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Abstract— Cell equalization is required in series connected 

strings to prolong battery lifespans, ensure safe operation, and 

to enhance the usable capacity of battery packs.  Several cell 

balancing methods have been proposed in literature to address 

cell mismatch in series strings.  Amongst these, dissipative 

balancing is the simplest and the most cost effective solution. 

However, this has a low efficiency and restricted balancing 

speed. Capacitor balancing is popular energy transferring 

method with its simple control, compact size, and low price; but 

it also has low balancing speed.  Finally, runtime balancing, 

which is a relatively new technique, shows good performance in 

terms of balancing speed, and efficiency with its high cost and 

complex controller. Using MATLAB/ Simulink, this paper 

compares dissipative balancing, capacitive energy transferring 

balancing, and runtime balancing methods in terms of balancing 

speed, efficiency, complexity, and cost, with suitable applications 

mentioned. 

Index Terms—Battery Storage, Battery Management Systems, 

Cell Equalization, Comparison of Cell Equalization 

I. INTRODUCTION 

Battery energy storage systems (BESS) are key 
components of smart grids, where their main purpose is to 
compensate for the stochastic nature of renewable power 
generation, and demand variations. As individual battery cell 
voltages vary from 1V to 4.5V, cells are connected in series to 
increase the voltage levels of a battery pack. However, cell 
mismatch in series strings is inevitable due to manufacturing 
and thermal variations, differences in internal impedances, and 
self-discharging rates. As the performance of a battery pack is 
decided by the weakest cell in the string, the mismatch results 
in capacity reduction and wasted energy, during charging and 
discharging modes, respectively.  In addition, battery lifetime 
is degraded, with a remote chance of explosion if the cells are 
not equalized [1]-[3].  

To address cell mismatch, several balancing methods have 
been proposed in the literature. According to the way they 
process the redundant energy, the balancing methods can be 
divided into three main categories: dissipative balancing, 
energy transferring, and individual cell power control 
methods. In dissipative balancing techniques, balancing is 
achieved by dissipating the redundant energy of the higher 
charged cells in a resistor.  This is the simplest and cheapest 

method, but it suffers from high balancing losses [4], [5]. 
Alternatively, energy shuttling techniques, which transfer 
energy from higher charged cells to lower charged cells, using 
storage elements, have higher balancing efficiencies than 
dissipative techniques.  Amongst these, capacitor based 
energy shuttling methods are a more promising option because 
of their simpler controller, lower price, and compact size [6]-
[9].  However, they have a low equalization speed.  In contrast 
to dissipative and energy shuttling methods, runtime balancing 
methods are integrated into the power conversion stage.  The 
cell balancing is achieved by controlling the power of the 
individual cells during charging and discharging, with the help 
of a power converter connected to each cell [10]-[12]. The 
main drawback of this method is its high cost.  

All different balancing methods have their own advantages 
and disadvantages. In this paper the balancing methods are 
reviewed and compared in terms of balancing speed and 
efficiency, cost, control complexity and suitable application.  

II. BALANCING METHODS 

A. Dissipative Balancing Method 

In the dissipative balancing method, equalization is 
achieved by dissipating excess energy from higher charged 
cells. Due to the parallel connected resistors across each cell 
(Fig. 1a), there will be continuous current flow through the 
resistors. Higher charged cells have higher voltages than lower 
charged ones, leading to more energy being dissipated from 
the higher charged cells, resulting in convergence of the 
voltages. However, there is still continuous power flows 
through the resistors even when all cells are balanced. To 
prevent continuous power losses, and to control the balancing 
circuits, a controllable switch has to be placed series with each 
resistor as shown in Fig. 1b.  

Although this is the simplest and the cheapest equalization 
method, the excess energy is dissipated as heat, resulting in a 
low energy efficiency. In addition, there is no run time 
improvement with this method, and some of the available 
energy cannot be utilized in the string in discharging mode 
[7]-[9] 
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Figure 1. Dissipative Cell Balancing Circuits: a) Fixed Shunt Resistor, b) 
Switched Shunt Resistor 

B. Capacitor Based Energy Transferring Method  

Instead of dissipating the excess energy from higher 
charged cells, the energy is transferred to the lower charged 
cells via capacitors. The main advantages of this method over 
dissipating balancing methods are its higher efficiency, and 
utilization of the available energy. In the Switched Capacitor 
(SC) cell balancing method (Fig. 2a), capacitors connect 
between upper and lower cells in one switching cycle, 
enabling energy exchange between adjacent cells. All switches 
are controlled by complementary signals, and no voltage 
sensing and no closed loop control are required [6]-[8]. In this 
method, energy exchange is only possible for adjacent cells; 
therefore, the balancing takes a long time, with a low 
efficiency for long strings [8].  

To improve the efficiency and reduce the balancing time, it 
is necessary to create paths for non-adjacent cells. This can be 
achieved by connecting extra capacitors between non-adjacent 
cells, such as the Double Tired SC [7], and Chain Structure 
Capacitor SC [8] methods. With these techniques, although 
the speed is increased, there is still no possibility for direct 
energy exchange between all cells.  In [9], Ye, Cheng, Fong, 
Xue, and Lin proposed an optimized SC method to address 
this problem (Fig. 2d). With this method, direct energy 
transfer between all cells is possible, as all capacitors are 
connected with a common point; thus the balancing 
performance is independent of the number of series cells. 

The control simplicity of capacitor based energy shuttling 
methods is promising. However, all capacitor based balancing 
methods rely on the voltage difference among cells, and their 
target to balance the voltage rather than the state of charge 
(SoC). This may result in increased unbalance due to the 
differences in the intrinsic resistances of the cells, and the 
equalization time, because of the flat discharge curve of the 
battery. 

C. Runtime Balancing Method 

In the modular battery structure (Fig. 3), each cell is 
connected to an individual low power converter, with each 
converter connected in series to increase the overall voltage. 
No central power converter is required to adjust the 
charging/discharging power. Cell balancing is achieved by 
adjusting the power of each module based on their individual 
SoC. Higher charged cells release more power than lower ones 

in the discharging mode, and lower charged cells are charged 
at a higher power in the charging mode. This system also 
enhances the system reliability, as faulty cells can be 
bypassed, with the rest of the modules supporting the DC bus 
[10], [11]. This control method is well summarized in [10]. 
However, compared to the other methods, the system is 
expensive due to the large number of power converters, and it 
requires a relatively complex controller. 
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Figure 2. Capacitor Cell Balancing Circuits: a) Switched Capacitor (SC),    
b) Double Tiered SC, c) Chain Structure SC, d) Optimized SC 

 

Figure 3. Runtime Cell Balancing Structure 

III. SIMULATION RESULTS 

For the comparative simulations, 4 lithium batteries rated 
at 3.2V, and 10Ah, were used. The cells initial conditions 
before balancing are shown in Table 1.  

Table I. CELL CONDITION AT THE BEGINNING OF SIMULATION 
Cell 1 Cell 2 Cell 3 Cell 4 

70 65 68 60 

A. Switched Shunt Resistor Method (Fig 1.b) 

There is no advantage in enabling balancing in discharging 
mode; therefore, the dissipative balancing is used for charging. 
For this simulation, the algorithm operates so that when one of 
the cells reaches it maximum SoC, the battery management 



 

system (BMS) stops the operation and balancing is enabled so 
all cell voltages are equal, then charging starts again.  

The switched shunt resistor balancing with a 200mA 
balancing current is illustrated in Figs. 4 and 5, and with a 1A 
balancing current in Figs. 6 and 7. With 200mA, balancing 
starts at 2450s and takes 5 hours; with 1A it only takes 1 hour. 
However, the power loss of the individual cells during 
balancing is also 5 times higher with 1A than 200mA as the 5 
times higher balancing current results in increased power loss. 
With the dissipative balancing the final SoC of the battery 
pack is equal to the weakest cell after balancing, which is 90 
% in this case presented. 

Dissipative balancing is the most common method due to 
its simplicity and low cost. However, in practice, the 
balancing current is restricted to several hundred mA to 
prevent excessive heat generation: and the balancing speed is 
too slow with this current value, especially for higher power 
applications. Therefore, it is a satisfactory balancing technique 
for low power applications and for a battery string composed 
of similar state of health (SoH) cells. 

 
Figure 4. The cell SOCs with switched shunt resistor method, 200mA 

balancing current 

 

 

Figure 5. Power losses with switched shunt resistor method, 200mA 
balancing current 

 

 

 
Figure 6. The cell SOCs with switched shunt resistor method, 1A 

balancing current 

 

Figure 7. Power losses with switched shunt resistor method, 1A balancing 
current 

B. Switched Capacitor Method (Fig. 2) 

The simulations based on SC balancing methods have 
been performed with 470 µF capacitors with an ESR of 20 
mΩ and 50 kHz switching frequency. Figs. 8 and 9 show the 
simulation results with the SC and optimized SC balancing 
methods, respectively.  It is clear that, unlike the standard SC 
method (Fig 2a), in which energy transfer is only possible 
between adjacent cells, direct energy transfer between all cells 
is possible with the optimized SC method (Fig 2b) and hence 
faster balancing can be achieved. Compared to the dissipative 
method, after balancing the average battery SoC is equal to the 
average SoC of battery pack with energy transferring method 
if power losses are ignored. The SoC of each cell after 
balancing is equal to average SoC of series string which is 
65.75 before balancing.  

For high power applications the active balancing is a 
suitable method to prolong battery service time with its 
relatively low price compared to the runtime balancing 
method. 

C. Individual Cell Power ControlMethod  

A bidirectional half bridge DC-DC buck-boost converter, 
with 250 kHz switching frequency, 6.8 µH inductor and 33 µF 
capacitor is used in the simulation analysis. With this method, 
in order to achieve balancing, the lower charged cells are 
discharged with a lower power in discharging mode. Since cell 
4 has the lowest energy, it has the lowest dissipation during 
balancing, while, cell 1 has the highest one since it is the 



 

highest charged cell. As the DC side current is same for all 
modules at the series connected side the voltage difference 
among the modules creates a power difference (Figs. 10 and 
12).  The sum of the module voltages is always equal to the 
DC bus voltage which, in this case, is 24 V. In this method the 
equalization speed is directly related to the battery load, with 
higher battery load giving faster balancing as demonstrated in 
Figs. 11 and 13. 

The runtime balancing is an appropriate balancing 
technique for a system based on pre-used batteries, where high 
imbalance is expected as the continuous balancing during 
battery operation prevents the divergence of the cell voltage, 
even if the pack composed of different SoH cells.  

.  

Figure 8. The cell SoCs with SC 

 

Figure 9. The cell SoCs with optimized SC 

IV. ANALYSES COMPARISONS 

Each of the balancing methods analyzed are different from 
each other in terms of their equalization method, balancing 
speed, efficiency, and control complexity and these will be 
discussed below. 

A. Balancing Speed 

In dissipative balancing methods, the balancing speed is 
directly related to the balancing current. For a faster balancing 
speed higher currents in the resistors are required which 
increase the power loss, and means more advanced cooling 
systems are required. In optimized SC method, unlike the SC 
method, the balancing speed is independent of the number of 
cells. However, as all capacitor based energy shuttling 
methods rely on the voltage difference between cells; they 
both show poor performance in terms of equalization speed. 
With dissipative and energy shuttling balancing methods the 
balancing speed is independent of battery load. However, in 
runtime balancing method the equalization speed is quick at 

high loads as the DC bus current is high, providing higher 
power differences amongst the modules with the same voltage 
differences. 

Figure 10. The voltage of each module at the series connected side with 0.8C 
battery load 

Figure 11. Convergence of cells SoC with 0.8C battery load 

Figure 12. The voltage of each module at the series connected side with 0.2C 
battery current 

Figure 13. Convergence of  cell SoCs with 0.2C battery load 



 

This power difference is shown in (1).  Among all balancing 
types, the runtime method achieves the fastest equalization.  

∆𝑃 = 𝐼𝑑𝑐 ∗ ∆𝑉𝑑𝑐                                  (1) 

where ΔP is the power difference among cells, Idc is the dc bus 

current. and ΔVdc is the converter voltage differences at the series 

connected side.  

B. Balancing and System Efficiency 

In the dissipative balancing method, the excess energy 
from the higher charged cells is wasted, thus the energy 
efficiency of dissipative balancing is zero [7]. On the other 
hand, the energy efficiency of the SC method is around 97 % 
with three cells [7]; but, when the string cell number increases, 
the efficiency decreases.   

Figure 14. Typical converter efficiency curve 

BESS with dissipative and energy shuttling balancing 

techniques have two independent losses; conversion, and 

balancing and these can be evaluated separately.  In contrast 

to the dissipative and energy shuttling methods, the efficiency 

of the runtime balancing method cannot be evaluated alone, 

as the cell balancing and power processing features are 

integrated. However, by analyzing the effect of balancing on 

conversion efficiency it is possible to estimate the balancing 

efficiency. Fig. 14 shows the typical efficiency curve of a 

DC-DC converter, and in order to evaluate the effect of 

balancing the curve is divided into two areas from its 

maximum efficiency point.  When all cells are equally 

charged, they share the power evenly and all converters 

operate at point A.  If there is a mismatch among the cells, 

some of the modules operate at point B, and some of them 

operate at point C, and the new system efficiency can be 

calculated using (2).  

                      ηsystem =  ∑ ηk*wk
4
k=1                                 (2) 

where ηsystem and ηk are the system efficiency and individual modules 

efficiency, respectively, and wk is the weighting factor of each 

module.             

With heavy load (right hand side) the power is processed 

less efficiently, as the efficiency of point B is lower than that 

of point A, indicating a reduction in system conversion 

efficiency due to the balancing.  With light loads (left hand 

side), the power is processed more efficiently as the point B 

has a higher efficiency than point A.  It shows that balancing 

has positive impact on the conversion efficiency. 

V. CONCLUSION 

In this paper, cell balancing methods have been compared 
using MATLAB/Simulink.  Dissipative balancing is the 
simplest and most cost effective method, but its efficiency is 
low and it is not suitable for higher power applications. For 
capacitive balancing, the voltage based balancing feature is its 
main drawbacks, limiting its balancing speed and accuracy.  
Finally, runtime balancing has fast and efficient balancing 
features, and is also appropriate for pre-used batteries, but 
with added complexity and increased cost.  In summary, each 
balancing method has its own advantages and disadvantages, 
with their choice dependent on the systems cost and 
application. 
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