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Abstract—Distributed algorithms are regularly used to deploy
distributed paradigms in smart grids. Computations are executed
without any centralized server even in a limited bandwidth
network. However, there are still some drawbacks in the proof of
convergence as well as a lack of programming abstraction. In this
paper, we propose a new approach to the distributed paradigm
by using distributed programming in a data manipulation lan-
guage called Smartlog. A distributed programming methodology
will automatically divide a centralized Smartlog program into
multiple rules while ensuring the correct transformation of the
centralized computations. An application of voltage control in a
distribution grid with high penetration of PV systems is used
as an illustration of this approach. Two implementations are
compared: centralized programming and distributed program-
ming. Both are deployed in a real-time simulation with OPAL-
RT and a network of Raspberry Pis. The response time of
each implementation is analyzed to evaluate their respective
performance, showing that the Smartlog language is particularly
appropriate to smart grids in terms of compacity and simplicity.

Index Terms—Distributed programming, distributed database,
over-voltage regulation, smart grids, Smartlog.

I. INTRODUCTION

Many applications of control and management in historical

grids present algorithms that can be easily deployed in a

centralized manner. However, along with the development of

smart grids, a centralized implementation can show short-

comings, such as high computation and communication costs,

low fault tolerance capability, etc. [1]. Besides, with the

current development of smart grids infrastructures, computing

units are almost dispersed in the network. These available

resources can participate in the management of the power

system. With the size of this system increasing, the distributed

implementation of algorithms becomes a viable alternative

to centralized ones. Indeed, it can deal with more resilience

issues while ensuring a proper replacement the conventional

centralized controls [2].

However, there are still some drawbacks to distributed im-

plementations that restrain their practical deployment. Firstly,
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there is a lack of programming abstraction [3]. For instance,

consensus algorithms [4] (e.g., Metropolis, Finite-time Aver-

age Consensus algorithms, Maximum Degree Weight) present

a convergence that depends on the network configuration.

Secondly, there is a lack of convergence proof when the system

scales up as well as a low convergence speed. For instance,

the ADMM algorithm can be used for the distributed optimal

power flow problem [5] but the convergence speed goes up to

several thousand iterations for a small grid. The ALADDIN

Algorithm is a possibility to improve the convergence rate of

the ADMM method [6], however not proven in the case where

the number of nodes increases. The slow convergence speed

and the neglected communication delay lead to slow control

and management of the power system. In a context where

the speed of variation of the electrical quantities increases

due to renewable energy integration, some bounds of the

system stability could be more frequently violated and the

power quality could also decrease. Moreover, the control and

the management of smart grids in real-time require to deal

immediately with changes in the power system.

For those reasons, in this paper, another approach is consid-

ered, that combine the advantages of both the centralized and

decentralized implementations. This allows taking advantage

of two paradigms while ensuring the response to any change of

system, as fast as possible. Most of the imperative languages

such as Java or Python support distributed programming in

centralized memories. Nevertheless, that is not appropriate for

a distributed paradigm in smart grids. Thus, in this paper,

we approach the distributed programming with a declarative

language, called Smartlog [7].

In [7], each smart device plays the role of a node in the IP

network of the smart grids. Each node is a rule-based system

with a local database and can operate simultaneously as a

client and a server. Based on that architecture, a high-level

programming of the data manipulation language Smartlog is

developed to support the proposed distributed programming.

A methodology, proposed in this paper, helps splitting a

centralized program into distributed rules which are executed

in multiple nodes of the grid.
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II. DISTRIBUTED RULE-BASED SYSTEM IN SMART GRIDS

A. Network architecture

Smart grids are considered as heterogeneous. It is composed

of a lot of smart devices which are in charge of collecting data

and establishing communications among them. Each smart de-

vice can be in charge of computations and communications at

each node of the grid. Fig. 1 presents their typical architecture.

Fig. 1. The architecture of each node in the considered smart grid.

There are four main components in the architecture of each

node:

• The Local database : stores the node’s information
in the infrastructure of the grid, such as parameters, the

measured data which are collected from local sensors or

directly from the network.

• The Sensor interface: is set up to collect data from
sensors, to store these data into the local database and

to transfer the output values to the regulator in order to

control the active electrical components.

• The Rule engine: is the most critical part of the
architecture because it supplies an environment to execute

the declarative programs. In our implementation, the

PostgreSQL trigger is used as a rule engine.

• The Communication interface: is in charge of
the interaction between nodes over the communication

network. Received data, after unpacking, will be stored

in the local database. The communication is developed

based on the TCP/IP protocol and the transferred data

are in the form of a JSON Object.

Each participating node in the grid possesses the same

architecture. This constructs an IP network in which each node

can operate simultaneously as both client and server. That
increases the robustness and reduces the damage when there

is a single point of failure in the system [8].

The distributed programming is developed based on the

available infrastructure of information network such as WiFi,

3G, 4G and is deploy in the test-cases of an isolated microgrid.

Thereby, we assume that each node in the network is fully

capable of communicating with all others.

B. The Smartlog language

1) The structure of a Smartlog program: The structure of
a Smartlog program is presented in Listing 1 [7]:

Program(NameOfProgram){
Data_types{//define the schematic of stored data
}
Initial_data{//declare the data initialization
}
Module(data_type 1){//rules
}
Module(data_type 2){//rules
}...}

Listing 1. The structure of a smartlog program.

2) Rule syntax: The Rule is in charge of defining the

action which is executed in each node. The syntax of a rule in

Smartlog is the same as in other logic programming languages:

Head : Body [terminator]

Where Body = B1, ...,Bn, the body part of the rule, is

a conjunction of terms. Each term in the body part Bi can

be a relational atom R(r1, r2, ..., rn), a condition term or an

assignment term.
3) Operators for the head part: The Head part holds the

variables with assigned values in the body part and defines the

execution of the rule. If all the terms of the body are approved,

the execution of the head part (H) is launched.
By default, the execution of the head part is a storing mode,

which means that the results will be stored in its local database.

H :- B1, B2, ..., Bn

The execution in sending-mode is expressed with:
∧ H :- B1, B2, ..., Bn

In this case, a destination’s address should be marked with

the symbol @ in front of the address variable.

C. How Smartlog supports distributed programming

Rules in a Smartlog program are grouped into many mod-

ules. Each module defines all actions of the system with the

modification of a specific data_type. Measured data can trigger
calculations in a local database. Meanwhile, immediate data is

used to support data sharing. These data, transferred between

nodes, are in the form of data_type. The data reception
allows triggering consecutive calculations in other nodes. For

example, consider two modules in two programs as follows:

Module(A){
^TmpC(i, v, c) :- A(i, v, c), B(i,@j); }

Listing 2. A Module A in node i.

Module(TmpC){
C(i, v, c) :- TmpC(i, v, c); }

Listing 3. A Module TmpC in node j.
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When the rule of node i in Listing 2 is executed, an

atom named TmpC is sent to j. The module in Listing 3
will continue to perform its actions after receiving TmpC.
With this mechanism, Smartlog can support fully distributed

programming.

III. RULE DISTRIBUTION METHODOLOGY

In order to perform the same computation as a centralized

program, the main problem of distributed programming is to

separate rules from the centralized program and allocate them

to nodes, when data are distributed on different machines. The

methodology of rule distribution (DSLP method) is proposed

to tackle this question. The general algorithm of the method-

ology is summarized in Algorithm 1:

Algorithm 1 Distributed programming methodology (DSLP).
1: procedure DISTRIBUTEPROGRAM(program)
2: Describe the data distribution in the network

3: for rule in program do
4: Rewrite the rule according to data fragmentation

5: for rule in the rewritten rules do
6: Evaluate all possibility of data communication

7: Choose the best decision of communication

8: Distribute the rule based on the best decision

9: Generate distributed programs

The methodology of distributed programming is not pre-

sented in detail in this paper, for a reason of space. Instead, we

focus on evaluating its applications. A centralized algorithm

for a common issue in smart grid: over-voltage regulation.

IV. APPLICATION

A. A centralized algorithm in smart grid

The rise of the percentage of renewable energy penetration,

especially Photovoltaic (PV) sources in traditional power grids

risks power imbalances as well as quality loss of the energy.

One of the most critical issues, when this energy integrated

into the grid, is over-voltage. Many solutions have proposed

to address this problem, and one of the practical approaches

is Adaptive Active Power Capping (AAPC) [9]. The principle

of the method is presented in Fig. 2.

Fig. 2. Principle of Active Power capping method.

VC1
and VC2

are two bounds of the regressive method,

with [VC1
− VC2

] = [1.042 − 1.058](pu) [9]. Over-voltages
occur in one or more nodes in the grid. The node presenting

a voltage value over Vc1 is called a critical node (CRI). In

the AAPC method, computations are performed based on the

critical nodes. We use the linear regression method to predict

the upper power limitation (PLI) P j
l of each PV source.

P j
l (t1) = P j(t0) + (V

′
c2 − V j(to))/ξ

j (1)

with ξ is a linear coefficient (SLOPE) calculated by the ratio
of voltage variation (VVAR) and power variation (PVAR):

ξj =
V j(t1)− V j(t0)

P j(t1)− P j(t0)
(2)

If each PV output power production is below its upper

threshold, then the over-voltage in the grid is correclty con-

trolled. P ref
j is the generated power threshold (PREF) of the

jth PV and P j
m(t2) is the maximum PV output power at time

t2 based on the MPPT control. The upper threshold of the j
th

node is defined as:

P j
ref = min(P j

l (t1), P
j
m(t2)) (3)

Each PV node has the same responsibility to participate in

maintaining the acceptable grid operation. Thus, the power

supplied or curtailed of each PV has to be based on a fair

sharing. The power of each PV is then its limited power (PLI)

or maximal power (PMA) as follows:

P j
a =

∑j=n
j=1 P

j
ref (t1)

∑j=n
j=1 P

j
m(t2)

× P j
m(t2) = η × P j

m(t2) (4)

with η the power curtailment coefficient (PCUR).

B. Setup and Smartlog implementation

The PREDIS distribution grid [10] is used as a test object in

our case. This grid comprises 14 nodes, with five distributed

sources, three asynchronous machines and static loads. This

grid is simulated in MATLAB/SIMULINK and executed in

OPAL/RT Real-time simulation. Each Raspberry Pi plays the

role of a local computing unit which is installed near a

distributed source (e.g., PV).

The description of the data schemes used in this application

is presented in Table I.

TABLE I
DATA SCHEME FOR THE AAPC ALGORITHM.

Atom Scheme description

Measure(i,t,vi,p,pmi) Measure(ID key, Times, VOLT, POW, PMA)
Slope(i,j,s,dv) Slope(CRI-ID key, ID key, SLOPE, VVAR)
Warning(i, t) Warning(ID key, TIMES)
Alert(i, t, co) Alert(ID key, TIMES, proportion).
WarningMeasure(i,j,v,p) WarningMeasure(CRI-ID key, ID, VOLT,

POW).
Curtail(i, pe) Curtail(ID key, PCUR)
Actuator(i, pe) Actuator(ID key, PERFORMANCE).
Plimit(i, j, pli) Plimit(CRI-ID key, ID, PREF).

The rules are expressed in a centralized Smartlog program

as presented in Listing 1.
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Fig. 3. Architecture of the real-time platform.

Module(Measure){
Warning(i,t) :- Measure(i,t,vi,p,pmi),

~WarningMeasure(i,i,_,_), vi>=1.042;
:- Measure(i,t,vi,p,pmi),

!WarningMeasure(i,i,_,_), vi <1.042;
Alert(i,t,co) :- Measure(i,t,vi,p,pmi),

WarningMeasure(i,i,_,_), vi>=1.047, co :=
(1.058-vi)/(vi-1.042);}

Module(Warning){
WarningMeasure (i,j,vj,pj) :- Warning(i,t),

Measure(j,t,vj,pj,_);}
Module(Alert){
Slope(i,j,s,dv) :- Alert(i,t,co),

Measure(j,t,vj,pj,pmj),
WarningMeasure(i,j,vo,po), pj<>po, s:=
(vj-vo) /(pj-po), s<>0, dv := (co+1)*(vj-vo);

Curtail(i,pe) :- Alert(i,t,_), Measure(j,t, _,_,
pmj), Plimit(i,j,pli), pli := least(pli,pmj),
prs := sum(pli), pms := sum(pmj), pe:=
prs/pms;}

Module(Slope){
Plimit(i,j,pli) :- Slope(i,j,s,dv),

WarningMeasure(i,j,_,po), pli := po+ dv/s;}
Module(Curtail){
Actuator(j,pe) :- Curtail(i,pe), Actuator(j,_,_);}

Listing 4. Set of rules for the AAPC implementation in Smartlog.

An experiment was performed with three implementations

of the same model and algorithms: a centralized java program-

ming, a centralized Smartlog programming, and a distributed

Smartlog programming.

1) Data distribution: In the distributed implementation, we
suppose that each distributed PV source corresponds to a

Raspberry Pi which is in charge of a local computing unit.

Five Raspberry Pis were used in the experiment and eight

data_types. These data_types are fragmented horizontally for
each Raspberry.

A centralized Smartlog program and its data distribution are

the input of the distributed programming methodology. Five

distributed programs (corresponding to five Raspberry Pis) are

its output.

2) Data sets: The data sets are generated automatically

during the real-time simulation. The corresponding data in

the simulated grid will be transferred from OPAL-RT to each

Raspberry Pi.

3) Scenario: In the voltage control problem, we only con-
sider the change of power injected at each node. In reality, the

produced solar power depends mainly on climate and clouds.

In the short time of simulation (the experiment is performed

during 10 minutes), we assumed the load to be constant,

with changes in the PV power. Fig. 4 shows the behaviors

of the AAPC method as well as the response time of the

implementation. The 7th node of the grid is designed to be
the one with the highest voltage value during the simulation.

Fig. 4. The PV generation curve over 10 minutes.

V. RESULT AND DISCUSSION

A. The correctness

In Fig. 5, the response of voltage in the 7th node is

shown in the two Smartlog implementations (centralized and

distributed). The voltage is controlled to not cross the upper

bound (1.058 p.u.). The results being identical, the correctness

of DSLP method is confirmed.

B. The performances

We use the response time to evaluate and compare the per-

formance of each implementation. The response time should

be considered within a given interval.

At the second minute of the simulation, the active power of

the PV increases linearly and causes an over-voltage in the grid

for the first time. The AAPC method is activated to restrain

the percentage of power production. Continuously, when the

grid is in over-voltage, the power curtailment inversely follows

the rise of active power. That means the curtailment reduces

linearly when the power production increases and exceeds the

power upper bound.

In practice, the response time is defined as the interval

between two consecutive reactions of the PV’s actuator when

the grid operates in over-voltage. Based on that, we estimate

the response time of each deployment in the experiment,

presented in Fig. 6.

We call ti is the average processing time of each rule, tc
the average delay time for each communication and N is the

number of computing units of the grid. The response time at

a node is estimated as Tres = Tcomp + Tcomm. With Rj the
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Fig. 5. Voltage response at 2th PV node with three implementations of the
AAPC algorithm.

Fig. 6. Output of voltage regulation for a given time interval.

number of executed rules in the jth node, the analysis of the
response time in this experiment is shown in Table II.

TABLE II
RESPONSE TIME FOR THE TWO SMARTLOG IMPLEMENTATIONS.

Programming Tcomp Tcomm

Centralized
∑

j∈N

∑
i∈Rj

ti 0

Distributed max(
∑

i∈R2
ti,

∑
j∈R3

tj)Ntc

Although the computation load is shared over the network,

the response time still depends on the communication time that

depends on the characteristic of the grid. If the communication

time is significant, then the response time with a distributed

programming may be longer than the one of a centralized

programming.

In the experiment, the statistic of the average response times

for the three implementations are shown in Fig. 7.

The response time of the distributed programming is bet-

ter than the response time of the centralized programming:

max(
∑

i∈R2
ti,

∑
j∈R3

tj) + Ntc <
∑

j∈N

∑
i∈Rj

ti. In the
real-time platform, the communication time among Raspberry

Pis is indeed small. Besides, the query time in a distributed

database is faster than in a centralized database. Moreover, the

computing units operate in parallel and share the computing

load, which apparently reduces the response time.

Fig. 7. The average response time of three implementations of the AAPC
algorithm.

VI. CONCLUSION

In this paper, we proposed an approach to deploy a dis-

tributed implementation for smart grid applications. This ap-

proach not only overcomes the limitation of the distributed

algorithms such as the lack of programming abstraction and

the proof of convergence but also provides a simple im-

plementation and a better response time than a centralized

implementation.

This is illustrated with an application of over-voltage reg-

ulation in a real-time OPAL-RT simulation and a network of

Raspberry Pis, with the simple procedure of “programming

in centralized manner and executing in a distributed manner”.

This approach can deal with the scalability of the number of

nodes in the network, which validity is the the prospective

research of this work.
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