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Abstract—As the use of Plug-in Hybrid Electrical Vehicles is
expected to rise, their rather high energy consumption and long
charging times has the potential to impact power grid stability.
While coordinated charging is generally considered the answer
to such issues, often overlooked aspects in coordination schemes
are reliability, fault tolerance and ease of implementation. In
our research we adapt an existing market-based multi-agent
coordination scheme to a real-world environment. The step from
time-slots to an asynchronous and continuously moving scheme
brings it closer to how an effective implementation would work
and offers advantages regarding agent communication load and
response time.

Index Terms—smart grids, PHEVs, coordinated charging,
multi-agent systems

I. INTRODUCTION

HE future of electricity grids is shifting towards the con-
cept of intelligent or smart grids. In a smart grid, beside
other aspects, consumer appliances communicate with each
other and energy suppliers to avoid peak loads by shifting their
consumption in time. In particular, (PH)EVs are very suited
for this type of control due to their high energy requirements
and long charging times. This coordinated charging is to be
seen as a business by charging service companies; the latter
aggregate many Plug-in Hybrid Electrical Vehicles (PHEVs)
in a fleet and can therefore act as a single trader on the
energy market(s). By intelligently shifting charging schedules
and avoiding peaks, electricity can be bought at lower tariffs.
To control charging PHEVs in a smart grid, several method-
ologies have been proposed [1] [2] [3] [4] [5] [6], but an
attribute applicable to most is the fact that they make use of
timeslots, e.g. time is divided into discrete time-slots of 15
minutes. While this is similar to the way energy is traded on
the markets, in the real world, devices (and especially charg-
ing vehicles) operate continuously. Control and coordination
actions should commence immediately, especially for fast-
charging applications, and allow for quickly altering the fleets
behavior if the need arises. Additionally, in the proposed
methodologies, little attention is paid to the effect such dis-
cretization has on implementation and communication require-
ments. Such issues are typically abstracted or sidestepped.
In this paper, the results of a coordination scheme based on
market-based control (MBC) and focusing on faster response
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and lowered communication load are discussed. Results show
the continuous system can trade off accuracy or optimality
of the control action for the number of control messages
exchanged with and the response speed of the PHEVs. The
main contributions of this paper are:

1) Description of the typical problems involved in translat-
ing existing charging coordination algorithms to systems
that work in the real-world. While optimality is impor-
tant, not all algorithms or strategies are equally suitable
for deployment.

2) Description of a market-based control scheme based
on an existing algorithm, that is able to operate fully
continuously, as opposed to a timeslot-based system.

3) Evaluation of this continuous MBC system with respect
to communication load and accuracy or optimality of the
performed coordination actions.

II. RELATED WORK

In recent years, many papers have appeared that focus on
optimal strategies for controlling a fleet of charging EVs,
sometimes situated in the more general domain of demand
response (DR).

In [1], a system is proposed based on congestion pricing
and Quality of Service (QoS) concepts in TCP/IP networks.
A user utility function is employed to determine individual
consumer demand in the next time-slot. The system is not
fully distributed however, as a central entity is implied for
the pricing signals sent to end-users. Effects of packet loss
and delay of the control signal are considered by adding an
unknown amount of noise to the price signals. However, this
cannot be considered equivalent of message delay or loss. The
system inherently has no feedback loop that allows continuous
monitoring and intervention.

In [2], coordination in the form of a highly dimensional
allocation problem is tackled via approximate dynamic pro-
gramming. Vehicles send schedule updates (arrival, departure
and SOC requirements) to a central aggregator which hosts
the scheduling algorithm. Individual charging or discharging
rates are then sent to each vehicle. All events are aligned on
time-slot boundaries.

In [3], optimal demand-side management (DSM) is achieved
using a model derived from game-theory. Each consumer’s
scheduler is required to broadcast its consumption schedule
to all other participants in the DSM programme. Schedule
granularity is chosen to be one hour.

In [5], vehicles send their requirements in the form of
intentions to an aggregator. The aggregator has estimations
on household consumption and production from residential



photovoltaic installations and coordinates charging as to flatten
the local grid’s power profile (known as valley filling).

In [7], an optimization model is defined and solved through
linear programming, allowing consumers to adapt to electricity
prices on an hourly basis. Future prices and their bounds
are estimated via an ARIMA-based model. A two-way com-
municating smart meter or an Energy Management System
(EMS) is assumed to be available in participating residences,
but a case with estimated day-ahead instead of hourly pricing
information is also considered.

In [6], a system rooted in online market mechanism design
is presented and applied to the coordinated charging prob-
lem. Simulations use data from a real trial and results are
compared to an offline benchmark that has prior knowledge
on vehicle arrivals. Depending on the size of the time-steps
and the vehicles’ arrival interval, a realistic setting would be
computationally demanding.

Summarized, while attaining good results regarding
coordination, these approaches assume the existence of an
ideal communication channel between the controlled vehicles
and an aggregator in some form. Some require levels of
local processing power or information from many other agents
that cannot always be easily transferred over the available
communication channels. Additionally, while the discretization
in timeslots is convenient in market-linked systems, it is not
representative of how real devices function and interact and
limits the system’s responsiveness.

III. BACKGROUND

As outlined in the previous sections, it is not a bad idea to
take some practical issues into consideration when performing
coordinated charging of EVs. Upon connection, a vehicle’s
charger or the station will identify cable rating and ensure
some electrical safety before applying power. This is achieved
through very basic signaling [8] (resistor coding or PWM) and
at the moment there are no standards defining how and what
additional information is exchanged (e.g. vehicle identifica-
tion, electrical interlocking, charge profile ...). However, for
coordinated charging to be feasible, more is needed;

1) A charger should at least be able to alter the charging
rate of a vehicle (at continuous or discrete values). Some
charging poles today can be remotely switched, but this
feature is not intended for controlled charging.

2) An indication of the current state-of-charge (SOC) is
required, together with some indication on the time the
battery needs to be filled. This may or may not involve
user interaction. Current charge poles are limited to
metering of the vehicle’s consumed power.

3) Most importantly, the chargers participating in coordi-
nated charging must have means to communicate with
each other or a central system, to send and receive
information and coordination messages.

With charging poles “in the open”, communication is typically
achieved by cellular networks [9] [10]. This introduces com-
plications regarding reliability, delay and data throughput. Fur-
thermore, individual charging poles are resource constrained
and therefore unsuitable for running computationally intensive
software.

An additional problem for the coordination system is posed
by the way energy is traded; on separate markets with different
closure times. Good coordination should therefore not only
focus on the optimality of the generated charging schedules,
but also on minimizing data traffic while being fault tolerant
in the case of communication failures.

IV. MARKET-BASED CONTROL

The agent-based approach used as basis for coordinated
charging in this paper is based on the concept of market-based
control (MBC) [11] [12] and Walrasian auctions. In MBC,
supply and demand (bid) curves represent the willingness of
consumers and producers of electricity to buy or produce
at a certain price. In [11], devices are steered by device
agents organized in a tree structure (see Figure 1). On the
top of the tree is an auctioneer agent. Every quarter, agents
at the bottom of the tree assemble bid functions representing
their willingness to pay and consume, taking into account
the specific constraints of the controlled device. Bids are
sent upwards and the concentrators or auctioneer agent starts
a matching process. Intermediate agents sum the bids of
underlying agents and submit them as a single bid to a "higher’
agent. Practically, a device agent in this context could be
seen as the software running on charge pole or inside a smart
charger, while concentrator agents group multiple charge poles
or parking areas. The number of intermediate levels is not fixed
and can be varied as required by the application.

Eventually, the auctioneer agent determines the point at
which consumers and (external) producers are in equilibrium.
The mechanism is essentially the same as traditional demand
and supply curves in economics. Afterwards, the equilibrium
price is transferred downwards to all agents who will start con-
suming or producing according to their submitted bids. Note
that the equilibrium price here is not necessarily represented in
a currency. It can be a pure control signal and the term priority
would be more suitable. The advantages of the MBC scheme
are its Pareto-optimality and low (device) agent complexity.

Again, time is divided into timeslots during which bids
apply (rounds). Decreasing the rounds interval would increase
data traffic drastically, which is especially problematic for
large clusters of agents. Also, updating the market equilibrium
and sending it to all agents whenever a new agent arrives
would trigger an avalanche of messages.

V. CONTINUOUS MARKET-BASED CONTROL

Our work focuses on improving the MBC scheme as im-
plemented in [11] as to make it continuous and fault tolerant
in the case of communication failures, while at the same
time keeping communication and computation by the device
nodes (the PHEV agents) down. The terms PHEV agents,
intermediate agents and top agent are used to designate device
agents, concentrators and the auctioneer agent respectively.

In the first step, event based equilibrium price calculation
is introduced; agents will only pass each other new bids and
equilibrium prices when they consider that their situation has
changed enough to warrant such actions. We refer to this
as the caching of bids and equilibriums. This caching is
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Fig. 1. MAS structure in the market-based control system. Bids from
agents (consumers) are aggregated upwards and eventually the auctioneer
agent matches these with a producer supply curve. The equilibrium price
is then passed back downwards as a control signal.

achieved slightly differently at the hierarchical levels of the
agent structure (being device agents, intermediate agents and
the auctioneer agent).

When a device agent connects, the linked intermediate agent
is contacted. In turn, the intermediate agent requests an initial
bid from the device agent and stores this bid internally. Device
agents are expected to only send new bid updates when the
absolute distance to the previous bid has increased sufficiently
(e.g. 150W). This threshold value is passed from intermediate
agent to device agent upon first contact and can change per
agent and during the charging process. As a safeguard against
communication failures, intermediate agents will request new
bids from the device agents at least once every hour.
Intermediate agents employ a similar caching strategy; when
their aggregated bid function has changed sufficiently, a new
bid is sent to the auctioneer agent (or another layer of inter-
mediate agents). The auctioneer agent is considered to have
the largest resources (computation, memory, storage) available
and capable of updating the equilibrium price almost as soon
as it receives a new bid. For each intermediate agent connected
to the top agent, the net effect of the change in equilibrium is
determined. No reply is sent if the expected power change for
each separate intermediate agent is too limited (depending on
the application, e.g. +£15%).

Moving back down the tree, intermediate agents receiving
an equilibrium update will first determine total local impact
and only update device agents that are most responsible for
violating the local threshold (e.g. 1500W). Then, each agent
is checked individually to avoid large equilibrium differences
between agents. Additionally, when device agent power is very
low (e.g. <200W) no new updates are sent to that specific
device agent, avoiding oversensitivity (which would translate
into lots of messages for little absolute power changes).

To further reduce messages at the lowest level in the tree
(typically the most “expensive” messages), a device agent
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Fig. 3. Bid caching decision flow chart for the device agents

will only wait a limited amount of time for a reply from its
governing intermediate agent before changing charge power.
For example, after 120 seconds, the previously known equi-
librium will be applied to the last submitted bid. Because
this system is entirely event-driven, device agents are con-
trolled asynchronously from each other. Furthermore, (drastic)
changes in the equilibrium price propagate almost immediately
(depending on the used intermediate agents parameters) to the
device agents, allowing for a faster response to the top agents
intervention.

The downside of this “caching” of bids and equilibriums is
that, in contrast to the time-slot market-based control, agent(s)
at the top of the tree have no exact information anymore
on how much nodes at the lower levels are consuming or
producing (in case of distributed generation), because their
aggregated bids can be out of date or the equilibriums known
to the device agents can differ slightly among them. This
difference will have an influence on the equilibrium price and
therefore on the optimality of the control action.

VI. AGENT BIDDING

One of the most crucial facets is the logic behind device
agent bidding, as a bid represents the power flexibility or the



utility function of a PHEV. Different requirements determine
the willingness-to-pay of a PHEV and thus its bid, including:

1) Maximum charge power P,,,,, limited by the vehicle’s
power electronics or the grid connection.

2) Time till departure Atgep.

3) Required energy AE needed by time ¢gcp.

A simple way of calculating such a bid is by using a corner
price p, to create a sloped curve, as depicted in the left of
Figure 4. A higher p, value will give rise to a flatter bid
curve and expresses a vehicle agent’s willingness to consume
at higher prices. For convenience, p, is kept within the range
of [0,1].

A. Asymptotical bid function

By combining the stated requirements directly, the corner
price p, can be stated as shown in equation 1 (and as used
in [13]).

AE

= - 1
Atdep : Pmaa: ( )

pr
After receiving the equilibrium price, the corresponding power
point is set as the charging power. Vehicles having a p,. greater
than the equilibrium will not charge, others will charge at a
rate proportional to their individual requirements. Thus less
flexible cars (with a less steep bid curve) will be charged first.
However, due to the ever decreasing 4, p, tends to increase
asymptotically. This in turn leads to bids that keep edging
towards higher charge power as departure time gets closer, as
shown on the right of Figure 4.

B. Linear bid function

To avoid this effect, a linear bid function is also considered
and shown in equation 2. The disadvantage of it is the need
for a predetermined “offset” to scale the parameters. In this
case, we used 12 hours as the maximum 24, to consider, and
the maximum allowed battery charge F,,,, to normalize the
required energy AFE.

pr=1-— (;At’dep + ;AE’> (2)
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VII. RESULTS

To asess the effect on coordinated charging of timeslot
versus continuous MBC as explained in section V, a few
benchmark scenarios have been constructed.
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Fig. 4. Left: Basic PHEV device agent bid function as used in the current

results. Right: Asymptotical bid function evolution as time to departure
shrinks, giving rise to increasing charge power. By using a linear bid function
this effect can be avoided.

4 External producer bid function
x 10

6 . ‘ : ‘ : : .

k]

g

c

S at g
]

=

o

(=]

a

S 2r R
=

=

=}

=

<< 0 1 L L L L L L L 1

0 10 20 30 40 50 60 70 80 90 100
Equilibrium priority (%)
Fig. 5. External producer bid function. Willingness to produce increases

linearly with the offered priority or price.

A. Small-scale scenarios, comparing optimality

A first setting consists of a fleet of 96 PHEVs simulated
during 3 days in a distribution grid. The task of the auctioneer
agent comprises balancing a linear static producer bid function
with the demands of the charging agents. This function is
shown in Figure 5. While not entirely realistic, it makes it
easier to analyze the different scenarios. A more realistic case
could consist of a day-ahead profile that the auctioneer agent
has to follow within certain boundaries. As a reference case, a
timeslot MBC system with 15 minute intervals is used. In
all cases, the hierarchical agent tree structure (also shown
in Figure 1) consists of 1 top agent x 6 x 4 intermediate
agents (two levels) x 4 PHEV agents. The maximum allowed
power per vehicle is set at 3 kW (13 Ampere, corresponding
to charging from regular outlets) and the driving behavior of
the PHEVs is based on a statistical availability model [14].
Vehicles can be at home (plugged and available for charging),
driving (discharging) or at work (not plugged).

The results of the simulated scenarios are evaluated by looking
at two key values:

1) The number of messages exchanged (sent and received)
by device agents. As explained in sections I and II, these
messages are likely to be the most expensive in terms
of bandwidth and monetary cost. Alternatively, it could
also make sense to focus on the number of messages
exchanged by intermediate agents.

2) RMS value of the power difference with the timeslot
MBC (RMS deviation). This gives a first indication
of how well or how bad a certain continuous MBC
scenario performs. However, using the timeslot system
as benchmark or reference case is not entirely justified
because the use of timeslots introduces delay in the ac-
tions taken by device agents. Thus, another comparison



TABLE 1
CONTINUOUS MBC SYSTEM SCENARIO PARAMETERS OVERVIEW.

[ Node agents [ Intermediate agents [ Top agent

Simulation # Bid in- Bid Bid max Bid in- Bid Bid max  Total Node Low Update Total
terval timeout diff terval timeout diff diff diff Treshold  interval diff

Scenario 1 450s 120s 200W 45s 120s 200W 1000W 15% 200W 10s 15%
Scenario 2 240s 120s 10W 45s 120s 10W S50W 7.5% S50W 10s 5%

Scenario 3 900s 120s 400W 45s 120s 200W 1500W 22% 250W 10s 20%
Scenario 4 30s 15s 2W 30s 15s 2W 10W 2% SW Ss 1%

TABLE II

SUMMARIZED SCENARIO RESULTS FOR A SETTING WITH 96 PHEVS,
ASYMPTOTICAL BID FUNCTION

Simulation Node msgs NRMSD Tslot NRMSD Scend
Timeslot 30000 0% 3.87%
Uncontrolled 0 33.88% 32.86%
Scenario 1 16825 6.01% 3.38%
Scenario 2 60415 4.27% 1.55%
Scenario 3 12182 13.17% 9.85%
Scenario 4 265595 3.68% 0%
TABLE III

SUMMARIZED SCENARIO RESULTS FOR A SETTING WITH 96 PHEVS,
LINEAR BID FUNCTION

Simulation Node messages NRMSD Tslot NRMSD Scend
Timeslot 26901 0% 12.55%
Uncontrolled 0 23.70% 22.30%
Scenario 1 4778 11.41% 5.02%
Scenario 2 15204 10.31% 3.78%
Scenario 3 3892 13.86% 7.69%
Scenario 4 52774 10.83% 0%

scenario is added, scenario 4, and parameterized to be
as uncompromising as possible; agents bid and receive
equilibrium price updates almost instantaneously. Such a
scenario should therefore be very close to a theoretical
optimum behavior of the original MBC concept. The
RMS values are normalized to aid comparison.

Table I summarizes the different simulation parameters,
while table II and III show the numerical results in the case
of asymptotical and linear bid functions respectively. In the
“uncontrolled” case, vehicles just start charging at full power
as soon as they connect. Simulations 1 to 4 are continuous
MBC variants with different levels of caching, with the last
one, 4, serving as the uncompromising scenario.

More specifically, scenario 3 uses an aggressive level of
caching (meaning that higher bid and equilibrium differences
are allowed); scenario 2 aims for the opposite and is configured
for accuracy, while scenario 1 fits in between at intermediate
levels of caching. In the latter case, device agent message
count was reduced by almost 70% when compared to the
timeslot simulation.

1) Asymptotical bid function: Figure 6 shows the power
consumption of the PHEVs during 3 days of simulation, for
the asymptotic bidfunction. Time starts at 24 hours to cut
out transient effects at the start of the simulation. The upper
plot represents the power consumed by all connected PHEV
device agents. In the uncontrolled case, power peaks during
the night, when almost all of the vehicles are connected to a
charger. In the controlled scenario, consumption is centered

around departure. Looking at the scenario-graphs, it can be
seen that the more a scenario employs aggressive caching of
bids and equilibriums, the more its power consumption profile
will deviate towards the uncontrolled scenario. But the positive
effect of the caching is the reduced need for communication
between device agents, which can be seen in Table II. In the
lower part of Figure 6, results are related to the equilibrium
price as known to the auctioneer agent. Due to the caching
of bids, the auctioneer agent underestimates the requested
amount of power and equilibrium prices decrease. This is
especially clear for scenario 3, having the most aggressive
caching. In case of the timeslot MBC system, device agents
have less opportunity to react to the equilibrium price, an
effect which pushes the equilibrium price slightly up as device
agents delay their charging to the point where even more
of them need to be ready for departure. In the continuous
system, this is avoided by having device agents send updated
bids immediately whenever projected impact would be high
enough.

2) Linear bid function: Figure 7 shows the same scenarios,
but using the linear bid function from equation 2. Charging is
now better spread out between arrival and departure times,
as opposed to the asymptotic bid function where charging
is postponed until close to departure. This has the effect
of reducing total message count for the device agents as
well, because charged vehicle agents “log out”. Again, as
the caching becomes more aggressive, power profiles tend to
shift towards the uncontrolled scenario and equilibrium prices
become less pronounced. Because of the improved spread,
power consumption and equilibrium price does not peak as
much and the variation between the different scenarios is
smaller. This bid function therefore seems better suited for ap-
plication in our MBC system and illustrates the importance of
consumer valuation functions and their impact on coordination
effectiveness.

It must be noted however, that the use of the linear bid
function reveals a consistent discrepancy between the timeslot
system and even the ’best’ continuous scenario (which is
scen. 4). More specifically, the power profile and equilibrium
values are slightly higher during periods with many departing
vehicles, and slightly lower anywhere else. Because of this,
NMRSD with the timeslot version is distorted upwards. The
discrepancy is also visible on the simulations with the asymp-
totic bid functions, but more subdued. This seems to be an
inherent effect of using a time-slot system.

Additionally, as briefly mentioned in section IV, the way
device agents build their bids may exaggerate the underes-
timation of the consumed power by the auctioneer agent in
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case of the continuous MBC. Device agents tend to increase
charge power because of the decreasing slope of the bids but
this increase is effectively cached as long as no thresholds are
tripped in the intermediate agents. The results show that it
is possible to balance coordination optimality (represented by
the RMS difference with the timeslot system and scenario 4 of
the continuous MBC) with communication load (the number
of device agent messages) and responsiveness (determined in
the parameter sets from Table 1). But scenario 2’s profile is
almost identical to that of scenario 4, showing that not much
additional gain is achieved by further decreasing the caching
thresholds beyond some point.

B. Randomized scenarios, trade-off behaviour

To visualize this trade-off behavior between coordination
optimality and agent communication, sets of randomly gen-
erated scenarios were simulated and both evaluation param-
eters plotted against each other. Figure 8 shows the scaling
behaviour when using the linear bid function. The interrupted
line shows a hard “front”; no set exists beyond this border.
Note that this is not the same as a full Pareto-front; examina-
tion reveals that sets close to the “corner” of the front have a

low device agent message count and good optimality, but do
so by effectively sidestepping the intermediate agent level due
the use of very aggressive caching parameters there.

C. Scalability of the continuous MBC solution

To verify scalability of the continuous MBC scheme, the
number of PHEVs is increased while maintaining the same
hierarchy ratio for the agent network. The static producer bid
was also scaled accordingly. Figure 9 shows the results for
the different scenarios, using the asymptotical bid function. It
can be seen that scaling performance is similar to a timeslot
implementation which equals slightly better than linear. Using
the linear bid function returned comparable numbers.

VIII. CONCLUSIONS AND FUTURE WORK

First of all, the results demonstrate the discrepancies that
a time-slot based system implies in the case of coordinated
charging, which are hard to avoid without switching to very
small time steps. This is where a continuous or event-based
system has an advantage; it has virtually infinitely small time
steps. Unfortunately, such a system has to make a compromise
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system. The trade-off between the two key result parameters is demonstrated.

regarding optimality of the control actions when compared to
its time-slot based counterpart.

Secondly, examining the proposed continuous system’s re-
sults, one can see that by tuning the caching parameters a
balance can be found between device agent messaging and
optimality of the control action with the added advantage
of fast response to device or auctioneer agent requests. In
one scenario, device agent messages were reduced by more
than 80% while the normalized RMS deviation of the solu-
tion was only 5.02% worse compared to an uncompromised
continuous scenario. The other way round, another scenario
used a comparable number of device agent messages but with
an RMS deviation (again compared to the uncompromised
continuous scenario) that was 70% smaller than the timeslot-
based counterpart.

The presented approach to the problem of coordinated
PHEV charging is a step towards a more robust, fault tolerant
charging coordination system as an asynchronously moving
scheme gives participating device and manager agents more
room for recovery procedures. In future work, we will try
to asess the performance of the presented scheme in a more
market-oriented setting; meaning that we will replace the
static producer bid function with a target such as balancing
an energy retailer’s portfolio. Preliminary results with such
scenarios have shown one shortcoming of the MBC system
lies in the instantaneous matching of demand and supply. It
would be more efficient to incorporate information on future
events (e.g. wind prediction or estimated vehicles arrivals) as
this would remedy situations in which all the flexibility of
the device agents is depleted and demand effectively becomes
uncontrollable.
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