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Distributed model predictive control for building demand side
management

Alessandra Parisio, Salvador Pacheco Gutierrez

Abstract— Demand side management is widely acknowledged
as an important source of flexibility and then an essential
element to balance supply and demand more effectively. A
fundamental challenge is to enable buildings to participate
in demand side services without violating indoor comfort. In
this paper, we present a distributed Model Predictive Control
(MPC) approach to demand side management in buildings. The
proposed MPC scheme encompasses heating/cooling systems,
onsite generation and storage technologies, which are integrated
into a unified management framework along with standard
objectives (e.g., heating/cooling). The distributed algorithm,
based on an active-set method, allows adjustments of multiple
setpoints and enables the building to participate in balancing
programs while minimising the energy use without violating
the indoor comfort. Numerical results with real data from
one university building show the promising performance and
computational tractability of the proposed approach, which can
enable practical implementations on building platforms.

I. INTRODUCTION

The next-generation energy grid and urban environment
need to be smarter to deal with the growing energy demand
and achieve environmental goals. In order to smarten the
energy grid, significant research is to be devoted to buildings
due to their large share of energy use, and the fact that they
can increasingly integrate not just inelastic loads, but also
distributed generation, storage resources and flexible loads.
Demand for new sources of flexibility are raising interest
in the interaction between energy sectors, like electricity,
heating/cooling and gas, which, in combination with demand
response and energy storages, can offer numerous benefits,
e.g., providing flexibility to counteract the intermittency
of renewable energy sources [1], [2]. Despite the recent
advances in the area of energy management systems for
intelligent buildings, significant effort is still required [2],
[3]. Predictive automation systems are becoming available
as expensive tailored configurations with limited function-
alities (e.g., Ecopilot, GridEdge, Verdigrid), which do not
achieve the expected theoretical results, whilst holistic and
standardised solutions are not available yet [4], [3]. This
paper addresses the need of providing an overarching control
framework that optimally coordinates heating/cooling sys-
tems, onsite generation, and storage, with the grid signal.
Thus the building is enabled to support the grid for balancing
generation and demand. We include in the control framework
multiple thermal zones and the interaction among electricity,
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heating and gas systems through power-to-heat technologies,
thermal energy storages and micro-CHP plants. In fact,
studies [5] have shown that using electric power to produce
heat (power-to-heat technologies, such as heat pump), often
combined with heat storage, are a promising solution for in-
creasing flexibility, which may contribute to both decarboniz-
ing heat supply and integrating variable renewable electricity.
We further account for the impact of weather condition and
occupancy on the building thermal dynamics. The proposed
control framework adopts a distributed approach, which is
beneficial for implementation on real platforms.

Literature review: Among the various approaches
adopted within the energy management literature, such as
game theory and approximate dynamic programming, Model
Predictive Control (MPC) [6] has received particular atten-
tion, because of its capability to integrate economic, social
and environmental aspects, handle the future behavior of the
system, compute control actions based on an optimal control
problem including technical and operating constraints, as
well as make the controlled system more robust against
uncertainty [4], [7], [3]. Large-scale extensive simulation
and experimental studies have shown that Model Predictive
Control (MPC) can yield significant energy savings com-
pared to conventional control strategies (e.g., [8], [9], [10]).
It is expected that it will become a common solution for
use in building energy management [7]. Decentralised and
distributed MPC frameworks have been proposed for con-
trolling Heating, Ventilation and Air Conditioning (HVAC)
systems (e.g., [11], [12], [13]). The aforementioned studies
either consider decoupled thermal zones ([11]) or apply
the method of alternating direction method of multipliers
(ADMM) ([13]). Authors in [12] propose a hierarchical
economic MPC scheme, including a simple model of an
active thermal energy storage without including losses. The
high-level MPC solves a centralised problem considering
an averaged thermal model of the building, whilst the low-
level MPC controllers minimise the local energy use based
on the cooling duties sent by the high-level MPC. Some
studies have demonstrated the potential benefits of MPC
frameworks also for buildings-to-grid applications, in par-
ticular for frequency service provision of HVAC systems
(e.g., [14], [15], [16]). There are a few studies showing
promising results in reducing costs and peak power of cen-
tralised MPC schemes for residential buildings including heat
pumps [17], [18], which however simply model the thermal
building dynamics considering one aggregated thermal zone.
There are not studies in the literature targeting the design of
advanced building control schemes extended both in terms of
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assets under control, i.e., distributed generators and storage
systems, and functions (ancillary services) [7]. Advanced and
novel frameworks are needed to allow also residential users
to play a more active role and must be implementable on
real building management platforms.

Statement of Contributions: Designing efficient con-
trollers for complex systems such as buildings is demanding,
especially considering they can integrate also distributed
generation, storage resources and flexible loads. MPC strate-
gies offer a promising solution but generally come with
computational issues, since they require solving large-scale
optimisation problems in real time. An efficient solution is
to distribute the computational requirements over multiple
units, but this can lead to high communication costs. Building
on the work of [19], [20], we propose a distributed MPC
control framework that integrates and optimally coordinates
demand response, onsite generation and energy storage. By
doing so the building will be able to offer ancillary services
to the grid operator without violating indoor comfort. The
proposed MPC algorithm is based on a distributed imple-
mentation of the globally convergent active-set method for
large-scale convex quadratic optimisation problems described
in [19]. As traditional active-set methods, this method gener-
ates a sequence of subsets of inequality constraints which are
active (i.e. they are satisfied with equality at the optimum).
However, differently from traditional active-set methods, it
exhibits significant improved convergence rates with local
superlinear convergence. This is particular beneficial for
large-scale control problems with communication delays, as
building control applications [20]. The authors in [20] show
that the algorithm described in [19] is implementable in a dis-
tributed fashion and can overcome also the aforementioned
shortcoming of high communication costs. The application
to building temperature control is thoroughly investigated:
theoretical and experimental results demonstrate that the
distributed implementation of the active-set method in [19]
outperforms dual decomposition and ADMM especially in
building control applications, requiring much smaller num-
ber of iterations to converge and significantly reducing the
computation time. In this paper, we address the problem
of coordinating and optimising demand response services,
onsite generation and energy storage technologies along with
along with more standard objectives (e.g., control of the
indoor air quality). Building on the work in [20], we show
that this problem can be formulated such that the active-
set method in [19] can be applied and implemented in
a distributed fashion. Furthermore, we propose a suitable
initialisation algorithm.

Outline of the manuscript: Section II presents the model
of the building and its onsite generation, while Section III
describes the distributed MPC algorithm. Section IV provides
and discusses numerical results, while Section V summarizes
our conclusions and proposes future directions.

II. MODELING

In this section we outline the modeling of the main
components considered in the proposed control framework.

Because of the scope of the paper and due to space con-
straints, we focus on the modeling of heating systems, ther-
mal zones, micro-CHP and thermal energy storage (TES).
The interested reader is referred to [21], [22], [23] and
references therein for additional modeling details. We aim
at using a control-orienting modeling framework, which can
capture the main energy-related dynamics while keeping the
number of states limited. We point out that the framework
can be extended to include more complex thermal dynamics
and additional distributed generators and flexible loads.

A. Nomenclature

Table I reports parameters and variables defined in the
proposed control framework. In this study we consider
discrete-time dynamical systems with a ∆k sampling time.
Power variables represent the average power over the given
sampling period. For simplicity we omit the subscript denot-
ing the time k in Table I.

TABLE I: Parameters and variables involved in the algorithm
T prediction horizon
N number of thermal zones
P gas gas power input to the building
P grid power exchanged with the electrical network
P gas,B boiler gas power input
P gas,CHP micro-CHP gas power input
PHP electrical power input to the heat pump
Q̇i,heat heat power input to thermal zone i
ηe micro-CHP power efficiency
ηh micro-CHP heat efficiency
ηB boiler efficiency
COP coefficient of performance of the heat pump
Ca air heat capacity
Cs TES heat capacity
G solar heat gain coefficient
Ai,win windows area
I i incident solar radiation on the windows of

thermal zone i
C heat emission (per occupant)
N i,people number of occupants of thermal zone i
Ri thermal resistance of thermal zone i
T i,a average temperature of the indoor air of

thermal zone i
hs TES heat transfer coefficient
As TES exposed surface
T ext outdoor temperature
T amb temperature of the ambient where the ther-

mal storage is placed
PHP, P

HP
bounds on heat pump electrical power

P gas,CHP, P
gas,CHP

bounds on micro-CHP gas power
T s, T

s
bounds on TES temperature

T i,a, T
i,a

comfort bounds for thermal zone i

B. Thermal zones

We consider multiple thermal zones, each having a ded-
icated local computing unit. The temperature dynamics of
each thermal zone i can be modeled by using a resistance-
capacitance circuit analogy

CaT i,a
k+1 =

T ext
k − T

i,a
k

Ri + CN i,people
k +GAi,winI i

k + Q̇i,heat
k .
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Remark 1: Q̇i,heat can be expanded to specify the contri-
butions coming from different units, such as the ventilation
unit and floor heating (e.g., Q̇i,heat = Q̇i,floor + Q̇i,vent). Both
the aspects mentioned above will be analysed in an extended
version of the proposed framework under study.

C. Heat pump

The behaviour of a heat pump at each time k is modeled as
Q̇HP
k = COPPHP

k , where Q̇HP
k is the heat generated by the heat

pump at time k and COP = ηCOPCarnot. COP represents the
technically feasible whilst the theoretically achievable COP
is defined as COPCarnot, with η denoting a quality grade. In
the numerical evaluation section we consider a ground source
heat pump. We point out that the COP of air source heat
pumps depends significantly on the ambient temperature,
which entails that it would be more sensible to estimate
forecasts of the COP at each time k, based, for instance, on
weather forecasts. These forecasts can be easily integrated
in the proposed control framework.

Remark 2: For the sake of simplicity, in this study we dis-
cuss only the heating (winter) scenario. The proposed control
framework can also easily include cooling by allowing for
a negative Q̇HP and forecasts of the energy efficiency ratio
EER = 1− COP.

D. Micro-CHP

The component represents a typical micro combined heat
and power (micro-CHP) unit. The micro-CHP at each time k
is described by the following equations: PCHP

k = ηeP gas,CHP
k

and Q̇CHP
k = ηhP gas,CHP

k , where PCHP
k and Q̇CHP

k are respec-
tively the electrical and heat power produced by the micro-
CHP. The modeling can also adopt a data-driven approach,
and relevant parameters can be estimated by employing
machine learning technique with data from a real-world
deployment, as in [21].

E. Boiler

A gas-based boiler is considered and modeled through its
efficiency: Q̇B

k = ηBP gas,B
k , where Q̇B

k is the heat produced
by the boiler. Electric boilers can be likewise included in the
proposed framework.

F. Thermal energy storage

The dynamics of the TES can be expressed as

CsT s
k+1 = Q̇s

k − Q̇load
k − hsAs(T s

k − T amb
k ),

where Q̇s
k = Q̇CHP

k + Q̇B
k + Q̇HP

k is the heat input to the
storage, Q̇load

k =
∑N
i=1 Q̇

i,heat
k , and the last term represents

the heating loss depending on the temperature difference
between storage and environment.

III. DISTRIBUTED MODEL PREDICTIVE CONTROL FOR
BUILDING DEMAND SIDE MANAGEMENT

In this section we present our distribute MPC framework.
We first outline the primal-dual active-set method proposed
in [19], then we show that this method can be applied to the
problem of tracking a reference power signal from the grid
operator when a reserve call occurs.

Further, in III-C, we show how available flexibility to bid
for balancing services can be optimised given a baseline
building power.

A. Active set algorithm

In this section we outline the algorithm presented in [19]
and adopted in [20].

Consider the following strictly convex quadratic problem

minz∈Rl
1
2z

′
Hz

s.t.
Fz = f
z ≤ z ≤ z

(1)

where H ∈ Rl×l is a symmetric and positive definite matrix,
F ∈ Rv×l is a wide matrix, with v ≤ l, f ∈ Rv and
z ≤ z (which can take also infinite values). The matrix F
is assumed to have full rank.

Problem 1 is strictly convex. Therefore, if the problem is
feasible, the unique solution satisfies the following Karush-
Kuhn-Tucker (KKT) conditions

Hz + F
′
µ+ λ− λ = 0

Fz − f = 0

min(λ, (z − z)) = 0
min(λ, (z − z)) = 0,

(2)

where µ ∈ Rv are the dual variables corresponding to the
equality constraints and λ,λ ∈ Rl are the dual variables cor-
responding to the inequality constraints. The set of inequality
and equality constraints indices are denoted respectively by
L = {1, . . . , l} and V = {1, . . . , v}. The subsets of indices
corresponding respectively to the lower-active, upper-active,
and inactive optimal primal variables z are defined as follows

A = {j ∈ L : zj = zj}
A = {j ∈ L : zj = zj}
I = {j ∈ L : zj < zj < zj}.

The subsets defined above represent a partition of the set of
primal variable indices L.

One of the main novel features of the approach proposed
in [19] with respect to the traditional active-set methods
lies in the use of the index sets and the fact that multiple
constraints are added to or removed from the active sets
during each iteration of the algorithm. The values of the
primal-dual variables z,µ,λ,λ are uniquely determined by
the index sets. The algorithm is initialised with a feasible
partition of the index sets, (A0,A0, I0), which is updated
at each iteration, along with the values of the primal-dual
variables. The algorithm terminates when the active sets do
not change from the previous iteration ([19], Theorem 1). At
each iteration of the active-set algorithm, the active primal
variables, denoted by zA, are set to their corresponding
bound, while the inactive primal variables, denoted by zI ,
are free variables. The partition of the index sets must be
feasible, i.e., there must exist some zI that satisfies the
feasibility condition in (2)

ZI = {zI : FV,IzI = f − FV,AzA}
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The primal variables zI and the dual variables µ ∈ Rv can
be found at each iteration of the algorithm by solving the
following subspace minimisation[

HI,I F
′

V,I
FV,I 0

] [
zI
µ

]
=

[
−HI,AzA
−FV,AzA + f

]
(3)

The dual variables λj , with j ∈ A, and λj , with j ∈ A are
zero. The remaining dual variable are updated as follows:

λj = Hjz + (F
′
µ)j

λj = Hjz + (F
′
µ)j ,

(4)

where Hj is the jth row of H . The active sets at each
iteration m of the algorithm are updates as follows

Am+1
= {j : (zj > zj and j ∈ I) or (λj > 0 and j ∈ Am}

Am+1 = {j : (zj < zj and j ∈ I) or (λj > 0 and j ∈ Am}
Ii+1 = {j : j /∈ Am+1 ∪ Am+1}.

(5)
The steps of the primal-dual active-set algorithm proposed
in [19] are

Algorithm 1 Active-Set Algorithm

1: Find (A0,A0, I0) and initialise i = 0

2: while (Am+1 6= Am) and (Am+1 6= Am) do
3: Solve (3)
4: Update dual variables using (4)
5: Update index sets partition using (5)
6: end while

B. Distributed implementation for model predictive control

Building on the work in [20], we illustrate a distributed im-
plementation of the algorithm described above and propose
a suitable initialization algorithm for our MPC problem.

We consider a star communication network, where we
have a central node with more significant computing power,
C-DG in Figure 1, and individual nodes, L-TZ in Figure 1,
each corresponding to a thermal zone with local control
inputs and limited computational resources. The thermal
zones have dynamics coupled only through the control in-
puts, which are in our case the power setpoints to the local
heating and ventilation systems, the onsite generation and
TES. However the thermal coupling between thermal zones
is commonly negligible, a non negligible coupling can be
handled by considering it as a disturbance term, as shown
in [20].

L-TZ1: 
Thermal zone 

Local units 

C-DG: 
CENTRAL 

DISTRIBUTED  
RESOURCES 

(e.g., heat pumpt,  
CHP, TES) 

L-TZi: 
Thermal zone 

Local units 

L-TZN: 
Thermal zone 

Local units 

Fig. 1. Communication graph for the proposed distributed implementation.

1) Formulation of the MPC problem: We now show
how the problem of tracking a reference power profile at
minimum energy use without violating the thermal comfort
requirements can be formulated as (1). We first present the
overall building model.

The dynamics associated to each individual node L-TZi
can be written in compact form as

xi
k+1 = aixi

k + biui
k + Eiwi

k (6)

where the scalars ai, bi and the row vector Ei can be easily
derived from Section II. In particular xi = T i,a, ui = Q̇i,heat

and wi = [T ext, I i, N i,people]
′
.

The dynamics associated to the central node C-DG can be
written in compact form as

xs
k+1 = asxs

k +Bsus
k − 1Nu

zone
k + esws

k, (7)

where the scalars as, es and the row vector Bs can be
easily derived from Section II, 1N is a row vector with
N 1’s elements and uzone is the column vector of the
stacked inputs to the thermal zones. In particular xs = T s,
us = [PHP P gas,B P gas,CHP]

′
, ws = T amb and Bs =

[COP ηB ηh].
At each time step k we define xk :=

[
x1k, . . . , x

N
k xs

k

]′
,

uk :=
[
uzone

′

k us
′

k

]′
and wk :=

[
w1

′

k , . . . , w
N

′

k ws
k

]′
.

Then the overall building model can be written in a
compact form as

xk+1 = Axk +Buk +Ewk, (8)

where A = diag (a1, . . . , aN , as), E =
diag (E1, . . . , EN , es) and

B :=


b1 0 . . . 01×3

0
. . .

...
... bN

−1 . . . −1 Bs


Equality and inequality constraints: We now denote

the state and input trajectories over the prediction hori-

zon T respectively by x :=
[
x

′

1, . . . ,x
′

T

]′
and u :=[

u
′

0, . . . ,u
′

T−1

]′
. We then define z :=

[
x

′
,u

′
]′

.
The propagation of the system dynamics (8) over the

prediction horizon T generates the following equality con-
straints

Fz = f , (9)

where

F :=


I 0 . . . 0 −B 0 . . . 0
−A I . . . 0 . . . −B . . . 0

0 . . .
. . .

...
...

. . .
...

0 . . . −A I 0 . . . −B



f :=


Ax0 +Ew0

Ew1

...
EwT−1.


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We point out that F ∈ RT (N+1)×T (2N+4) is a wide matrix
and has full rank, as required in (1), since B has full row
rank.

We also include polytopic constraints on states and inputs,
z ≤ z ≤ z , where z and z contain comfort ranges for the
indoor temperatures and bounds on TES temperature and on
the control inputs, as defined in Table I.

Objective function: The quadratic cost function we
consider in order to minimise the energy use is

J =
1

2
x

′
Sx+ u

′
Ru, (10)

where the diagonal and definite positive matrices S and R
represents penalties on states and on inputs. We point out
that the penalty on states will be lower than the penalty
on the inputs. The Hessian matrix H is given by H =
diag (S,R). Then the objective function can be re-written

as J = 1
2z

′
Hz. Hence, the problem of optimally managing

the operation of the available energy resources in order to
satisfy the comfort requirement at minimum energy use can
be formulated as (1).

MPC problem for building demand side management:
We now assume that a reserve call occurs at the current
point in time, k = 0. Hence a power signal, P r,grid, is
sent by the grid operator; this signal is to be followed
over a previously agreed temporal window T at each k =
0, . . . , T −1. We point out that the reference power signal is
resulting from a previous contractual agreement between the
flexibility service provider and the grid operator. The service
provider (the building in this case) committed to be available
during a selected availability temporal window and offer a
certain amount of flexibility. In III-C we propose a possible
formulation of the problem to compute the optimal amount of
afforded flexibility with respect to a given baseline building
power.

The objective function (10) and the constraints (9) have
to be modified in order to account for the reference power
signal to track. Therefore, we include an additional inequality
constraint for each time k

P r,grid
k − εgrid

k ≤ P grid
k ≤ P r,grid

k + εgrid
k , (11)

where P grid
k = PHP

k − ηeP gas,CHP
k = F griduk, with F grid =

[0, . . . , 0 1 0 − ηe], is the electrical power exchanged
with the grid and εgrid

k ≥ 0 represents the deviation from
the reference signal at time k. Each variable εgrid

k is highly
penalised in the objective function.

Remark 3: We assume that the reference power signal,
P r,grid, meets the physical limitations on distribution lines’
capacity, so that the steady-state power quality is preserved,
i.e., the voltage limits according to the grid are not violated
and line congestion does not occur. It is also possible to
include in P grid

k additional electrical power consumption
associated with each Q̇i,heat

k (e.g., power required by fan,
pumps and compressors of HVAC systems), which can be
estimated by using data-driven approach based on logged
measurement data. Nonlinear relationships can be included,

such as quadratic ones, as long as they can be approxi-
mated through piecewise affine functions. In addition, more
complex scenarios can be modeled by using the proposed
framework. For instance, additional distributed generators,
such as photovoltaic plants, can be easily included in (11)
as follows: P grid

k = PHP − ηeP
gas,CHP − P PV, where P PV

is handled as disturbance and replaced by forecasts. A
gas power reference signal can be similarly included in
the problem formulation. Furthermore, the thermal comfort
constraints can be softened to provide additional flexibility.
In this case, the objective function has to include appropriate
penalty on the deviations from the comfort range.

Constraints (11) over T can be written in a compact form
as

F gridz − εgrid ≤ P r,grid

−F gridz + εgrid ≤ −P r,grid,
(12)

where F grid = [0| diag (F grid, . . . , F grid)], with 0 a matrix
of zero’s of appropriate size.

We augment the vector z by including the column
vector εgrid of stacked εgrid

k over T and define zgrid :=[
z

′
, εgrid

′ ]′
. Hence, constraints (12) can be further re-written

as Kgridzgrid ≤ kgrid, where Kgrid is a matrix of appropriate
size and kgrid is a column vector containing stacked positive
and negative values of the reference power signal P r,grid.

We can accordingly modify matrix H such to include the
penalty on the deviations from the reference signal, Rgrid, as
follows Hgrid = diag (S,R,Rgrid).

As shown in [20] (Theorem 2), in order to apply Al-
gorithm 1 we have to convert the additional inequality
constraints (12) into equality constraints by introducing slack
variables σ

Kgridzgrid + σ = kgrid

σ ≥ 0.
(13)

The vector of decision variables has to include also the slack
variables but this implies that Hgrid is positive semi-definite
and not positive definite. In order to address this issues, as
proposed in [20], we add a Lagrangian penalty to the cost
function J for the introduced equality constraints in (13).
The Hessian of J is accordingly modified as follows

Haug :=

[
Hgrid + ρKgrid

′

Kgrid Kgrid
′

Kgrid I

]
,

which is positive definite. The penalty factor ρ is greater or
equal to 1.

Our MPC problem to be solved at each point in time,
based on real measurements from the building and updated
forecasts of disturbances, can be formulated as the following
strictly convex quadratic problem

minzaug
1
2z

′

augHaugzaug

s.t.
Faugzaug = faug
zaug ≤ zaug ≤ zaug,

(14)

where zaug is the vector zgrid stacked with the slack variables
σ, Faug and faug are respectively the matrix F and the
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column vector f from (9) appropriately modified to include
the introduced decision variables εgrid and σ. The polytopic
constraints representing bounds on all the decision variables
are also accordingly augmented.

We point out that it is possible to tune the tradeoff between
the energy use and the reference tracking by appropriately
tuning the penalty on the inputs and on the variables rep-
resenting the deviation from the reference power signal.
Further, the MPC problem can be easily extended to soften
the thermal comfort constraints and increase the available
flexibility.

2) Distributed implementation: The distributed imple-
mentation of the active-set algorithm is described in Algo-
rithm 2. Notice that the dual variables and the active sets
corresponding to TES and onsite generation are updated in
the central node C-DG (see Figure 1). We propose a simple

Algorithm 2 Distributed Active Set Algorithm
1: Each node L-TZi and the central node C-DG initialise

their active sets according to Algorithm 3
2: while (Am+1 6= Am) and (Am+1 6= Am) do
3: Each node L-TZi sends current active sets to C-DG
4: C-DG solves (3)
5: C-DG sends zI and µ to nodes L-TZ
6: Each node L-TZi and C-DG update their correspond-

ing dual variables and active sets by using (4) and (5).
7: end while

initialisation algorithm for our MPC problem, summarised
in Algorithm 3. In the first step of Algorithm 3, uk, ∀k, are
computed as follows

if P r,grid
k < 0, P gas,CHP

k =
P r,grid

k

ηe

us
k = ηhP

gas,CHP
k , ui

k =
us
k

N

if P r,grid
k ≥ 0, PHP

k = P r,grid
k

us
k = ηCOPPHP

k , ui
k =

us
k

N

(15)

Algorithm 3 Initialisation Algorithm

1: Set uk, ∀k, using (15) and εgrid
k = 0

2: Each node L-TZi obtains the states, xik, ∀k, using (6)
3: C-DG obtains the states, xs

k, ∀k, using (7)
4: A0 = ∪i{j : xij > xij} ∪ {j : xs

j > xs
j}

5: A0 = ∪i{j : xij < xij} ∪ {j : xs
j < xs

j}
6: I0 = {j : j /∈ A0 ∪ A0}.
Proposition 1: Consider Problem (14) and assume it is

feasible. Then Algorithm 3 satisfies the feasibility condition
ZI 6= ∅
Proof: Matrix Faug is still a wide matrix, since we augmented
F with 2T variables and included 2T equality constraints.

This matrix will be given by
[

F 0
Kgrid I

]
. Algorithm 3 will

remove some columns from the first T (N + 1) columns of
Faug, which corresponds to the active elements of x. The
matrix Faug,I will still include the block diagonal matrix B
and the identity matrix I , hence it will be full row rank.
Therefore, ZI 6= ∅

C. Optimisation model for balancing services

We assume that building energy users can participate in
different balancing services as flexibility providers. They can
be called to: i) either reduce their generation or increase their
demand when there is an excess of energy in the system
(denoted by BSUP); ii) either increase their generation or
decrease their demand when there is a deficit of energy
(denoted as BSDOWN). The providers can bid on each of the
two balancing services during specific availability windows
established by the grid operator.

The following optimisation problem can be used to com-
pute the afforded flexibility, based on the baseline power and
heat consumption and the economic incentives offered by the
grid operator for each of the two balancing services (denoted
by cUP and cDOWN respectively)

min
T−1∑
k=0

(
− cUP

k ∆PUP
k + cDOWN

k ∆PDOWN
k + cgas

k ∆P gas
k

)
s.t.

∆T s
k+1 = ∆Q̇s

k −
∑N
i=1 ∆Q̇i,heat

k +

−hsAs(T
s,BL
k + ∆T s

k − T amb
k )

∆Q̇s
k = COP∆PHP

k + ηB∆P gas,B
k + ηh∆P gas,CHP

k

∆P gas
k = ∆P gas,CHP

k + ∆P gas,B
k

∆P grid
k = ∆PHP

k − ηe∆P gas,CHP
k +

∑N
i=1 γ

i∆Q̇i,heat
k

TDOWN
k ∆PDOWN

k ≤ ∆P grid
k ≤ TUP

k ∆PUP
k

∆Q̇
i,heat

k
≤ ∆Q̇i,heat

k ≤ ∆Q̇
i,heat

k

−∆P
DOWN
k ≤ ∆PDOWN

k ≤ −∆PDOWN
k

∆PUP
k ≤ ∆PUP

k ≤ ∆P
UP
k

∆P gas
k ≤ ∆P gas

k ≤ ∆P
gas
k ,

where T s,BL
k is the TES temperature at each time k resulting

from baseline power and heat consumption, ∆Q̇
i,heat

k
and

∆Q̇
i,heat

k are the acceptable flexibility in the heat require-
ments of each thermal zone i at each time k such that
the indoor comfort is not violated. The binary numbers
TDOWN
k , TUP

k model whether or not the availability window
for BSDOWN and BSUP is active at time k, with TDOWN

k +
TUP
k ≤ 1 for each k (i.e., the grid operator does not ask

the flexibility provider for both services at the same time).
The optimal values of ∆P grid

k , ∀k, represent the afforded
flexibility, i.e. optimal deviations from the baseline power
such that the profits are maximised and the thermal comfort
is satisfied. The baseline power and heat consumptions and
the bounds in Problem (16) can be estimated out of historical
data [24].

IV. NUMERICAL EVALUATION

In this section we present the numerical evaluation of the
Algorithm 2 presented in Section III. The active-set method
was applied to a university building consisting of several
rooms and laboratories. The 4 story building is equipped
with three air handling units (AHU) located on the top floor
and supplying ventilation to different areas of the building
according to their use, i.e. laboratories, common areas and
pilot plants. For each one of the AHUs, the supplied air is
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heated by means of hot water coils using a ground source
heat pump (GSHP) and backed up by a set of two boilers.
The variable-air-volume (VAV) terminals supply the air to the
thermal zone under control, which in this case, is composed
of several rooms and spaces.
A. Simulation Setup

The building and its control logic was implemented using
EnergyPlus (E+) and Sketchup plugin. The real and simu-
lated building can be observed in Fig 2. The communication
between EnergyPlus and MATLAB was conducted using the
MLE+ library through the Building Control Virtual Test Bed
(BCVTB). The model developed in E+ was validated against

(a) (b)
Fig. 2. James Chadwick building: a) real building b) SketchUp/Openstudio
model .

real building data.
First, the internal temperature computed with the E+

model of each thermal zone was compared against real
measured data. Weather data of actual building location
was utilised. In Figure 3 the real and simulated internal
temperature profiles of one of the thermal zones are depicted
for 7 days in March 2016. The model generated utilising
E+ is capable to follow quite accurately the dynamics of the
internal temperature: the error does not exceed 0.4°C. Similar
results were obtained for the remaining thermal zones.

Fig. 3. Comparison of real and modelled internal temperature using
EnergyPlus.

As mentioned above, the heat is provided by the GSHP and
two boilers. This system consists of a water tank acting as
a thermal storage, connected to the GSHP and the boilers
loops. The logic of the system is simple and consists in
maintaining the temperature of the hot water in the thermal
storage within a given range.
The GSHP and the thermal storage are then assigned to the
central node C-DG (Figure 1). Hence, the temperature of the
water in the tank is modelled as T s in (7), while the input
vector is us = [PHP P gas,B]

′
. The elements of the input

vector can be seen as the aggregated power consumption of
the heat pump (HP) and the boilers (B). Since there is not

micro-CHP utilised in the building, us = contains only two
elements.
The dynamics of each individual node L-TZi, corresponding
to a thermal zone, can be represented by (6). Thus, the heat
flow required by the AHU of each thermal zone, ui = Q̇i,heat,
is provided by the heat pump, Q̇HP

k = COPPHP
k , and the

boilers, Q̇B
k = ηBP gas,B

k , through the thermal storage.

B. Result Evaluation

The algorithm was implemented in MATLAB utilising the
MA57 LDL solver to perform the subspace minimisation, as
suggested in [20]. For the numerical experiment conducted
for 22nd March 2016, the maximum computation time of the
MPC iterations is 2.035 seconds, which is basically the time
required to solve the subspace minimisation on a Windows
system Core i7 @ 2.80 GHz.

Since the micro-CHP is not included, we focus on the case
with P r,grid > 0. In order to obtain to obtain the reference
power profile, Problem (16) is solved, where historical data
from the day before the grid operator call are considered
as baseline heat and power consumption. Forecasts of the
disturbances are included based on E+ and weather forecasts.
The heat inputs to each thermal zone and the power setpoints
to the GSHP and the TES are computed by the proposed
Algorithm 2 at each time step. Algorithm 3 is used to
initialise the partition of the index sets. The obtained inputs
and power setpoints are then applied to the E+ model in order
to obtain the actual power demand required by the university
building, based on the actual disturbances on 22nd March
2016.

The zone temperature comfort range is set between 19°C
and 23°C. The bounds on the water temperature of the
thermal storage are set to 60°C and 70°C. The sampling
time is 15 minutes and the prediction horizon is 5 hours.

Fig. 4. Comparison between the actual power demand and reference power
profiles.

Figure 4 depicts the reference power signal and the power
profile resulting from the application of the Algorithm 2. The
power profile is mainly due to the fact that the pumps that
form part of the GSHP can drastically change the flow rate
in the hot water loop by being turned on and off.

We can notice that the reference power profile is reason-
ably followed by the actual power profile demanded by the
building in order not to violate the internal thermal comfort.
The actual power demand could be lower (see Figure 4
between 5:00 and 5:00) or higher (see Figure 4 between
12:00 and 13:00) depending on the actual disturbance profiles
and heating requirements from the thermal zones. We recall
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that the comfort bounds are not softened and the tracking
results depend on the penalty on the decision variables
representing the deviation from the reference signal, εgrid. In
this case, the comfort has priority and the building is not able
to exactly follow the previously computed reference power
profile. The tracking results can be improved by varying the
penalty on the control inputs.

Furthermore, the updating strategy for finding a feasible
partition of the index sets at each iteration of the algorithm
used in this paper, however extremely efficient, can lead
to cycling, especially when applied to solve ill-conditioned
problems. We are currently investigating alternative updating
strategies, which require slightly additional computational
effort, but can guarantee the global convergence in any
case [19].

V. CONCLUSIONS AND FUTURE STUDIES

In this paper, we propose a distributed Model Predictive
Control (MPC) framework that tracks a reference power
signal sent by the grid operator while minimising the energy
use without violating the indoor thermal comfort.

Building on the work in [19], [20], we propose a dis-
tributed implementation of an effective primal-dual active-
set method, which requires smaller number of iteration to
converge with respect to other methods. Furthermore, we
present a suitable initialisation algorithm. Practical imple-
mentation can benefit from the distributed approach of the
proposed control framework. Numerical results based on
real measurements from an actual university building show
promising results. A more extensive numerical evaluation of
the resented control framework is under study.

Future works will include the extension of the modeling
to include more complex building dynamics and additional
onsite generation, as well as the extension of the control
framework to incorporate statistics of the disturbances, based
on historical data. Another relevant direction is to investigate
suitable tuning strategies of penalty on the inputs, in partic-
ular the tradeoff between the energy use and the tracking of
the reference power signal.
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