
Using Demand-side Management
to Decrease Transformer Ageing

Thijs van der Klauw, Marco E. T. Gerards and Johann L. Hurink
Department of Electrical Engineering, Mathematics and Computer Science

University of Twente, Enschede, The Netherlands

Abstract—The introduction of local, often uncontrollable, gen-
eration units as well as larger loads such as electric vehicles
(EVs) causes an increasing amount of stress on our energy
supply chain, specifically on the distribution grids. Demand-side
management (DSM) is often seen as a potential technology to
counter-act this increasing stress on the (distribution) grid. An
important and expensive asset within these grids are the power
transformers. Thus, economic incentives for DSM can be obtained
by decreasing transformer ageing. To study the potential of using
DSM to decrease transformer ageing, we consider an ageing
model of distribution transformers based on the load profile
being supplied by the transformer. We combine this with an
optimization problem to find optimal charging profiles of EVs
w.r.t. transformer ageing. Furthermore, we compare the results
of the optimization problem to three other charging strategies. We
conclude that smart charging strategies can give improvements of
up to two orders of magnitude in reducing the ageing incurred by
EV charging over the base load. Furthermore, we show that for
the considered scenarios, a DSM strategy that steers towards the
flattening of a neighbourhood’s load profile gives similar results
to our approach, which directly optimizes transformer lifetime.

I. INTRODUCTION

Motivated by climate change and a drive towards renewable
energy sources, our energy supply chain has been changing
rapidly in the past decade and is expected to continue doing so.
Within the supply chain, the production is shifting from a small
number of large generators towards a much larger number of
small, local generation units. Furthermore, these small units
are increasingly exploiting renewable, uncontrollable sources
such as wind and sun. However, the infrastructure of our
energy supply chain was designed decades ago, without these
changes in mind. Hence, the stress put onto these infrastruc-
tures is increasing rapidly [1].

Next to the increasing use of small-scale generation residen-
tial consumption of energy is also increasing. This increasing
use of electricity is motivated by the abundant clean, renewable
ways to generate electricity, such as the aforementioned wind
and sun. Several examples of this electrification include the
adoption of electric vehicles (EVs), electric cooking and
electric heating (using, e.g., heat pumps). These changes
also contribute to an increasing amount of stress put on the
infrastructure of our energy supply chain [2].

This research was conducted within the EASI (12700) project supported
by STW and Alliander and the EU FP7 project e-balance (609132), with use
of data from Lochem of the IPIN In4Energy project.

Demand-side management (DSM) is seen as a promising
technology to support the integration of local, renewable gen-
eration while simultaneously reducing stress on the electricity
grid [3], [4]. In particular, DSM can be used to prevent local
congestion problems by shaving peaks in load profiles. One of
the more expensive assets in electricity distribution grids are
transformers [5]. Hence, significant economic benefits can be
obtained if the lifetime of these transformers can be extended.
The ageing of a transformer depends on the wearing of the
insulation which is largely dependent on the temperature of
the windings. This temperature is in term related to the load
profile of the transformer, which can be significantly changed
using DSM. Hence, it is of interest to study the potential for
DSM to decrease transformer ageing.

To assess this potential we require a model of transformer
ageing. For this we use the IEEE C57.91-2011 standard [6].
The standard derives information about the ageing of the
transformer from a load profile, it can also be used for our
purpose. Jargstorf et al [7] use the same model and simplify
it into a quadratic program to allow them to calculate the
optimal use of DSM to decrease transformer ageing. Note that
the simplification we make on the model are less restrictive.
Humayun et al. [8] use a similarly simplified version of the
model on a Finnish residential area with various forms of
demand response. To specifically calculate the effect of (plug-
in hybrid) EV introduction on transformer lifetime, Moghe et
al. [9] used a Monte Carlo simulation type approach.

The main contributions of this work are as follows:

• Using mild assumptiosn we prove convexity of the
problem of finding optimal EV charging profiles w.r.t.
transformer ageing.

• Simulations that show significant improvements can be
made w.r.t. transformer ageing in several scenarios with
different EV penetration levels in a residential neighbour-
hood by adopting smart charging strategies.

• The results indicate that DSM methodologies that steer
towards a flat neighbourhood profile also achieve very
good performance w.r.t. transformer ageing.

The rest of the paper is outlined as follows. In the next
section, we introduce and study the used ageing model and
our optimization approach to obtain charging profiles for EVs.
Then, in Section III we introduce the model used to simulate
the ageing of the transformer in the Dutch town of Lochem978-1-5090-3358-4/16/$31.00 c©2016 IEEE



under various levels of EV penetration. We also introduce the
various charging strategies we implemented and compare their
results. Finally, in Section IV, some conclusions are drawn.

II. AGEING MODEL TRANSFORMER

In this section we study the ageing of distribution transform-
ers. We use the model given in the IEEE standard C57.91-2011
[6]. First, we introduce the model in detail. Then we make a
simplifying assumption on the model. Using this assumption
we show that the resulting optimization problem when using
demand-side management to reduce the ageing of transformers
is convex. This allows us to use a convex solver to calculate the
optimal DSM strategy when minimizing transformer ageing.

A. Thermal ageing model

The model from the IEEE standard is based on the relation
between the temperature of the transformer and its degrada-
tion. The temperature is related to the ambient temperature
and the load on the transformer. For a given time interval t,
an ageing factor F t

AA can be calculated using:

F t
AA = e

15000
383 e
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Θt
H

+273 , (1)

where Θt
H is the so called hottest spot temperature in ◦C.

This is the temperature of the hottest spot on the transformer
windings, i.e., the point where the transformer is assumed to
degrade the quickest. The ageing factor F t

AA indicates how
much the transformer is assumed to have degraded relative
to normal ageing, which occurs at 110◦C. For multiple time
intervals, indexed by t, the total equivalent ageing factor FEQA

is given by:

FEQA =

∑
t F

t
AAδ

t∑
t δ

t
, (2)

where δt is the length of time interval t. Note that, in case all
time intervals are of equal length, FEQA is simply the average
of the ageing factors of the considered time intervals.

The hottest spot temperature Θt
H is calculated as:

Θt
H = Θt

A + ∆Θt
TO + ∆Θt

H , (3)

where Θt
A is the ambient temperature, ∆Θt

TO is the tem-
perature rise of the oil, used as coolant, over the ambient
temperature and ∆Θt

H is the temperature rise of the hottest
spot on the winding over the temperature of the oil both for
time interval t. ∆Θt

TO is calculated using:

∆Θt
TO = (∆Θt

TO,U−∆Θt
TO,i)

(
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)
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where ∆Θt
TO,i is the initial temperature rise at the start of the

interval, τTO is a parameter given in minutes and ∆Θt
TO,U

is the ultimate temperature rise at the given load for the
time interval, i.e., the temperature the oil will reach if the
transformer is loaded indefinitely at the load value given for
t. If several consecutive time intervals are considered, ∆ΘT

TO,i

is assumed to be equal to ∆Θt
TO, the temperature rise of the

previous time interval. Similarly ∆Θt
H is calculated as:

∆Θt
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with the various parameters similarly defined as in (4). While
the parameter τw can be assumed to be independent of the
temperature of the winding, the parameter τTO does depend
on the initial and ultimate temperature rises ∆Θt

TO,i and
∆Θt

TO,U as:
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where τTO,R is the value of parameter τTO for rated load,
∆Θt

TO,R is the ultimate temperature rise of the oil at rated
load, and n is an exponent based on the type of cooling used.
Note that n typically takes values between 0.8 and 1, where
in the case that n = 1, τTO is assumed to be equal to τTO,R

for any initial and ultimate temperature rises.
Finally, ∆Θt

TO,U and ∆Θt
H,U can be calculated as:

∆Θt
TO,U = ∆ΘTO,R

(
(Kt)2R+ 1

R+ 1

)n

, (7)

∆Θt
H,U = ∆ΘH,R(Kt)2m, (8)

where Kt is the ratio of load for interval t to rated load,
∆Θt

H,R is the hottest spot temperature rise over the oil at
rated load, and m is an exponent similar to n, also typically
taking values between 0.8 and 1.

B. Simplifying assumption
The parameter τTO for the top oil temperature rise, calcu-

lated by (6) depends, through a complex relation, on the initial
and ultimate temperature rise. Furthermore, the guide states
that the relation given in (6) is chosen such that both the initial
rate of change and the final temperature rise of the oil are
correctly approximated by the model. However, intermediate
values of the oil temperature rise might deviate. As we are
exactly interested in these intermediate temperatures we make
the following assumption for our optimization strategy.

Assumption 1. The effect on the ageing factors of different
values of the parameter τTO for different initial and ultimate
temperature rises of the oil over the ambient temperature can
be neglected. Thus, we take τTO = τTO,R.

With the above assumption in mind, we consider (4). As
noted, for consecutive time intervals we have ∆Θt

TO,i =

∆Θt−1
TO . Furthermore, we assume that each time interval is

of equal length, i.e., we take δt = δ for all t. Now, backwards
substitution allows us to rewrite (4) into:

∆Θt
TO =

t∑
s=1

[
(1− e

−δ
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τTO ∆Θs
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]
+ e
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τTO ∆Θ1

TO,i,

(9)



where ∆Θ1
TO,i is the temperature rise of the oil over ambient

at the start of the considered time horizon. Similarly we can
rewrite (5) into:

∆Θt
H =

t∑
s=1

[
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τH )e

(s−t)δ
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]
+e
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where ∆Θ1
H,i is the temperature rise of the hottest spot over

the oil at the start of the considered time interval.

C. Reducing ageing with DSM
As mentioned, the ageing of a transformer depends on the

load profile it supplies and thus can be influenced by DSM. In
this work we focus on residential charging of EVs, as these are
novel, large loads that are expected to have a large impact on
the distribution grid [2]. We aim to optimize the charging of
the EVs such that the ageing of the transformer is minimized.
We consider a set E of EVs and produce a schedule xe =
(x1

e, x
2
e, . . . , x

T
e ) for each e ∈ E over a time horizon of T

time intervals, such that it is charged completely before its
next departure. More precisely, for EV e and some charging
interval given by an arrival time ta and a departure time td
we require that:

td∑
t=ta

xte = C (11)

where C is the energy requirement to fully charge the EV’s
battery between ta and td, i.e., the depth of discharge of the
battery upon arrival at ta. Furthermore, we assume that the
EV can be charged with any amount of energy between 0 and
Et

e,max, the total energy charged into the battery when the EV
is charged at maximum power:

0 ≤ xte ≤ Et
e,max∀t, e. (12)

If the EV is not present for time interval t, we set Et
e,max to

0. In our model we neglect grid losses implying that the total
load of the neighbourhood for time interval t can be calculated
by adding the load of each of the given EVs to the base load
of the neighbourhood, i.e., the load of the devices that cannot
be controlled. The ratio of load at interval t to rated load of
the transformer can then be calculated by:

Kt =
Bt +

∑
e x

t
e

M
, (13)

where Bt is the load of the uncontrolled devices for time
interval t and M is the rated load of the transformer. Since we
consider equal length time intervals, minimizing transformer
ageing is equal to minimizing the average ageing factor over
the considered time horizon. This is in turn equivalent to
minimizing the sum of the ageing factors. This leads to the
following optimization problem:

min
∑
t

F t
AA,

s.t. (1), (3), (9)− (13).
(MA)

Optimization problem MA is a nonlinear problem. However,
as we show below, it is convex. To obtain this convexity result,
we first show that the ultimate temperature rise of both the oil
and the hottest spot is convex in the ratio of the load of any
time interval to the rated load of the transformer.

Lemma 1. Both ∆Θt
H,U and ∆Θt

TO,U are convex in the
ratio of the load for time interval t and the rated load of
the transformer.

Proof. We first consider ∆Θt
H,U , which is given by (8). The

second derivative of (8) w.r.t. Kt is given by:

2m(2m− 1)∆Θt
H,R(Kt)2m−2,

which is positive since m ∈ [0.8, 1] and x2m−2 is positive for
x ≥ 0.

Next we consider ∆Θt
TO,U , which is given by (4). The

second derivative of (4) w.r.t. Kt is given by:

2nR((Kt)2R+ 1)n−2((2n− 1)(Kt)2 + 1)

(R+ 1)n

which is positive because n ∈ [0.8, 1].

Lemma 1 allows us to show that MA is a convex problem.

Theorem 1. Optimization problem MA is convex for realistic
load values.

Proof. For each e ∈ E , the feasible set is convex since (11) is
linear for every charging interval and (12) is a bounding box.
Thus, it remains to show that the ageing factor is a convex
function of xte. For any given t, Kt is given by an affine
map of the xte’s for all e ∈ E . Hence, ∆Θt

H,U and ∆Θt
TO,U

are convex in each xte by Lemma 1. Furthermore, ∆Θt
H and

∆Θt
TO are given by increasing affine maps of the ∆Θs

H,U ’s
and ∆Θs

TO,U ’s respectively. Hence these are convex in each
of the xte’s. Finally, note that Θt

H is an increasing affine map
of ∆Θt

H and ∆Θt
TO, hence it is convex in each of the xte’s.

Next we consider F t
AA which is given by (1). The first

derivative with respect to Θt
H is given by:

e
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The second derivative is given by:
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Note that the first derivative is strictly positive for any value
of Θt

H and the second derivative is strictly positive for

15000

(Θt
H + 273)4

>
2

(Θt
H + 273)3

which is true for Θt
H < 7227, i.e., for all realistic tempera-

tures. Thus, the ageing factors F t
AA are indeed convex in Θt

H

for any realistic loading pattern. The theorem now follows
from the fact that Θt

H is a convex function of each of the xte’s
and F t

AA is a convex and increasing function of Θt
H .



TABLE I
USED PARAMETER VALUES WITHIN PROBLEM MA.

Parameter Value Parameter Value
∆ΘTO,R 55◦ C ∆ΘH,R 20◦ C
τTO 210 min τw 5 min
B 97897 W R 2.7

∆Θ1
TO,i 21.0◦ C ∆Θ1

H,i 1.53◦ C
n 0.8 m 0.8

Theorem 1 allows us to solve the optimization problem MA
using a convex solver. We can then compare the obtained
load profile to the load profile obtained using other charging
strategies for the EVs.

III. COMPARISON STUDY

In this section we use load data from a real world neighbour-
hood transformer in the town of Lochem in the Netherlands
to construct instances of MA that represent scenarios with
significant penetration levels of EVs. We compare the opti-
mization results, based on Assumption 1, with the temperature
profile and ageing factors calculated using the model described
in II-A. Furthermore, we implement the DSM methodology
called profile steering [10] to manage the charging of the EVs.
We calculate the ageing of the transformer when the profile
steering methodology is applied and compare this to the results
of our optimization approach. Finally, we calculate the ageing
when the EVs are uncontrolled and consider the cases that the
EVs are either charged as quickly as possible upon arrival or
the charging is equally spread over the time period that the
vehicle is available for charging.

A. Considered scenario

We consider a transformer in the town of Lochem for
which we have detailed load measurements available. The
transformer supplies a neighbourhood of residential customers
in Lochem. The transformer is rated at 400 kVA with an
average winding rise of 65◦ C. As a test case we use data
from November 3rd until November 9th in 2014, for which
the base load profile is given in Fig. 1a as Base. From this data
we use the 15 minute averaged load values. The temperature
profile of the transformer resulting from the base load is given
in Fig. 1b.

The values of the required parameters to calculate the ageing
are given in Table I. Cooling of the transformer is done through
natural convection, known as ONAN cooling. For this type of
cooling [6] suggests that the values of the exponents n and m
are set to 0.8. For the initial temperature of the top oil and
hottest spot we use an equivalent load B to the load profile
of the previous day (for details see [6]).

For the other parameters of the transformer we used values
from [11] for a 65 degrees average winding rise transformer.
Finally, for the ambient temperature we used measurement
data from a weather station in Eefde, close-by Lochem.

Next we specify the data used for the EVs in the considered
scenarios. We assume there are 50 EVs in the neighbourhood.
We assume that each of the EVs arrives randomly between

TABLE II
DIFFERENCES BETWEEN OUTCOMES OF THE AGEING MODEL WITH AND

WITHOUT ASSUMPTION 1 FOR OPTIMIZED EV CHARGING FOR THE
SCENARIOS

Scenario

Maximum
absolute

temperature
difference

(◦ C)

Ageing
difference
(%)

light penetration 0.02 0.04
medium penetration 0.03 0.17
heavy penetration 0.09 0.65

17:00 and 19:00. Furthermore we assume that they have to
be fully charged by a time randomly selected between 6:00
and 8:00 the next day. The total required charge and maximal
charging power of the EV is varied over the scenarios. This is
done to simulate the effect of a higher penetration of EVs, as
doubling the required charging and maximal charging power
of each EV is essentially the same as modelling twice as many
vehicles. As a basis, we use the scenario where each EV can
charge with a maximal power of 3.8 kW and has to charge a
random amount between 10 and 15 kWh every night. We call
this scenario low penetration. Also, we performed simulations
for the case that the required charging and maximal charging
power are either doubled or tripled. These scenarios are called
medium penetration and high penetration respectively.

B. Optimizing transformer lifetime

To optimize the transformer lifetime by controlling the
charging of the EVs, we implemented optimization problem
MA in the AIMMS modeling software [12]. Within AIMMS
we used the CONOPT solver to produce a solution. While
CONOPT only finds a local optimum, the convexity result
from Section II-C ensures that this is in fact a global optimum.

As discussed in Section II-B, we made a simplifying as-
sumption in order to be able to derive our results. To verify
that our results do not deviate too far from the model presented
in Section II-A we compared the temperatures and resulting
ageing for the load profile found by our optimization strategy
with and without Assumption 1, listed in Table II.

For the considered scenarios and found charging profiles of
the EV using Assumption 1 gives slightly lower temperature
values and hence gives slightly lower ageing. However, for the
considered cases, the differences are small enough to assume
that the found charging profiles give minimal transformer
ageing. The resulting load profiles can be found in Fig.
1a-3a for the low, medium and high penetration scenarios
respectively, where the curve is denoted by Opt. Furthermore,
the temperature profiles of each of these scenarios can be
found in Fig. 1b-3b. Finally, the increase of transformer ageing
for each of the scenarios is listed in Table III. Our optimization
strategy has a slight preference for charging during the time
intervals later at night, as can be seen by a slightly increasing
total load profile through the night for each day.
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Fig. 1. The load (a) and temperature (b) profile for the low penetration
scenario.
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Fig. 2. The load (a) and temperature (b) profile for the medium penetration
scenario.
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Fig. 3. The load (a) and temperature (b) profile for the high penetration
scenario.

C. Profile Steering

For the used model of transformer ageing, the temperature
rise of both the oil and hottest spot is an increasing convex
function of the load on the transformer and the ageing of the
transformer is an increasing convex function of the hottest
spot temperature. Therefore, flattening the load profile should
intuitively reduce the ageing of the transformer significantly.
As a comparison to our optimization strategy introduced
in Section III-B, we implemented the profile steering DSM
methodology [10] with the goal of obtaining a flat profile for
the neighbourhood. This methodology attempts to coordinate
the steerable loads in a neighbourhood, in our case the EVs,
such that the total load profile follows a desired profile as good
as possible, while keeping the local profile within bounds [13].
The resulting temperature and load profiles can be found in
Figures 1-3 and Table III where they are listed as PS. The
profile steering methodology spreads the charging of the EVs
such that the resulting profile is as flat as possible.

D. Uncontrolled charging

For comparison, we simulated the scenarios without a
coordination mechanism for the EV charging. While currently
most EVs maximally charge when plugged-in until they are
fully charged, several studies have shown that this can cause
a tremendous amount of stress on the grid [14]. Hence, in
the future EV owners might be incentivized to spread the
charging of their own vehicle equally over the time interval for
which the EV is available. To be able to assess the potential



TABLE III
THE INCREASE IN PERCENTAGES OF THE AGEING OF THE DIFFERENT EV

LOADING STRATEGIES FOR THE DIFFERENT SCENARIOS OVER THE
BASELOAD.

light
penetration

medium
penetration

heavy
penetration

Opt 20.6 76.5 200.9
PS 20.9 77.6 202.1
Flat 27.6 92.2 243.9

Arrival 161.0 4763.5 22306.9

of our optimization approach we implemented both cases. The
resulting temperature and load profiles for both cases in each
of the scenarios can be found in Figures 1-3 respectively,
where Arrival denotes the case of maximal charging upon
arrival and Flat denotes the case of equal loading over the
entire charging interval. The increase in ageing over the base
load can be found in Table III in the rows Arrival and Flat.
The figures are scaled to not fully show the results for the
Arrival case, to better show the results of the other cases.

E. Comparison of the cases

The results of the simulation study show a very large re-
duction in transformer ageing when smart charging is adopted.
Specifically in the high penetration case, the transformer ages
rapidly when the vehicles are fully charged upon arrival. This
is mainly caused by the high peaks in this case that over-
load the transformer, causing high temperatures and extreme
wearing. While flat charging already significantly decreases
transformer ageing, this can be further improved by applying
a DSM methodology steering the EV charging.

When comparing our optimization approach, which directly
optimizes towards transformer lifetime, with the profile steer-
ing approach, it can be seen that the differences in temperature
and ageing are minimal. For all considered scenarios, our
approach slightly favours time intervals later during the night
for charging. This can be explained by a lower ambient tem-
perature for these time intervals, which allows a slightly higher
load on the transformer with the same resulting temperature
and thus ageing. For the considered scenarios however, a
DSM approach that steers towards flattening the load profile
of the neighbourhood seems to provide adequate results w.r.t.
minimizing transformer ageing.

IV. CONCLUSION

In this work we considered an ageing model of distribution
system transformers relating load profiles to ageing. To investi-
gate the potential of DSM for minimizing transformer ageing,
we considered several scenarios with different levels of EV
penetration. In these scenarios we investigated the increase in
transformer ageing under several smart charging approaches
compared to the ageing under the base load. Specifically we
considered an optimization approach for finding optimal charg-
ing profile with respect to transformer ageing and compared
this with charging profiles of the profile steering approach and
uncontrolled charging either through maximal charging upon
arrival or charging equally over the charging interval. Under

mild assumptions we showed that the considered optimization
problem is convex and can thus be solved by convex solvers.

The results show that significant improvements in trans-
former lifetime can be obtained when the EVs are charged in
a smart way. While equally charging over the entire charging
interval already gives a large improvement, further improve-
ments are obtained by further flattening the load profile of the
entire neighbourhood. We also showed that, for the considered
cases, profile steering gives results very similar to the formu-
lated optimization approach in this work. This indicates that
DSM approaches that flatten the neighbourhood load profile
could be good candidates for increasing transformer lifetime.
The resulting economic gains from the increased lifetime can
then be used to incentivize customers to participate in such a
DSM approach.
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