal operation of VSC-MTDC meshed AC/DC grids (e.g.
the converter power losses can add up to a significant
fraction of the overall system losses, which are essential
in the AC/DC OPF problem [16], [17], [22], [34]). In
terms of mathematics, such an oversimplified scheme is
much less practical and always leads to relatively weaker
couplings between the AC grids and the DC grid. As a
result, it is much easier to be solved by using distributed
algorithms while heuristic implementation could simply
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work without encountering numerical challenges.
To fill these research gaps, this paper investigates the poten-

tial of using ALADIN for the highly nonlinear and nonconvex
OPF problem of VSC-MTDC meshed AC/DC grids. The
contributions are summarized as follows.

1) We consider complicated VSC-MTDC meshed AC/DC
grids including AC/DC interconnections compared to
the traditional point-to-point HVDC link. The full non-
linear and nonconvex AC/DC OPF model is built in
an affinely coupled separable form and thus, is feasi-
ble for distributed algorithms. Compared to the exist-
ing oversimplified model on ALADIN-based distributed
AC/DC OPF [33], this paper simultaneously takes the
AC branch flow limits, the DC branch flow limits, and
the complex dynamic operating model of VSC stations
into account. Mathematically, this leads to additional
highly nonlinear and nonconvex inequality constraints
in the resulting optimization problem. Then, we tailor
ALADIN algorithm to tackle this challenging nonconvex
OPF problem in a distributed manner. At each iteration,
the regional subproblems are solved in parallel while an
equality constrained QP is solved in the consensus step,
which is in principle close to a SQP step such that the
convergence is sped up. The computation speed of the
tailored ALADIN is numerically demonstrated to be faster
than traditional centralized method. This indicates that the
proposed approach will be of great potential in practical
distributed implementation.

2) A detailed numerical investigation of ALADIN for the
proposed AC/DC OPF problem is presented. Compared
to the existing state-of-art ADMM, which is, in general,
has no convergence guarantee for nonconvex problems,
ALADIN has theoretical local convergence guarantee. In
practice, although ADMM has been applied to solve non-
convex AC OPF [28], [29], one can always observe its di-
vergence when including the branch flow limits. Our nu-
merical comparison illustrates that ALADIN outperforms
ADMM in all perspective for the proposed nonconvex
AC/DC OPF problem. The improved performance comes
at the cost of an increased per-step communication effort,
which can be reduced by using quasi-Newton Hessian
approximation. To this end, the number of iterations is
slightly increased but ALADIN is still faster and more
accurate than ADMM.

The rest of this paper is organized as follows: Section II
presents the non-convex AC/DC OPF model. Section III
introduces the distributed optimization formulation. Section IV
presents numerical results. Section V concludes this paper.

II. PROBLEM FORMULATION

In this section, a mathematical model of the VSC-MTDC
meshed AC/DC grids, e.g., the Zhangbei four terminal MTDC
grid in China [7], is presented. Then, both centralized and
distributed OPF formulations are respectively discussed.

A. System Model of VSC-MTDC Meshed AC/DC Grids
Fig. 1 shows the topology of the proposed grid model, which

is abstracted from the Zhangbei four-terminal VSC-MTDC
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Fig. 1: VSC station schematic in VSC-MTDC meshed AC/DC
grids with point of common coupling (PPC)

grid connected with four AC grids [7] in Northern China.
The VSC station is considered with a transformer, AC filter,
phase reactor, and converter. Without loss of generality, the
VSC station is assumed to be a two- or three-level converter
using the pulse-width modulation (PWM) switching method.
We assume there is no generation or load in the MTDC grid.

Before discussing the grid model further, we introduce
some nomenclature. We represent the meshed AC/DC grids
by a tuple (R,N ,N ac,Nmtdc,L,Lac,Lmtdc). Thereby, R
represents the set of all sub-grids, including 4 AC grids and
a MTDC grid, i.e., |R| = 5, N = N ac ∪ Nmtdc denotes
the set of all buses, N ac the set of buses in AC grids,
Nmtdc = N vsc ∪ N dc the set of buses in MTDC grid, N dc

the set of buses in DC grid, N vsc = N c
ac ∪N c

dc ∪N p
ac ∪N f

ac

the set of all VSC buses, N c
ac the set of AC side converter

buses, N c
dc the set of DC side converter buses, N p

ac the set
of PCC buses, N f

ac the set of filter buses. L = Lac ∪ Lmtdc
denotes the set of all branches, Lac the set of branches in AC
grids, Lmtdc the set of DC branches in MTDC grid. In Fig. 1,
for example, bus k is in set N p

ac, bus f is in set N f
ac, bus n

is in set N c
dc, and bus m is in set N c

ac.

B. Objective

The objective of the AC/DC OPF problem is to jointly
minimize the total generation cost and the total power losses
on the branches and converters, where the total power losses
are equal to the total generation minus the total load of the
system. The objective of a subproblem can be divided into two
parts, the total generation cost given by

C1 =
∑
i∈Nac

{
c1i
(
PGi
)2

+ c2iP
G
i + c3i

}
, (1)
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and the total system losses given by

C2 =
∑
i∈Nac

(
PGi − PDi

)
, (2)

where c1i, c2i, and c3i denote the cost coefficients of generator
i ∈ N ac. PGi and PDi denote the generator active power output
and load at bus i, respectively. If bus i is not a generator bus,
then, we have PGi = 0 same to the load bus. For this, we
only consider the active power losses of the system since the
reactive power does not dissipate energy.

The objective function of the AC/DC OPF problem for
VSC-MTDC meshed AC/DC grids is given by

C = C1 + ηC2, (3)

where η denote a positive scaling coefficient. By increasing η,
the total system losses have a larger weight in the objective
function as compared with the generation cost. The typical
value of η is around the value of coefficients c2i, since the total
system losses is usually a linear function of the generators’
output. An appropriate value of η can enable timely adjustment
of control settings to jointly reduce the generation costs, VSC
losses and transmission line losses. Thus, it can improve the
operational economic efficiency of the entire system.

C. Constraints of AC System

For the AC/DC OPF problem, the constraints of AC grids
consist of power flow balance, branch flow limit and the limit
on decision variables, i.e., voltage magnitude of all buses, as
well as active and reactive power of generators.

1) Nodal power balance of AC grid:

PGi − PDi = Vi
∑
j∈i

(Gij cos θij +Bij sin θij)Vj , (4a)

QGi −QDi = Vi
∑
j∈i

(Gij sin θij −Bij cos θij)Vj , (4b)

with i ∈ N ac and j ∈ N ac∪N p
ac. Notice that the bus l ∈ N p

ac

belongs to VSC-MTDC system and branch (l′, l) is the linking
AC tie-line shown in Fig. 2. Gij and Bij denote the real and
imaginary part in the admittance matrix. QGi and QDi denote
the reactive power output of generator and reactive load at bus
i ∈ N ac. θij denotes the phase angle difference between buses
i and j. Vi denotes the voltage magnitude of bus i ∈ N ac.

2) Branch flow limit of AC grid:

Pij = V 2
i gij − ViVj (gij cos θij + bij sin θij) (5a)

Qij = −V 2
i bij + ViVj (bij cos θij − gij sin θij) (5b)

P 2
ij +Q2

ij ≤ S
2

ij (5c)

for all (i, j) ∈ Lac. Here gij and bij denote the conductance
and susceptance of branch (i, j) ∈ Lac. Pij and Qij denote the
active and reactive power on branch (i, j) ∈ Lac. Sij denotes
the maximum allowable apparent power flow through branch
(i, j) ∈ Lac.

3) Limits on voltage magnitude, generator active and reac-
tive power of AC grid:

V i ≤ Vi ≤ V i, i ∈ N ac, (6a)

PGi ≤ PGi ≤ P
G

i , i ∈ N ac, (6b)

QG
i
≤ QGi ≤ Q

G

i , i ∈ N ac, (6c)

where V i and V i denote the minimum and maximum nodal
voltage magnitude at bus i ∈ N ac. PGi and P

G

i denote the
minimum and maximum active power of generator i ∈ N ac.
QG
i

and Q
G

i denote the minimum and maximum reactive
power of generator i ∈ N ac.

D. Constraints of VSC-MTDC System

Constraints of the VSC-MTDC system consist of nodal
power balance of MTDC system, operating limits of convert-
ers, as well as limits on branch flow and nodal voltage.

1) Nodal power balance inside a VSC station: The power
flow in a VSC station should satisfy the similar AC power
balance at PCC bus k and filter bus f , c.f. (4):

0 =Vi
∑
j∈i

(Gij cos θij +Bij sin θij)Vj , (7a)

−QDi =Vi
∑
j∈i

(Gij sin θij −Bij cos θij)Vj (7b)

with i ∈ {k, f} and j ∈ {k′, k, f,m}. Notice that the bus k′

belongs to AC system and branch (k′, k) is the linking AC
tie-line shown in Fig. 2. The coupling between AC system
and VSC-MTDC system will be discussed in the rest part of
this section.

Regarding the reactive power of the AC filter, the demand
at the AC filter bus, i.e., bus f , can be expressed as

QDf = −V 2
f b

F
f , f ∈ N f

ac (8)

where bFf denotes the shunt susceptance of the AC filter
connected to bus f , while there is no reactive power demand
at the PCC bus k.

2) Voltage coupling between the converter AC bus and DC
bus: The voltages of converter AC bus m and DC bus n are
coupled by the PWM’s amplitude modulation factor, which
can be set according to the modulation mode. The voltage
magnitude at converter AC bus is upper bounded by [22], [35]

Vm ≤ δVn, m ∈ N c
ac, n ∈ N c

dc, (9)

where Vm denotes the voltage magnitude at converter AC bus
m ∈ N c

ac, Vn the voltage at converter DC bus n ∈ N c
dc. δ

denotes the PWM’s amplitude modulation factor.
3) Active power coupling between the converter AC bus and

DC bus: The coupling between the converter active power on
AC side and DC side is described by

Pm + Pn + P loss = 0, m ∈ N c
ac, n ∈ N c

dc, (10)

where Pm and Pn denote the active power at converter AC bus
m ∈ N c

ac and DC bus n ∈ N c
dc, respectively. P loss denotes

the converter power losses.
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The converter power losses can be approximated as a
quadratic function of the phase current of the VSC valve as
discussed in [15], [22],

P loss = a1mI
2
m + a2mIm + a3m, m ∈ N c

ac (11)

with

Im =

√
P 2
m +Q2

m

V 2
m

, m ∈ N c
ac, (12)

where Im denotes the current magnitude at converter AC bus
m ∈ N c

ac. Qm denotes the reactive power at converter AC bus
m ∈ N c

ac. a1m, a2m, and a3m denote the conduction losses
of the valves, the switching losses of valves and freewheeling
diodes, and the no load losses of transformers and averaged
auxiliary equipment losses, respectively. The values of the
coefficients depend on the components and the power rating of
the VSC station, and can be obtained using various approaches
such as online identification or by aggregating the loss patterns
of each component.

The converter losses contribute a relatively large percentage
of the total system losses. The highly non-convex of con-
verter losses adds a considerable computational burden for the
AC/DC OPF problem in VSC-MTDC meshed AC/DC grids.

4) Apparent capacity limit of a converter: The power
injected into a converter from AC side is calculated by

Pm = V 2
mgm − VmVf (gm cos θmf + bm sin θmf ) (13a)

Qm = −V 2
mbm + VmVf (bm cos θmf − gm sin θmf ) (13b)

for all m ∈ N c
ac and f ∈ N f

ac. Here gm and bm denote the
conductance and susceptance of phase reactor.

The VSC station is principally constrained by the maximum
current through VSC valves and the maximum DC volt-
age [36]. The former determines the maximum VSC apparent
power limit, and the latter defines the VSC reactive power
output limit. In the present paper, VSC constraints at the
converter AC bus are used because the VSC power exchange at
the converter AC bus is set as control variables. The maximum
current through the VSC valve has an upper limit as follows.

Im ≤ Im, m ∈ N c
ac, (14)

where Im denotes the maximum current through the VSC
valve at converter AC bus m ∈ N c

ac.
Upon the substitution of (12) into (14), the apparent capacity

limit of the converter is expressed as

P 2
m +Q2

m ≤
(
VmIm

)2
, m ∈ N c

ac. (15)

5) Reactive power limit of the converter: The operation
of the VSC station is constrained by the upper and lower
limits of the converter reactive power output. In practical
VSCs, the maximum reactive power that the converter absorbs
is approximately proportional to the nominal value of its
apparent power [16], [22].

− γSm ≤ Qm, m ∈ N c
ac, (16)

where γ denotes a positive constant and can be determined by
the type of the converter, Sm denotes the nominal value of the
apparent power of the converter.

According to [15], [22], since the susceptance bm of the
phase reactor is normally much larger than its conductance
gm, the upper limit on the reactive power produced by the
converter is expressed as

Qm ≤ −bmV m
(
V m − Vf

)
, m ∈ N c

ac, f ∈ N f
ac. (17)

where V m denotes the maximum voltage magnitude of con-
verter AC bus m ∈ N c

ac, Vf the voltage magnitude of AC
filter bus f ∈ N f

ac.
6) Nodal power balance of DC grid:

Pn = Vi
∑

(i,j)∈Lmtdc

gij (Vi − Vj), i ∈ N dc, n ∈ N c
dc, (18)

where gij denotes the conductance of DC branch (i, j) ∈
Lmtdc, Vi denotes the nodal voltage of DC bus i ∈ N dc.

7) Branch flow limit of DC grid:

− P ij ≤ gij (Vi − Vj)Vi ≤ P ij , (i, j) ∈ Lmtdc, (19)

where P ij denotes the maximum capacity of DC branch
(i, j) ∈ Lmtdc.

8) Nodal voltage limit of DC grid: The terminal voltage of
one DC bus in DC grid fixed as a reference has to satisfy the
limit

V i ≤ Vi ≤ V i, i ∈ N dc. (20)

E. Centralized and Distributed Problem

1) Centralized Problem: The full AC/DC OPF Problem of
VSC-MTDC meshed AC/DC grids is summarized as follows:

minimize (3)
subject to (4)− (13), (15)− (20).

(21)

Overall, this full AC/DC OPF model is a non-convex nonlin-
ear optimization problem, which could have solutions based
on local optimums. The interior point method is commonly
used in solving large-scale nonlinear optimization problems.
This paper focuses on the formulation of the distributed non-
convex optimization rather than on the development of the
advanced solution algorithms for the global optimum of the
nonlinear optimization problem. For different (local optimal)
solutions with the same objective function value, the total costs
obtained based on local optimums could be the same; however,
the generation dispatches and system losses could be different.

For the proposed problem (21), it can only be directly
solved in a centralized manner. However, the centralization
will lead to the operation by a single central entity with
complete knowledge and control of the entire meshed AC/DC
grids. This centralization may create substantial regulatory
and political issues because the local system operators have
to give up their governance and control to the central entity.
Thus, a distributed architecture is preferred. The distribution
optimization repeatedly alternates solving a series small-scale
subproblems and deploying a consensus step for coordination
and hence, the iterative process is inevitable. However, this
iterative process is worthwhile and essential as the distributed
algorithm can not only preserve the information privacy and
decision independence, but also comply with the philosophy
of electricity market operations.
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2) Distributed Problem: Similar to [37], we reformulate the
full AC/DC OPF problem in affinely coupled separable form
amenable to distributed optimization. Operating the VSC-
MTDC meshed AC/DC grids in a distributed way requires
one to find the proper couplings between the regional AC grid
and the MTDC grid. Take the coupling of AC grid 1 and
MTDC grid as an example, shown in Fig. 2(a), in which the

AC 
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grid Tie-line
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Fig. 2: Decomposition by sharing elements between neighbor-
ing regions

system is divided into two parts that are connected through
an AC tie-line between buses k and k′. Buses k and k′,
and the linking AC tie-line are modeled together as a shared
connection, labeled (k, k′), between these two parts. This
shared connection is taken into account in the local problems
of the AC grid and the MTDC grid as shown in Fig. 2(b).
In the proposed distributed optimization algorithm, the nodal
voltage magnitude and the phase angle on buses k and k′ are
coupled. Then, the consensus constraints are given by

V ack = V mtdck , V ack′ = V mtdcck′ , (22a)

θack = θmtdck , θack′ = θmtck′ , (22b)

which state that the complex voltage perceived by its con-
nected zones should be identical.

Remark 1 The concept of sharing elements between neigh-
boring regions allows one to compose the distributed OPF
problem in a physically consistent manner: no additional
modeling assumptions are introduced or required. If a solution
to the distributed problem exists, then this will also be the
solution to the respective centralized problem [27] [37].

For each AC grid ` ∈ R, the local objective is given by

f`(x`) =
∑
i∈Nac

`

{
c1i
(
PGi
)2

+ c2iP
G
i + c3i

}
+ η

∑
i∈Nac

`

(
PGi − PDi

)
,

(23)

with stacked local variables x`, while the objective of the
MTDC grid is set to be zero. This follows the fact that
there is neither generator nor load in the MTDC grid. Hence,
generation cost C1 = 0 and losses term C2 = 0 for the MTDC
grid.

Based on the description in this section, the full hybrid OPF
problem (21) can be summarized into the standard affinely
coupled distributed form

min
x

f(x) :=
∑
`∈R

f`(x`) (24a)

s.t.
∑
`∈R

A`x` = 0 | λ (24b)

h`(x`) ≤ 0 | κ`, ` ∈ R (24c)
x` ≤ x` ≤ x` | γ`, ` ∈ R (24d)

Here, the affine constraints (24b) summarize the coupling (22)
between the AC grids and the MTDC grid. Constraints (24c)
and (24d) collect all inequality constraints of each local model,
where the box constraints (24d) denote the bounds on the local
generator active/reactive power and nodal voltage magnitudes.
In the following, we use notation

h̃(x`) := [h`(x`)
> (x` − x`)> (x` − x`)>]> ≤ 0, i ∈ R

to stack (24c) and (24d). Moreover, we use notation x to
concatenate xi for all i ∈ N , and throughout the rest of
this paper, we write down the Lagrangian multipliers right
after the constraints such that λ, κ`, γ` denote the dual
variables (multipliers) of constraints (24b), (24c), and (24d),
respectively.

III. DISTRIBUTED OPTIMIZATION ALGORITHM

This section presents ADMM and ALADIN as algorithms
to approach a distributed solution. Both algorithms share the
same idea—update primal variables in an alternating fashion,
whereas the major difference lays in the consensus step.

A. ADMM

The main idea of recalling ADMM is to use it as a benchmark
method reflecting the current state-of-the-art. In order to apply
ADMM for solving (21), we copy the variables x` and replace
the consensus constraint (24b) by

x` = z` | ξ`, ` ∈ R and 0 =
∑
i∈R

A`z` (25)

with Lagrangian multipliers ξ`, ` ∈ R.
Algorithm 1 outlines the main steps of ADMM. Step 1 solves
|R| decoupled problems that are constructed according to the
augmented Lagrangian. Step 2 updates the dual iterate ξ` based
on the gradient ascend method [38]. Notice that both Step 1
and 2 can be executed in parallel. Then, a practical terminal
condition

∥∥∑
`∈RA`x

+
`

∥∥
∞ ≤ ε can be checked based on the

local solution x+
` . Step 3 deals a consensus QP whose solution

can be worked out analytically, requiring one to collect x+
` and

ξ+
` . Once (27) is solved, the solution z+ is broadcast to local

agents, and the algorithm returns to Step 1.

Remark 2 By taking advantage of the topological structure,
solving (27) in the consensus step 3 of Algorithm 1 could only
require neighbor-to-neighbor communications. This follows
the fact that matrices A` denote the adjacency of the graph.
More details refer to [39].
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Algorithm 1 ADMM

Input: z, ξ, ρ > 0
Repeat:

1) update x` by solving all decoupled NLP problems

x+
` = argmin

h̃`(x`)≤0

f`(x`) + ξ>` x` +
ρ

2
‖x` − z`‖22 (26)

2) compute ξ+
` = ξ` + ρ(x` − z`), for all ` ∈ R.

3) update z by solving the coupled averaging step hou

z+ = arg min
z

∑
`∈R

{ρ
2

∥∥x+
` − z`

∥∥2

2
− ξ>` z`

}
(27a)

s.t.
∑
`∈R

A`z` = 0 (27b)

B. ALADIN

ALADIN, originally proposed in [31], is developed for
dealing with generic distributed nonlinear programming. Solv-
ing (24) by using ALADIN is outlined in Algorithm 2. Similar
to ADMM, Steps 1 and 2 of Algorithm 2 are parallelizable. The
local problems (28) are also formulated following the idea
of the augmented Lagrangian. Here, one may adjust either
the scaling matrices Σ` or penalty parameter ρ during the
iterations in order to improve performance. A practical strategy
to update ρ for distributed AC OPF can be found in [32]. Based
on the local solutions x`, the algorithm terminates if∥∥∥∥∥∑

`∈R
A`x`

∥∥∥∥∥
∞

≤ ε and max
`
‖Σ`(x` − z`)‖∞ ≤ ε.

holds. This condition implies that x` satisfies the first order
optimality condition of (24)∥∥∇{f`(x`) + κ>h`(x`) + γ>` x`

}
+A>` λ

∥∥ ≤ ε
up to the user-specified numerical tolerance ε. As discussed
in [31], the iterate (x, λ, κ, γ) is a primal-dual KKT point of
Problem (24)—up to the user specified numerical accuracy
ε. Step 2 evaluates the sensitivities at the local primal-dual
solutions. Here, the Hessian approximation (30) is required to
be positive definite such that QP (31) is convex and has unique
solution. In practice, some numerical heuristics can be applied
to make it be satisfied such as adding a small regularization.
In our implementation, we adopt the heuristic implemented
in open-source toolkit ACADO [40], which flips the negative
eigenvalue of H`.

Notice that the size of Jacobian matrices J` is changed
during the iterations as the active set 1might be changed. In
practice, if the quasi-Newton Hessian approximation such as
Broyden–Fletcher–Goldfarb–Shanno (BFGS) is used to com-
pute H`, the communication cost can be significantly re-
duced [32]. The main difference between ADMM and ALADIN
is the consensus step. While both approaches require one to
solve a QP problem, different from (27), Problem (31) is
equivalent to an inexact Newton step for solving (24) with
only considering the active constraints at the local solution x`.

1The active set of (28) is defined by {i ∈ N+ | [h̃`(x`)]i = 0, ∀i}.

Algorithm 2 ALADIN

Input: z, λ, ρ > 0, µ > 0 and scaling symmetric matrices
Σ` � 0
Repeat:

1) solve the following decoupled NLPs for all ` ∈ R

min
x`

f`(x`) + λ>A`x` +
ρ

2
‖x` − z`‖2Σ`

(28a)

s.t. h`(x`) ≤ 0 | κ`, (28b)
x` ≤ x` ≤ x` | γ` (28c)

2) compute the Jacobian matrix J` based on the active set
at the local solution x` by

[J`]i =

{
∂ [h̃`(x`)]i if [h̃`(x`)]i = 0

0 otherwise
(29)

with [J`]i the i-th row of matrix J` and gradient g` =
∇f`(x`), choose Hessian approximation

H` ≈ ∇2
{
f`(x`) + κ>` h`(x`)

}
� 0. (30)

3) solve coupled QP

min
∆x,s

∑
`∈R

{
1

2
∆x>` H` ∆x` + g>` ∆x`

}
+ λ> s+

µ

2
‖s‖22

(31a)

s.t.
∑
`∈R

A`(x` + ∆x) = b+ s | λQP (31b)

J`∆x` = 0, ` ∈ R . (31c)

4) update primal and dual variable z, λ by

z+ = x+ α1(x− z) + α2∆x, (32a)

λ+ = λ+ α3(λQP − λ), (32b)

where the line search scheme [31, Algorithm 3] can be
used to calculate the step sizes α1, α2 and α3.

This is crucial for the convergence improvement of ALADIN.
Notice that introducing the slack variables s in (31) guarantees
that Problem (31) is always feasible no matter if the original
problem (24) is feasible or not. In practice, solving the equality
constrained QP (31) only needs a basic linear algebraic routine
such as Lapack as it is equivalent to solve the resulting
KKT system based linear equations. Its analytical solution
can be found in Appendix. One can see that if the full
step is applied at Step 4, only the dual update (36) requires
communication while it is not necessary to communicate all
sensitivities. Thus, if there exists a central entity or any local
agent could perform as a central coordinator, Step 3 can
be efficiently implemented. Moreover, if only neighbor-to-
neighbor communication is allowed, [41] has proposed bi-
level distributed variants of ALADIN, in which three methods,
including Schur complement method, decentralized ADMM
method and decentralized conjugate gradient method, was
adopted to deal with (31) in a decentralized manner.

The overall frameworks of Algorithms 1 and 2 are similar.
However, in general, applying ADMM to nonconvex optimiza-
tion (24) does not have any theoretical guarantees. In contrast
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to this, ALADIN has a local convergence guarantee while the
globalization presented in [31, Algorithm 3] can guarantee
the global convergence with doing line search in Step 2 of
Algorithm 2. In this paper, we focus on the local convergence
properties of Algorithm 2 as in practice, according to the
physical model of the power grids, a good initial guess of
the primal-dual iterates can be obtained. In order to introduce
the local convergence results of Algorithm 2, we need the
following definition.

Definition 1 A KKT point for generic constrained optimiza-
tion is called regular [42] if the linear independence constraint
qualification (LICQ), strict complementarity conditions (SCC),
as well as the second order sufficient condition (SOSC) are
satisfied.

Now, we summarize the local convergence property of Algo-
rithm 2 as follows:

Theorem 1 Let the KKT point (z∗, λ∗, κ∗, γ∗) of Prob-
lem (24) be regular such that following the SOSC it is a local
minimizer. And let the penalty parameter ρ < ∞ in Algo-
rithm 2 be sufficiently large with ∇2

{
f`(x`) + κ>` h`(x`)

}
+

ρΣ` � 0. Moreover, let matrices

H` = ∇2
{
f`(x`) + κ>` h`(x`)

}
+O(‖x` − z`‖) (33)

holds for all ` ∈ R, the iterates x` of Algorithm 2 converge
locally with quadratic rate if full step size is appled in Step
4), i.e., α1 = α2 = α3 = 1.

Here, the local convergence means that the initial guess of
primal-dual iterates are located in a small neighborhood at the
local minimizer (x∗ = z∗, λ∗). The proof of Theorem 1 can be
established in two steps. First, according to the assumptions of
regularity and ρ, the local minimizer of subproblems (28), x`
is parametric with (z, λ) and the solution maps are Lipschitz
continuous, i.e., there exists constants χ1, χ2 > 0 such that

‖x− z∗‖ ≤ χ1 ‖z − z∗‖+ χ2 ‖λ− λ∗‖ . (34)

This result was formally stated in [31, Lemma 3] and the
proof can be established by applying the implicit function
theorem [42, Appendix 2, Page 630], which refer to [43,
Lemma 1] for more details. The second step follows the
fact that the active sets are not changed locally based on
the assumptions. Then, the standard analysis of Newton’s
method [42, Chapter 3.3] gives∥∥∥∥[z+ − z∗

λ+ − λ∗
]∥∥∥∥ ≤∥∥H −∇2f(x) + κ>h`

∥∥ · O (‖x− z∗‖)

+O
(
‖x− z∗‖2

)
Based on condition (33), we have that there exists a constant
σ > 0 such that the local quadratic contraction∥∥z+ − z∗

∥∥ ≤ σ ‖x− z∗‖2 and
∥∥λ+ − λ∗

∥∥ ≤ σ ‖x− z∗‖2
(35)

can be established. Combing (34) and (35) yields the result.
A more detailed proof of Theorem 1 can be found in [31,
Section 7].

Remark 3 If we use BFGS Hessian approximation, a local
superlinear convergence rate is achieved instead [44]. The
analysis is close to Theorem 1 with slight difference in the
second step of the proof.

Remark 4 In practice, only a numerical solution of decou-
pled problem (28) is achievable while convergence result in
Theorem 1 can be still established by assuming that the local
solutions of (28) is bounded by ‖x̄− x‖ ≤ ζ ‖x− z‖ with x̄
the approximate solution given by the numerical solver. The
proof refers to [32, Theorem 2]

IV. NUMERICAL RESULTS

This section illustrates the performance of the proposed
distributed algorithms with comparison to ADMM. The model
is merged by a four-terminal VSC-HVDC network with four
AC grids from Matpower [45], which are modified using
open-source rapidPF toolbox2, proposed in [37].

In Case 1 a VSC-HVDC network is connected with four
IEEE 9-bus AC grids as shown in Fig. 1 while a VSC-HVDC
network is connected with four IEEE 118-bus AC grids in
Case 2. Bus 2 and Bus 8 are the connecting bus for 9-bus
AC grid and 118-bus AC grid respectively. For both Cases,
base power and base voltage is set to 100MVA and 345kV;
voltage magnitude of both AC and DC grid are limited to
[0.95, 1.05] p.u.; the master VSC station connecting to AC grid
3 keeps 1 p.u. to provide the constant DC voltage reference;
the parameters for VSC stations and DC branches in the
grid’s per-unit system (p.u.) are given in Table I and II to
differentiate the four AC grids in both Cases, the generator
cost coefficients and load of AC regions 1 and 2 are set to
be smaller than regions 3 and 4, shown in Table III. In this
way, we force the power exports from AC regions 1 and 2
to regions 3 and 4. The scaling coefficient for system loss
term is set to η = 10 to jointly minimize the total generation
cost and system losses. For reasons of a fair comparison, our
implementation initializes the primal variables x for each AC
block with 1 p.u for voltage magnitudes while 0 for all other
values. This flat starting strategy is standard, which was used
in literature, for example, [32], [37], and also chosen as the
default strategy in Matpower [45]. For the MTDC block, we
applied a similar strategy that intuitively initialized voltage
magnitudes by 1 p.u, and the injected power by 0. The initial
dual variable λ are set to zero (flat start).

Applying ADMM and ALADIN to solve problems requires se-
lecting tuning parameters ρ and µ. To enable a fair comparison,
these parameters are determined by parameter sweeps aiming
for fast convergence, shown in Table IV. To obtain a similar
scaling, the weighting matrices are chosen such that each
diagonal entry is inversely proportional to its corresponding
decision variable range, as suggested in [32].

The framework is built on Matlab-R2021a and the AC
grid modeling follows AC-OPF model of Matpower. The
case studies are carried out on a standard desktop computer
with Intel® i5-6600K CPU @ 3.50GHz and 16.0 GB
installed RAM. CasADi toolbox [46] is used in Matlab and

2The code is available on https://github.com/KIT-IAI/rapidPF

https://github.com/KIT-IAI/rapidPF
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Fig. 3: Convergence behavior of ADMM for Case 1
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Fig. 7: Convergence behavior of ALADIN using exact Hessians for Case 2

TABLE I: VSC station parameters

Term Value Term Value Term Value

a1m 0.011 p.u. Rm 0.00025 p.u. Rf 0.0005 p.u.

a2m 0.003 p.u. Xm 0.04 p.u. Xf 0.0125 p.u.

a3m 0.0043 p.u. Bf 0.2 p.u. Sm 11 p.u.

δ 1.05 γ 0.5 Vm 1.05 p.u.

Im 11 p.u.

TABLE II: DC branch parameters

Line No. From bus To bus Resistance [pu]
Flow limit [pu]

Case 1 Case 2

1 1 2 0.00042 1.5 8

2 1 3 0.00174 1.5 8

3 2 4 0.00175 1.5 8

4 3 4 0.00159 1.5 8

TABLE III: Load and generator cost coefficients ratio setting

AC grid No. PD [MW] QD [MVar] Cost Coefficients ratio

Case 1

1 315 115 1.0

2 318 116 1.3

3 321 117 1.7

4 324 118 2.2

Case 2

1 4242 1438 1.0

2 4666 1582 1.3

3 5090 1726 1.7

4 5515 1869 2.2

TABLE IV: Algorithm parameters of ADMM and ALADIN

Parameters
ADMM ALADIN-BFGS ALADIN

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

ρ 104 - 104 - 102 102

µ - - 103 - 103 103

ipopt [47] is used as the solver for both the decoupled
NLPs and the coupled QP. The computation time is posted
in Table V.

Similar to [32], we use the following quantities in order
to depict the algorithm convergence behavior. The reference
solution x∗ is obtained by solving problem (21) with ipopt
centrally.

1) The deviation of optimization variables from the optimal
value ‖x− x∗‖∞.

2) The consensus violation ‖Ax‖∞ =
∥∥∑

`∈RA`x`
∥∥
∞.

3) The dual residual ‖r‖∞ with r =
∑
`∈R {A`(x` − z`)}

for ADMM, r =
∑
`∈R {Σ`(x` − z`)} for ALADIN.

4) The solution gap between a specific distributed algorithm
and the centralized algorithm is calculated as f(x)−f(x∗)

f(x∗) .

Remark 5 When the problem is feasible, it means that the
VSC-MTDC Meshed AC/DC Grid has at least one safe op-
erating point, in which neither the transmission lines nor
the converters are overloaded, etc. Meanwhile, the correct
solution represents the operating point with the best economic
efficiency for the grid.

A. Four-Terminal VSC-HVDC with Four IEEE 9-bus AC Grids

1) ADMM vs. ALADIN: In general, ADMM has no conver-
gence guarantee for and AC-OPF problem, especially when
the AC branch flow limits are implemented as the nonlinear
inequality constraint [32]. The mathematical model of VSC-
MTDC meshed AC/DC grids is much more complicated and
the convergence of ADMM is highly sensitive to the tuning
parameters. Fig. 3 shows the convergence behaviors of ADMM,
with tuning parameter ρ = 104. It is observed that ADMM re-
quires thousands of iterations to converge to modest accuracy,
i.e., ε = 10−4. To approach higher accuracy, primal variables
y start damping near the optimizer. Nevertheless, the solution
gap by applying ADMM is acceptable for practical use.

In contrast to ADMM, ALADIN obtains curvature information
of all subproblems in the central coordinator and has the
ability to deal with the non-convex constraints. Fig. 4 presents
convergence behavior of ALADIN with two different methods
for computing the Hessian matrix. It is obvious that ALADIN
converges significantly faster than ADMM. Unlike ADMM,
the solution gap of ALADIN is fairly small compared with
the centralized method, as shown in Table V. The number
of iterations and the computation time in ALADIN is much
less than ADMM. The computational costs per iteration are
only slightly higher for ALADIN, which leads to a strong
computation time decrease while much higher accuracy in
terms of the optimal gap and dual residual are obtained.
In summary, despite higher communication effort, ALADIN
surpasses ADMM in all perspective for solving the AC/DC OPF
problem of VSC-MTDC meshed AC/DC grids.
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TABLE V: Comparisons of different algorithms for Cases 1 and 2

Case Algorithm Iterations Time [s] ‖x− x∗‖∞
Generation Cost C1 System Losses C2

Cost [×102$] Solution gap Losses [MW] Solution gap

1

Centralized - 0.181 - 249.354 - 23.484 -

ADMM ≥ 3× 104 ≥ 3000 0.151 249.141 8.56× 10−4 23.505 8.95× 10−4

ALADIN-BFGS 49 0.700 5.62× 10−3 249.354 2.03× 10−8 23.484 1.77× 10−6

ALADIN 9 0.142 7.52× 10−6 249.354 7.94× 10−7 23.484 1.978× 10−7

2

Centralized - 1.465 - 9547.316 - 515.985 -

ADMM Did not converge

ALADIN-BFGS Did not converge

ALADIN 13 0.878 1.50× 10−6 9547.316 6.63× 10−9 515.985 7.59× 10−9

2) Exact Hessian vs. BFGS: To reduce the per-step commu-
nication effort between decoupled NLPs and the central coordi-
nator, the BFGS method is implemented to avoid communicat-
ing the full Hessian matrix. Considering the theoretically worst
case, i.e., all matrices and vectors required to communicate are
dense without zero elements, Algorithm 2 with exact Hessian
requires to communicate∑

`∈R
n`︸︷︷︸
g`

+
n`(1 + n`)

2︸ ︷︷ ︸
symmetric Hi

+n`
∑
j∈A`

mi︸ ︷︷ ︸
J`

float numbers in forward communication while
using BFGS update can reduce this number as∑
`∈R

(
3n` + n`

∑
i∈A`

mi

)
. Here, n` defines the dimension

of x` and set A` collects the index of the active inequality
constraints [h̃`(x`)]i = 0 at local solution x`. Fig. 4 compares
the convergence behaviors of using exact Hessian and using
BFGS to approximate Hessian for solving the AC/DC OPF
problem. For both options, ALADIN can converge to a solution
with modest accuracy, i.e., ε = 10−4 for all termination
criteria, within a dozen iterations. Furthermore, ALADIN using
inexact Hessians needs just slightly more iterations compared
with ALADIN using exact Hessians. One can observe that
the convergence rate for ALADIN using inexact Hessians
is faster than linear. Nonetheless, it needs several dozens
more iterations to converge when a high accurate solution
is required, while ALADIN with exact Hessian needs only
several iterations.

In the perspective of coupling variables, as illustrated in
Fig. 5 and 6, the nodal voltage magnitude and phase angle
of boundary bus and fictitious bus among the local AC grids
and MTDC grid converge to the same operating point after 9
iterations (exact Hessians) and 49 iterations (inexact Hessians),
respectively.

B. Four-Terminal VSC-HVDC with Four IEEE 118-bus AC
Grids

The performance of the proposed algorithm is further ana-
lyzed on a larger VSC-MTDC meshed AC/DC grid in Case 2.
As summarized in Table V, the ADMM and ALADIN-BFGS fail
to converge for solving this larger system no matter how the
step size ρ is adapted. The algorithm convergence behavior
for Case 2 using ALADIN with exact Hessians is depicted in

Fig. 7. Similar to Case 1, the solution gap of ALADIN is fairly
small compared with the centralized method.

The proposed ALADIN algorithm with exact Hessian takes
0.142 and 0.878 seconds for the two cases, respectively, and
the computation time of ALADIN is slightly faster than the
centralized approach that takes 0.181 and 1.465 seconds,
respectively. In conclusion, ALADIN with exact Hessian out-
perform both centralized approach and ADMM method for the
two cases. This indicates that ALADIN has more potential in
practical distributed implementation.

V. CONCLUSIONS

To fully coordinate the AC grids and the MTDC grid to
mutually benefit multiple regions, the present paper tailors the
recently proposed novel distributed ALADIN algorithm to solve
the non-convex AC/DC OPF problem for the VSC-MTDC
meshed AC/DC grids. By operating the AC grids and MTDC
grid in a fully distributed way, the information privacy and
decision independency of local systems can be achieved, which
is under the operating philosophy of the electricity market and
the hierarchical and partitioned operating mode in China. In
contrast to the commonly used ADMM, ALADIN has theoretical
convergence guarantee and is able to outperform ADMM in all
perspective for the non-convex AC/DC OPF problem.

APPENDIX

In order to work out the analytical solution of (31), we write
down the KKT system of (31) as follows

H A> J>

µI −I
A −I
J




∆x
s

λQP

κQP

 =


−g
−λ

b−Ax
0


with H = diag{H`}`∈R, J = diag{J`}`∈R, and ∆x, g and
κQP stacks ∆x`, g` and κQP` for all ` ∈ R as column
vectors. Here κQP` defines the Lagrangian multipliers of
constraint (31c). By using the Schur complement, we can have
the dual solution λQP in a form

λQP =

(∑
`∈R

[
A>`
0

]> [
H` J>`
J`

]−1 [
A>`
0

]
+ µ−1I

)−1

(36)

·
(
µ−1λ+

∑
`∈R

[
A>`
0

]>([
xi
0

]
−
[
H` J>`
J`

]−1 [
g`
0

]))
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and the decoupled solutions for all ` ∈ R,[
∆x`
κQP`

]
=

[
H` J>`
J`

]−1([−g`
0

]
−
[
A>`
0

]
λQP

)
. (37)
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