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Abstract— This article proposes a method for generator 

controller tuning in a power system affected by stochastic loads. 

The method uses the Analysis of Variance to detect the 

controllers with significant effect over the quality of the system 

response. Such quality is measured with an objective function 

defined as a weighted average of the Integral Absolute Error of 

each controller. The significant variables are then varied over a 

specified region in order to characterize the objective function 

through a regression model, which is then optimized. The method 

was applied to the system IEEE14 and the results were compared 

with benchmark parameters, showing better performance. 

 

Index Terms— ANOVA, AVR, controller, governor, power 

system, stochastic load, tuning. 

I. INTRODUCTION 

HE electric power networks are systems capable of 

transporting electric energy from the generation point to 

the consumption point. The network can transmit and 

distribute the energy but it is unable to store it for future use, 

for that reason a balance between generated power and 

demanded power must exist at every time. Power balance can 

be achieved by implementing automatic controllers that 

continuously modify the output of the generators. These 

controllers have parameters that must be tuned in order to 

ensure a proper transient response of the generators. In this 

article, the Automatic Voltage Regulators (AVR) and the 

speed governors are considered [1]. 

Various methods for tuning the generator controllers have 

been studied in the literature. If the generator-network 

interaction is neglected, classic analytical methods like 

Ziegler-Nichols can be applied [2]. Other analytical methods 

focused specifically on the tuning of a generator controller 

have been developed too [3], [4]. 

Analytical methods are computationally inexpensive, but 

the assumption of no generator-network interaction is not 

realistic. Fortunately, computational capabilities have grown 

exponentially in recent years, and research in controller tuning 

 
 

has focused on fine tuning using Artificial Intelligence 

techniques. These techniques have been used widely in 

different electrical engineering applications, showing 

improvements and advantages over classical methods [5]-[10].  

An important assumption of those works is that load 

behaves in a deterministic way. However, real loads behave in 

a stochastic way and cannot be suitably modeled as being 

deterministic. The effect of stochastic loads in power systems 

has been studied in [11]-[13]. Two classic methods for the 

analysis and optimization of stochastic processes are the 

Analysis of Variance (ANOVA) and the Response Surface 

method [14]. Both of these methods have been successfully 

used in different electrical engineering applications [15]-[18]. 

This article proposes a methodology for generator controller 

tuning, tested in the benchmark IEEE14 system. In the 

proposed methodology, the system demands are represented as 

stochastic variables, in order to take into account the intrinsic 

variation of the load as a part of the model. The quality of the 

response is measured using an error function which must be 

minimized. First, an ANOVA is applied in order to determine 

which of the controller parameters have a significant effect on 

the mean of the objective function. Then, a factorial 

experiment is performed such that the samples are used to 

construct a regression model for the mean of the error 

function. This model is minimized to find the optimal 

parameters of the controllers (Response Surface method). 

II. MODELING 

The mathematical model of a power system for transient 

simulations consists on a set of differential and algebraic 

equations (DAEs). The differential equations describe the 

behavior of generators and controllers, and the algebraic 

equations describe the behavior of the electric network. 

A. Differential Equations 

The implemented generator model was the fourth order 

Two-Axis model [19], with saliency neglected. The equations 

of the model for generator � are: 
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The meaning of the terms of these models is explained in 

[20]. The implemented AVR model was the Type DC1A AVR 

model [21], [22]. Generator saturation was neglected and so 

were the saturation blocks of the AVR. The block diagram of 

the implemented AVR model can be seen in Fig. 1. The 

equations of the AVR model for generator � are: 

 ���� = 1� � ��!� − ����
�� � = 1�"� �#"��� $%� − ��� − ���� − � ��

× '�� � − � ()*��'��("+� − � ��
����� = 1�$� �� � − #$������

���� = 1�%� �#%������ − ����

 

(5) 

 

(6) 

 (7) 

 
(8) 

The governor model used was the general purpose governor 

presented in [23], whose block diagram can be seen in Fig. 2. 

The equations of the governor model for generator � are: 
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B. Algebraic Equations 

The algebraic equations of a power system are the power 

flow equations (system has > nodes where 1 to >? are PV): 

 0 = �@��A� − �?��A� − ℛℯ D�E�∗ G H�I�EI
J

IK,
L , 1 ≤ � ≤ >?

0 = �@��A� − ℛℯ D�E�∗ G H�I�EI
J
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0 = O@��A� − O?��A� + ℐQ D�E�∗ G H�I�EI
J
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0 = O@��A� + ℐQ D�E�∗ G H�I�EI
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 (14) 

Where �@��A� + RO@��A� is the complex power demand at 

node � and time A, �E� is the voltage phasor of node �, H�S  is the �R-th element of the admittance matrix of the system and �?��A� + RO?��A� is the complex power provided by generator � at time A. The power of generator � can be calculated with the 

generator circuit equations in TU0 variables (saliency 

neglected, time dependence omitted): 

 �?� = ℛℯV����� + R���� ����� − R����W
O?� = ℐQV����� + R���� ����� − R����W
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The natural variation of the system loads can be represented 

with the Gaussian White Noise model proposed in [11]-[13], 

as follows: 

 �@��A� + RO@��A� = �1 + ^�T_��A����@�� + RO@��� (18) 

Where �@� + RO@�  is the complex power demand at node �, �@�� + RO@�� is its mean, ^� is the stochastic penetration 

constant, and T_��A� is a White Gaussian Noise (WGN) 

variable, defined as the derivative of a standard Wiener 

process. The previous model assumes the mean load value 

remains constant. The mean load may experiment increasing 

or decreasing trends due to its daily and weekly periodicity. In 

order to take into account those trends the mean load is 

assumed to be varying linearly: 

 �@��A� + RO@��A� = �1 + ^�T_��A����@�� + RO@����1 + `�A� (19) 

Where `� is the slope of the mean. In this work, the slope is 

assumed to be a uniformly distributed random variable. The 

response of the system for a specific realization of load is 

calculated by numerically solving the differential equations of 

the system, using the trapezoidal method [1], [19]. 

C. Objective Function 

The quality of the system response is measured with an 

error function a. The chosen function in this article is a 

simplified version of the objective function presented in [10]: 

 a = ∑ �c,� d |�!��A�−�!��0�|TA!f� + c/� d |���A� − ���0�|TA!f� �Jg�K, ∑ �c,� + c/��Jg�K,
 (20) 

Where >h is the number of synchronous machines, c,�  is 

the weight of the voltage error for machine �, and c/� is the 

weight of the frequency error for machine �. c,�  is 1 for all 

machines, c/� is 1 for all generators, and 0 for all synchronous 

condensers. 
TABLE I 

DESIGN FACTOR LEVELS 

Design 

Factor 

Low Level 

[p.u] 

High Level 

[p.u] 

Normal Operating 

Value 

Factor 

Coding #"i 25 500 400 A #"j 25 500 400 B #": 25 500 400 C #"/ 25 500 25 D #", 25 500 50 E ./ 0.02 0.1 0.05 F ., 0.02 0.1 0.05 G 

 

Fig. 1.  AVR block diagram. 

 

 

Fig. 2.  Governor block diagram. 
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Fig. 3.  Circuit diagram of system IEEE14. 

III. EXPERIMENTAL DESIGN 

In order to perform the optimization of the objective 

function, a statistical model is constructed as follows: 

A. Screening Experiment 

A common screening experiment is the 2
k
 factorial design, 

in which the process is executed 2
k
 times, varying the value of 

the possible factors from their minimum value to their 

maximum value, performing all the possible combinations of 

factor values. 

In this article, a 2
7
 factorial design with no repetitions was 

selected. In order to execute the experiment, the experimental 

region was defined by setting the levels of operation of the 

factors, based on the typical values they can take, which were 

taken from [23]. A normal probability plot of the factors and 

interactions is drawn to find candidate significant factors [14]. 

B. 3
k
 Factorial Design 

Using the ANOVA, the non-significant factors are fixed at a 

convenient value, leaving the significant factors values to be 

defined. The 3
k
 factorial design is an experiment similar to the 

2
k
 factorial design, with the difference that an intermediate 

level is introduced. The values of the factors at the 

intermediate level are the means of the values at the low and 

high levels [14]. 

C. Response Surface Method 

The data collected with the 3
k
 factorial experiment can be 

used to construct a regression model fitting the response 

variable inside the experimental region. The model can be 

optimized with classical optimization techniques, and if the 

optimum point is inside the experimental region, then is also 

an optimum point of the response variable. 

IV. SCREENING RESULTS 

The system used in this article is the benchmark system 

IEEE14. This system is composed of 14 nodes with 5 

synchronous machines, 2 of them working as generators and 

the rest as synchronous condensers. The original IEEE14 does 

not have generator or controller data, but in 2015 Demetriou et 

al. estimated the generator and controller data of this and other 

reference systems [21]. The controller and generator data used 

for the IEEE14 system can be found in [20]. The diagram of 

the system is shown in Fig. 3.  

The tunable parameters of the controllers are the amplifier 

gain #" of the AVRs and the speed droop . of the governors. 

Synchronous motors do not have any injection of mechanical 

power, and thus they do not possess speed governors, but they 

possess AVRs. The parameters #"�  and .� are the AVR and 

governor parameters of the synchronous machine connected to 

node �. Therefore, the parameters to be tuned are #"i, #"j, #": , #"/, #", , ./ and .,. 

In [20], [21] the authors define a set of operating parameters 

for the system IEEE14, which will be taken as the normal 

operating parameters. The values are in Table I.  

The 2
k
 factorial experiment was performed using 

simulations of the system response calculated with a 

simulation program developed in MATLAB
®
. The objective 

function was calculated using simulations of 30 seconds, 

solved with the implicit trapezoidal method and a time step of 

0.2 seconds. The parameters ^� were set at a value of 0.5% for 

all the loads, and the parameters `� were set to vary uniformly 

between ±0.2%. For simplicity, the effect of each factor is 

coded with a letter, (see Table I). 

 
Fig. 4. Normal plot of the design effects. 

 

From the normal plot in Fig. 4, it can be concluded that the 

significant effects are effects D, E, F and DE. A multifactor 

ANOVA was performed for these effects. In order for the 

ANOVA to be statistically valid, three assumptions must hold 

[14]: 

 The variances of the levels of each factor must be 

equal (homoscedasticity). 

 The residuals of the samples must be normally 

distributed. 

 The residuals of the samples must be independent. 

 The equality of variance assumption was tested using 

Levene’s test with significance k = 0.05. The factor E 

showed significant differences in its variances, as its P-Value 

was 1.206E-9, lower than the significance. 

In order to correct the violation of the homoscedasticity 

assumption, the data was transformed using the power 

transformation n∗ = no. An adequate value ^ = −1.3 was 

slack

Bus 10

Bus 9
Bus 8

Bus 11

Bus 14

Bus 13

Bus 12

Bus 3

Bus 2

Bus 1 Bus 4

Bus 7Bus 6

Bus 5

E:Ka1

D:Ka2
F:R2

ACDFG
ABDE
ACEFG

ABCDEFGABBCGCEFGBCDFBCDEGCDFGABCFGBCEFABDFGBCDEFGABEFGG:R1B:Ka6ADEGABCEGACDEA:Ka8AGACBCEBCFGACFDEFBEFGCDEGCDCEACDEFBEFBDECGADFGBDFDEFGBDEFABCDEFACDCDEFABDEGABDEFBGABGABCFAEFGABCDEBDGABFGCFABCDGACGDEGAEFEFGADADFBFABEFADEABCAEDFGC:Ka3ABFACDEGAFGAFACEGCEGFGBDABCDBEGCDEBCDEABCEFGBDFGDFACEADEFABCDEGABCEFBDEFGBDEGBCDGABCGCDFABCDFABCEADEFGBCDCEFAEGBCFDGBFGABDFCDGADGBCACDGABEGBCEGABDEFGBCDEFBCEFGABDGBEEFABDCDEFGEGCFGACEFBCDFG
ABCDFG

ACDF
ABE

ACDEFG
ACFG

DE

-17 -13 -9 -5 -1 3 7
(X 0,001)

Standarized effects

0,1

1

5

20

50

80

95

99

99,9

p
e
rc

e
n

ta
g

e



 

 

found. Levene’s test was applied to the significant factors 

using the transformed data, obtaining the results of Table II. 
TABLE II 

LEVENE’S TEST FOR THE SIGNIFICANT FACTORS TRANSFORMED (^ = −1.3) 

Factor Test P-Value 

D 3.5685 0.061184 
E 3.4545 0.065413 

F 1.1893 0.277553 

As all the P-Values are greater than the significance, then it 

can be concluded that the homoscedasticity assumption holds. 

A multifactor ANOVA was then applied to the transformed 

data, using the same significance of Levene’s test. The results 

are shown in Table III. 
TABLE III 

ANOVA TABLE FOR THE 27
 FACTORIAL EXPERIMENT 

It can be concluded that the effects D, E, F and DE have a 

significant influence over the response variable. To validate 

the results of the ANOVA, the other two assumptions must be 

verified. The residuals were calculated using the fixed effects 

model of the ANOVA. The Shapiro-Wilks test was performed 

on the residuals, obtaining a P-Value of 0.38 (normality not 

rejected). Independence of the residuals was also confirmed. 

V. OPTIMIZATION RESULTS 

From the results of the screening experiment, the significant 

factors are D, E, and F (#"/, #", and ./, respectively). Factors 

A, B, C and G (#"i, #"j, #": and .,, respectively) are not 

significant and therefore there is no need to change them. For 

this reason, the non-significant factors are set to their normal 

operating values. A 3
3
 factorial experiment was performed to 

collect the required data for the regression model. The values 

of the factors at the different levels are shown in Table IV. 
TABLE IV 

FACTOR LEVELS OF THE 33
 EXPERIMENT 

Factor Low Level [p.u.] Medium Level [p.u.] High Level [p.u.] #"/ 25 262.5 500 #", 25 262.5 500 ./ 0.02 0.06 0.1 

The objective is to find a regression model able to represent 

the objective function over the experimental region. The 

proposed structure for the regression model was the following: 

 n = q� + q,#"/ + q/#", + q:#",/ + q;#"// #", (21) 

The regression model constants q� to q; were calculated 

using least squares fitting. The obtained model was the 

following: 

 n = 0.0518 − 4.5868 ∙ 10Z<#"/    −1.4479 ∙ 10Z;#", + 1.6678 ∙ 10Zy#",/
    +1.8613 ∙ 10Z,�#"// #",

 (22) 

The statistical significance of the model was verified by 

applying an ANOVA. The results are shown in Table V. The 

statistical significance of each term of the model was verified 

too. The results are shown in Table VI. 
TABLE V 

ANOVA FOR THE SIGNIFICANCE OF THE REGRESSION MODEL 

SoV SS DoF MS Fo P-Value 

Model 0.00280 4 0.00070 7.5615 0.0005 

Error 0.00203 22 9.26E-5   

Total 0.00483 26    

TABLE VI 

ANOVA FOR THE SIGNIFICANCE OF THE MODEL TERMS 

Term Coeficient LB 95% UB 95% to P-Value 

Constant 0.051822 0.040386 0.063258 9.39 3.7E-9 #"/ -4.58E-5 -7.74E-5 -1.43E-5 -3.01 0.0064 #", -0.000144 -0.000226 -6.41E-5 -3.72 0.0012 #",/  1.66E-7 2.23E-8 3.11E-7 2.39 0.0256 #"// #", 1.86E-10 8.02E-12 3.64E-10 2.16 0.0413 

The model does not include any term involving ./, which 

may seem strange because the screening experiment labeled it 

as significant. The reason is that various other models 

including the term  ./ were tested, and all of them showed 

that the term is not significant. Furthermore, the selected 

model presented here has been proven to be statistically valid. 

Finally, as the model is only valid inside the experimental 

region, the optimization can be formulated as: 

 minz{|} {|~� n (23) 

subject to: 

 25 ≤ #"/ ≤ 50025 ≤ #", ≤ 500 
(24) 

 (25) 

The optimization problem was solved, obtaining the optimal 

set of parameters shown in Table VII (note that the others 

factors were kept at their normal values). 
TABLE VII 

OPTIMAL SET OF CONTROLLER PARAMETERS 

Parameter Optimal Value [p.u.] #"i 400 #"j 400 #": 400 #"/ 330.10 #", 373.26 ./ 0.05 ., 0.05 

 
Fig. 5. Observations of Slack node voltage response (20 samples). 

 

 

0 5 10 15 20 25 30
1.056

1.057

1.058

1.059

1.06

1.061

1.062

1.063

1.064

1.065

Time [s]

V
t1

 [
p
.u

.]

 

 

Original

Tuned

SoV SS DoF MS Fo P-Value 

D 16847.5 1 16847.5 21.88 0.0000 
E 277651 1 277651 360.54 0.0000 

F 20878.6 1 20878.6 27.11 0.0000 

DE 5749.52 1 5749.52 7.47 0.0072 
Error 94720.9 123 770.089   

Total 415847 127    



 

 

 
Fig. 6. Average Slack node voltage response (20 samples). 

 

Fig. 5 shows a set of 20 observations of the voltage 

response of the slack node with both the original and the tuned 

set of parameters. Fig. 6 shows the average response for both 

sets of parameters. From the figures it can be seen that there is 

a significant reduction of the voltage variations, but it is 

necessary to validate the generality of these conclusions using 

statistical methods. 

VI. VALIDATION 

In order to validate the optimal set of parameters, they were 

compared against the normal parameters of [20]. To do this, a 

hypothesis test for the difference of means was performed. 20 

samples of the objective function with each set of parameters 

were taken. A hypothesis test for the difference of means was 

performed (homoscedasticity was confirmed), with the results 

shown below: 
TABLE VIII 

HYPOTHESIS TEST FOR THE DIFFERENCE OF MEANS 

Hypothesis test of means 

to P-Value α Conclusion 

7.2545 5.58E-9 0.05 H0 Rejected 

The null hypothesis is rejected, as shown in Table X. Thus 

the mean of the objective function with the optimal set of 

parameters is lower than the mean with the operating set of 

parameters. 

VII. CONCLUSIONS 

This article describes a method for the tuning of generator 

controllers in a power system affected by stochastic loads, by 

applying the Analysis of Variance and the Response Surface 

Method. The method was applied to the system IEEE14. The 

regression model obtained from the experiments was 

minimized, and the optimal set of parameters obtained was 

compared against the typical set of parameters, showing better 

performance. 
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