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Abstract—The energy transition requires simulators that aid
the research on and validation of energy management systems.
Hereby, these systems not solely focus on electricity, but involve
the optimization of multiple energy carriers in a multi-energy
system. This paper presents DEMKit, an open-source toolkit with
device, grid and control components for such a multi-energy
management solution. The modular design allows DEMKit to test
different optimization algorithms on the same scenario. Device
components can be replaced by adapters to control real hardware
in a deployment or hardware-in-the-loop simulation. Results of
a demonstration setup of DEMKit in a smart home show the
potential of using DEMKit to bridge the gap between scientific
research and test new solutions in practice.

Index Terms—simulation, smart grid, modeling, micro grid

I. INTRODUCTION

The energy transition is one of the greatest challenges that
our society has to accomplish. Smart grid technology is the
key enabler to support the integration of renewable energy
sources (RES). With this technology, electricity production and
usage can be matched, e.g. by applying decentralized energy
management (DEM) systems. Electricity is only one of the
relevant energy carriers, other carriers such as heat and (bio)
gas also play an important role.

In order to support the energy transition, innovative energy
management systems (EMS) and scenarios have to be devel-
oped. However, before implementing such new approaches, it
is important to evaluate them thoroughly to assure correctness
of their operation. To carry out such an evaluation, tools
are required in which the developed control concepts can
be simulated and validated. Such a tool must encompass the
support for multiple energy carriers to study the interplay
and conversion between the different energy carriers, so-called
multi-energy systems (MES). Furthermore, hardware-in-the-
loop (HIL) simulation capabilities are required to test and
validate developed EMS concepts in practice.

Many simulation tools and frameworks have been proposed
in literature the last few years. A popular tool is EnergyPLAN
[1], which allows for macro-scale modeling and optimization
of a multi-energy system to evaluate different scenarios. The
Mosaik framework [2] is a simulation platform in which other
models and simulators can be linked together to perform co-
simulation. A novel co-simulation framework with HIL capa-
bilities that integrates with a smart home system is presented
by Kochannek et al. in [3].

Next to a HIL (co-)simulation framework, scenarios consist-
ing of usage patterns of neighbourhood power consumption,
production and mathematical constraints are required to carry
out analysis. Large scale deployment of key enabling tech-
nologies, such as electric vehicles (EVs) and battery storage
systems, are not yet available. Therefore, to analyse the energy
system of the future, artificial load and generation profiles are
required for such a framework. Various tools for generation
of such artificial energy usage patterns are proposed, such as
[4]. However, these tools focus on load curves only and result
in a static profile. Hence they lack the operation constraints,
such as the minimum charge and charging deadline for an EV,
that are required as input for optimization algorithms. This
problem is tackled with the open-source Artificial Load Profile
Generator (ALPG) [5].

This paper presents the software architecture behind the
simulation and demonstration framework for future multi-
energy control systems: DEMKit (short for Decentralized En-
ergy Management Toolkit). The focus of DEMKit is to provide
the tools to analyse optimization algorithms for MES using
discrete time simulations. Hence, the focus is on the imple-
mentation of lightweight optimization algorithms, tailored to
abstract device models that describe the operation constraints.
DEMKit is the successor of the TRIANA simulator presented
in [6] and leverages the knowledge developed in the last
decade. In contrast to e.g. the Mosaik framework [2] DEMKit
does provide the optimization algorithms, and compared to
EnergyPLAN [1] it models a MES using individual devices.
Note that the focus is on testing optimization algorithms and
not to analyse and detect phenomena such as faults.

DEMKit (written in Python) offers the tools to use the
same code-base and environment for pure simulation studies,
HIL validations, and deployment of control mechanisms in
real life systems. The remainder of this paper presents the
software architecture and concepts in order to do so. Due
to the tight integration of components for simulation and
deployment, researchers benefit from availability of models
and measurement data from field tests, while state-of-the-art
optimization algorithms can be deployed in test-sites easily.
Alternatively, DEMKit also supports importing ALPG data.
Initial results of a smart house running this platform are
presented in Section IV. DEMKit is available with an open-
source license for research purposes on request. We refer the
reader to [7] for more information and an overview of studies
and projects that make use of the DEMKit software.
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Fig. 1. Diagram of DEMKit with object references between devices (squares),
controllers (hexagons) and infrastructure (circles) in dashed lines [8].

II. DEMKIT ARCHITECTURE

The goal of DEMKit is to provide a toolkit for the devel-
opment of intelligent multi-energy concepts and their control
systems. An important requirement is to provide a smooth
transition path from system validation through simulation
studies towards testing components using HIL simulations in
demonstration projects. Therefore, a broad range of energy
carriers, their infrastructure, and optimization concepts need
to be supported. Furthermore, the tool needs to be scalable to
run both small scale demonstrators and large scale simulations.

To accomplish this, the DEMKit architecture follows a
bottom-up modeling approach where each device, controller
(or agent) and piece of physical infrastructure is modeled
individually (Fig. 1). Herein, a cyber-physical systems archi-
tecture is used for a strict separation between control algo-
rithms and physical (device) models. This separation ensures
that the device models can be replaced by their real-world
equivalent for HIL simulation, without the need to replace the
cyber part. Each of these models is called a component and
multiple unique instances of a component can exist within
a scenario. Each instance of such a component is called an
entity. Subsequently, entities are linked together by means of
object or unique name references to allow interaction between
e.g. devices and control algorithms. Such a composition of
entities and their references results in a scenario, which is a
model of e.g. a household or neighbourhood. More details on
the different types of components and their interfaces to allow
interaction between entities are given in Section III.

A. Platform Host System
The most notable class of the DEMKit framework is the

Host class, which represents the (virtual) system on which
the framework is running and provides a basic interface for
the simulation and entities. Standard functionality of a host
includes read- and write access to a database and signals when
the (virtual) system boots or shuts down. Also the current time
is requested through this interface such that the host can return
either the simulated time or the actual system time depending
on the configuration. In both cases a UNIX-timestamp is
returned, which ensures that a simulation scenario can easily
be reconfigured to run in a demonstrator. The host contains
object references to all entities within the scenario.

Another aspect is parallel processing on a single scenario
to e.g. demonstrate the scalability of optimization approaches
or to deploy a system that has to control devices in different
physical locations. A scenario can be decomposed into mul-
tiple smaller scenarios mapped to different processes and/or
(virtualized) computer systems. The different host instances
take care of inter-host communication, for which websockets
or TCP/IP communication is used. Each host provides an API
that allows external processes to access variables and functions
of any entity associated to the local host. All calls are handled
through the host class, which figures out whether an entity
exists locally or externally. Function calls on multiple external
entities are processed automatically in parallel.

B. Input and Output Format

A configuration of a scenario, describing which components
to instantiate and how to link them, is required to execute
a simulation. Many tools support generic configuration file
formats, such as JSON or XML, together with an user inter-
face to create a scenario. However, manually creating larger
scenarios is time consuming and involves many repetitive
tasks. For this reason, we use Python scripts as input for
DEMKit scenarios such that automated generation of scenarios
is possible. Components are imported in these scripts and
entities can be created, of which parameters can be configured.
Furthermore, predefined building blocks of e.g. devices with
controllers and complete households are available to quickly
compose a scenario. Data generated by the open-source ALPG
[5], in the form of load patterns and optimization constraints,
can be imported directly into such a scenario.

Each entity produces valuable output for each time step of
a simulation, such as the current state or power consumption.
The open-source InfluxDB [9], database is used for data
storage, which is designed to store time-series data from e.g.
measurement sensors without the need to define a storage
scheme on beforehand. Functionality is added to DEMKit
to easily retrieve and store data in this database. This way,
data resulting from experiments can be imported back into
simulation models to re-evaluate certain circumstances with
new optimization mechanisms. Results can be visualized with
external tools such as Grafana [10], which allow for user-
friendly querying, analysis and live visualization of results.
Grouping and aggregation of data is possible with Grafana to
produce high level overviews and compare the most important
metrics for a scenario.

C. Simulation Flow

Next to basic functionality, the host also controls the order in
which high-level functions are called within a simulation. This
flow dictates in which order entities progress to a (partial) new
state to avoid synchronization and dependency issues between
e.g. control signals issued by the optimization algorithms and
the reaction of devices to these (new) signals. The framework
makes use of one synchronization clock with a fixed discrete
time step (minimum of 1 second). Each component decides
whether it needs to act in a certain interval. In this way,
multiple configurable time step sizes can be mixed, such as
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Fig. 2. Diagram of the DEMKit simulation flow and state transitions (grey lines). It also shows the information flow between components throughout a
simulation interval (black lines). Devices components are visualized by squares, controllers by hexagons, and grid components by circles.

e.g. devices updating every minute, and optimization every
15 minute intervals to limit the required computing power.
The simulation flow and functions, which make up the basic
interface implemented by each DEMKit component (Fig. 2),
and discussed in the following.

After the complete scenario is loaded (entities are instanti-
ated and linked), the host signals the startup-command to all
entities to perform initialization steps and parameter checks.
After the startup the environment is ready to commence normal
operation. For a simulation, the host starts a for-loop to
simulate time progression based on the configured simulation
time step size and number of intervals. In case of a HIL
simulation, the host will periodically send time updates based
on the predefined time step value. Within a simulation interval,
a preTick is issued first to all entities to update their state, e.g.
the state of charge of a storage system based on the power
consumption set in the previous interval. Then, a timeTick is
communicated to control entities, which can make decisions
based on the current state of the device entities. Subsequently,
the device entities receive a timeTick to change their con-
sumption based on their behavioural description or control
commands. Finally, a load-flow analysis can be executed to
determine the steady state of the physical grid infrastructure.
At the end of each time step, the logValues command is
communicated to store statistics in the database. A shutdown
signal is broadcast over all components when the execution
comes to an end.

III. DEMKIT COMPONENTS

Components form the building blocks within DEMKit to
create a scenario. Three generic types of building blocks are
defined: devices, controllers and energy distribution infras-
tructure. The motivation for this choice is that the explicit
separation between physical models and optimization methods
(controllers) makes it possible to swap between optimization
algorithms or device components. In this way, different gran-
ularities of detail can be used. Furthermore, the separation
between device and control allows a smooth transition from
simulations to demonstrations, where control algorithms can
be tested in practice by replacing device models with adapters
that connect to the real device.

1) Device Components: a set of generic device compo-
nents are available that describe the behaviour of a device
and its parameters. These components include: smart meters,

uncontrollable loads, buffers, etc. as indicated in Table I. The
available components not only concern electrical devices, but
are abstract device classes similar to [12], that also represent
devices using the other energy carriers. For example, a buffer
can be used to model a battery or heat storage buffer. Each
device component serves as a data container and interface that
exposes the current state of the device and provides functions
to retrieve historical (measurement) data.

For each device a basic behavioural description, which
describes how the device operates when no external control
is applied (i.e. only internal logic) is defined. A device is
simulated using discrete time steps, triggered through the
timeTick function call. Hereby, as basis often a greedy strategy
is used, e.g. start the timeshiftable (e.g. a dishwasher) as soon
as it becomes available or charge an EV as fast as possible.
Advanced models, such as a thermal zone, are implemented
by inheriting one of the base device classes. For an overview
of devices and their models we refer to [8, Chapter 3].

For interfacing with controllers, each device component
implements the setPlan-function. If a desired power value for
the current time interval is available, the device brings itself
in a state that satisfies this planned power value. However, the
device model is leading, meaning that a device will not follow
the planned value when it is unable to do so. Assertions are
in place to verify whether comfort constraints are met when
desired (i.e. when load shedding is not allowed).

2) Grid Components: physical flow of energy can be simu-
lated using grid components that model e.g. cables and pipes,
for which the topology is described by a graph. Load-flow
solvers access this graph to solve a flow problem. Power can be
consumed or produced at each node by coupling a meter entity,
which aggregates the power consumption of multiple devices,
to a node. Through the interface, the connected components
can also obtain the results from the load-flow calculations, e.g.
to check if the voltage is within permitted limits. Currently,
DEMKit contains an integrated load-flow solver for three
phase unbalanced radial electricity networks.

3) Optimization Components: control systems form the
cyber-part of DEMKit and implement the logic for data
processing, evaluation, and optimization. All controllers im-
plement the generic DEMKit simulation interface. Device
controllers also interface with devices to read historical data
and the current state and write back optimization results.
Five control strategies are currently (being) implemented in



TABLE I
IMPLEMENTED COMPONENT CLASSES AND SUPPORTED CONTROL AND OPTIMIZATION FUNCTIONALITY [8].

Online Offline Grid Curtailment / Multiple
Class Example devices control Prediction optimization limits load shedding commodities

Uncontrollable Baseload 1, 3, 4, 5
Curtailable Solar panels, wind turbine 2, 3 1, 3, 4, 5 1, 3, 5 1, 2, 3, 5 1, 2, 3, 5 1, 5

Timeshiftable White goods 2, 3 1, 3, 5 1, 3, 5 1, 2, 3, 5 1, 2, 3, 5
Buffer Battery, heat store 1, 2, 3, 5 1, 3 1, 2, 3, 5 1, 2, 3, 5 1, 5

Buffer-Timeshiftable Electric vehicle 2, 3, 4 1, 3, 4, 5 1, 3, 4, 5 1, 2, 3, 5 1, 2, 3, 5 1, 5
Converter Combined heat and power 2, 3 2, 3 2, 3

Buffer-Converter Heat pump with storage 2, 3 1, 3, 5 1, 3, 5 1, 2, 3, 5 1, 2, 3, 5 1, 5
Controllers Energy management system 1, 2, 3, 4 1, 3, 4, 5 1, 3, 4, 5 1, 2, 3, 5 1, 2, 3, 5 1, 5

Currently supported: 1. Profile Steering [11], 2. Double-sided auction [12], 3. Planning based auction, 4. Valley-filling [13], 5. RTP optimization.

DEMKit: the profile steering approach presented in [11], the
double-sided auction presented by Kok [12], the combination
of profile steering and the double-sided auction (planning
based auction), the valley-filling approach [13], and Real-
time Pricing (RTP) [14], in which the energy prices for the
next hours or days are published in advance. In all these
approaches, the control structure is formed by a tree, in which
the top level (root of the tree) coordinates the whole cluster.
Controllers interact with each other through object references
in a parent-child(ren) structure. All functions required for
control, such as performing predictions or placing bids, are im-
plemented in the control level to preserve the strict separation
between device components as a storage container and control
components that work with the data. Specific optimization
algorithms, such as presented by Van der Klauw [15] are
implemented in device controllers. With the use of generic
device classes and state variables, it is possible to use an
optimization algorithm written for a generic buffer for both
electrical and heat storage systems. Table I presents a detailed
compatibility matrix of different features of different control
mechanisms and supported device types.

IV. EXPERIMENTS

As stated in the introduction, the goal of DEMKit is to pro-
vide a software platform for researchers to create, experiment
and validate control mechanisms. This section briefly describes
how a simulation scenario can be generated and then presents
a test-case where DEMKit is deployed in a smart house. We
refer the reader to [7] for a comprehensive list of simulation
studies and projects executed using DEMKit.

A. Simulations

A scenario within the DEMKit framework is the instanti-
ation and composition of multiple entities, together with the
required input data for e.g. parameters and time series data. To
aid the process of setting up a (large scale) scenario, DEMKit
is able to import data generated by the ALPG [5]. This open-
source tool specifies operation constraints and demand patterns
using high-level input data. With recent updates, the ALPG
also supports heat models based on the work by Van Leeuwen
[16] next to electricity profiles. The output produced by the
ALPG is provided in the form of generic flexibility classes
as implemented in DEMKit and provides a solid basis, which

may be fine-tuned to the case-study at hand. Based on this
scenario, (HIL) simulation studies can be performed with
different optimization algorithms and objectives, and compare
the results.

B. Smart house demonstrator

To demonstrate the performance of the implemented algo-
rithms within DEMKit, a demonstration setup was created
within a smart home. The goal for the optimization system is to
minimize the power peaks of the household, i.e. we minimize∑T

t=1 P
2
t , where Pt is the power import/export of the house at

time t, and where T is the number of intervals. Creating this
setup started with creating a scenario, depicted in Fig. 3, of the
household within DEMKit and loading historical measurement
data of the load and of solar panels. To add flexibility, a 5
kWh battery was added to this scenario. Model predictive
optimization algorithms ( [11], [17]) are added to the scenario
to verify the operation of the smart house in several conditions.

After model based verification, the scenario is modified for
demonstration. For this, the device models are replaced by
components that interface with the devices installed in the
house. The load device component is replaced by a component
that reads out meters using web requests, whereas the solar
panel model is replaced by a component to read out an inverter.
Additionally, weather data is accessed through the web to
obtain weather forecasts from Solcast [18], which are used as
input to create prognosis for the PV production. Due to lack
of a real battery, the battery is modeled using a virtual device.
A washing machine is added to the system for additional
flexibility, which can be delayed using a controllable smart

Home controller
ctrl ctrl ctrl ctrl

Load PV Washing
Machine

Battery

Grid connection

Fig. 3. DEMKIt diagram of demonstrator setup, with all devices (squares),
controllers (hexagons) and connection to the grid. The blue lines indicate
electricity flows, the green lines indicate communication between controllers.



Fig. 4. User interface in Home Assistant to interact with the system.

power socket. For communication with devices, and to provide
a user interface, the open-source home automation software
Home Assistant [19] is used. An interface (see Fig. 4) is
developed to control the washing machine and monitor the
control system. A second HIL simulation runs in parallel,
using a greedy strategy for the battery to compare the results.

Analysis of running the control system for over a month
show that DEMKit is able to optimize the power profile
using model predictive optimization. Prediction of electricity
production from PV turns out to be difficult for this setup.
Updating the irradiance forecasts every 30 minutes, and per-
forming a new optimization does not always result in an
improvement. On some days, the more recent forecasts result
in a larger error, as the original day-ahead forecasts proof
to be more accurate. As a countermeasure we implemented
a strategy to not completely use the battery capacity during
day-ahead optimization, leaving headroom for online-control
of the battery to resolve the prediction errors. The deployment
of this update, after verifying effects using simulations, have
resulted in a flatter power profile. The results between the
21st and 28th of March 2019 lead to an RMSE w.r.t. the
objective value of 715 for the optimization using [11], which is
a significant improvement over the greedy strategy, for which
the RMSE is 869. Fig. 5 shows the resulting power profile.
The greedy control of the battery leads to a full battery around
noon, resulting in a peak production of 3.6 kW. The predictive
optimization method is able to shave off the peak production
to 2.2 kW through robust scheduling of the battery.

V. CONCLUSION

This paper presented the DEMKit simulation and demon-
stration framework for multi-energy systems. The developed
and presented framework is flexible to support new technolo-
gies and a wide variety of optimization mechanisms. In this
way these approaches can be compared to each other. For the
generation of such scenarios, the open-source ALPG is used.
Experiences from various projects using DEMKit show that it
is flexible to prototype and validate new energy and control
concepts. For more information and contact details concerning
DEMKit we refer the reader to [7].
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