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Abstract—The increasing penetration of Electric Vehicles
(EVs) and renewable energies into the grid necessitates tools to
smooth the demand curve. To this end, this paper suggests an
EV charging scheduling algorithm and a smart charging price.
As EVs arrive at the charging station and leave at different
times, the operator of the station applies at each EV arrival
an online scheduling algorithm based on the concept of “water
filling”. The EV charging price is guaranteed at their arrival and
defined as a function of the online algorithm’s output, following
the idea of locational marginal pricing. A numerical comparison
with the offline version of the algorithm – in which the operator
knows in advance all future arrival and departure times – shows
the efficiency of the suggested online scheduling algorithm.

Index Terms—Electric vehicles; Demand response

I. INTRODUCTION

Even though Electric Vehicles (EVs) represent an encour-
aging answer to local pollution (air quality, noise), they also
bring challenges to the grid. In France for example, [1]
expects a power demand increase of 2.2 to 3.6 GW by
2035. Currently, the prononced local penetrations of EVs1

may already lead to infrastructure investment costs. On the
electricity generation side, the dramatic increase of intermit-
tent and distributed renewable energies expected in the near
future [2] will make the whole electricity generation system
less flexible in order to maintain the supply-demand balance.
For all these reasons, the flexibility of the electricity demand
system and in particular of EV charging needs to be fully
exploited, from smart charging to demand response.

Smart charging consists in postponing the EV charging
profile in time compared to the plug and charge method,
and has been largely studied [3], [4]. Demand response
mechanisms act on EV users’ decisions about when, where
and how much to charge by using price incentives, and also
benefits from a large literature [5], [6]. In this work, the goal
is to provide a smart charging algorithm and a price incentive
tractable enough to be integrated in a complex electrical-
transportation coupled system, which takes into account
both the interactions between EV users (while driving and
charging), and the different system operators [7].

In this system, the operator of an EV Charging Station
(EVCS) is responsible for the EV charging scheduling and
uses a centralized smart charging algorithm. A natural exam-
ple of such an algorithm is the Water Filling algorithm [8],

1More than 80,000 EVs in circulation in Paris region:
https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/
2020-04/immatriculations neuves 2019.zip.

which reduces the variance in time of the total load at the
EVCS in an efficient manner. In the present paper, EVs
can arrive at the EVCS and leave at different times, and
the operator does not necessarily have this information in
advance. There exist papers such as [9] which deal with
this asynchronous charging need using an online charg-
ing scheduling, where the operator solves an optimization
problem at each time slot with the freshly available EV
information, but no simple explicit solution is given.

The Charging Unit Price (CUP) considered in this work is
the Locational Marginal Pricing [10] (LMP), where EVs pay
the charging quantity multiplied by the marginal operator’s
cost associated with an additional marginal charging quantity.
Such a pricing scheme is known to be the best one to incite
EVs to reduce the operator’s cost [11] (when EVs are faced
with a choice, e.g., the charging quantity or the presence
time at the EVCS). However, the LMP requires a continuous
real-time communication between EVs and the operator. This
assumption can be relaxed using for example the day-ahead
real-time pricing [12], where the CUP is fixed the day before.
For the moment, charging services such as the charging
quantity and price should be guaranteed by the operator to
the EVs when they arrive at the EVCS.

The main contributions of the present paper are:

• The procedure the operator of the EVCS needs to
follow in order to solve the charging scheduling problem
with asynchronous EV arrival and departure times. This
procedure includes at each arrival of EVs at the EVCS
an explicit online algorithm based on WF and which
does not require any optimization computations.

• An incentive CUP corresponding to the marginal oper-
ator’s costs, costs which are the results of the online
charging scheduling algorithms. This CUP is communi-
cated to EVs at their arrival.

• Comparison of the online charging schedule and CUP
with those obtained in the optimal case of an omniscient
operator (or offline charging problem), using real data of
EVs arrival and departure times and PhotoVoltaic (PV)
electricity generation.

The paper is organized as follows. The framework and
notations are introduced in Sec. II. The offline and charging
scheduling problem are described resp. in Sec. III and IV.
The CUP is defined in Sec. V and Sec. VI corresponds to
the numerical studies. Finally, conclusions and perspectives
are given in last section.
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Notations: vectors can be written {𝑣1, .., 𝑣𝑁 } or in bold v.

II. CHARGING SCHEDULING FRAMEWORK

The operator of an EVCS wants to determine the charging
profile of EVs plugged at its EVCS during time period T .
This period T = {1 , . . . , 𝑇} is assumed to be discretized
in 𝑇 time slots of equal duration 𝛿. The EVs are divided
into different classes (𝑎, 𝑑), depending on their arrival 𝑎 and
departure 𝑑 time slots at the EVCS. More precisely, EVs
of class (𝑎, 𝑑) arrive at the EVCS at the beginning of time
slot 𝑎 ∈ T and leave at the end of time slot 𝑑 ∈ T , and
therefore may only charge during time slots {𝑎, . . . , 𝑑}. For
example if 𝑑 = 𝑎, the corresponding EV class only charges
during time slot 𝑎. The set of times’ pairs (𝑎, 𝑑) is written
R ⊆ T ×T . The total charging need aggregated over all EVs
of class (𝑎, 𝑑) is written 𝐿 (𝑎,𝑑) .

For each class (𝑎, 𝑑), the operator wants to determine the
charging power ℓ (𝑎,𝑑)𝑡 at each time slot 𝑡 ∈ {𝑎, . . . , 𝑑} aggre-
gated over all EVs of class (𝑎, 𝑑), so that the corresponding
aggregated charging need 𝐿 (𝑎,𝑑) is fulfilled at departure time
slot 𝑑, i.e.

∑𝑑
𝑡=𝑎 ℓ

(𝑎,𝑑)
𝑡 = 𝐿 (𝑎,𝑑)/𝛿. For all 𝑡, ℓ (𝑎,𝑑)𝑡 ≥ 0 but

note that vehicle to grid could constitute a direct extension
of this work by relaxing this constraint. This work does not
focus on how a charging power aggregated over an EV class
is distributed between the EVs of this class, which is assumed
feasible.

The per-class aggregated charging profile selected by the
operator (vector written ˜̀) is the one minimizing some
charging cost function (whose minimum value is written �̃�),
which also depends on electrical usages `0 at the EVCS
other than EV charging and called nonflexible (typically, the
electrical consumption of a tertiary site if considering an
EVCS at a work place). This nonflexible part can also include
a local generation, e.g. when a PV panel is associated to the
EVCS. Note that the nonflexible term can be then negative,
meaning that there is more local electricity generation at
the EVCS than consumption. Even if this term can include
both generation and consumption, it will be simply called
“consumption” in the following to get a generic terminology.
The charging cost function depends on the cost of the total
power load ℓ0

𝑡 +
∑

(𝑎,𝑑) ℓ
(𝑎,𝑑)
𝑡 at a given time slot 𝑡, represented

by an increasing and convex function 𝑓 . As commonly used
in the literature, this function can represent EVCS on-site
economic mechanisms2 (charging bill, including an incentive
associated to self-consumption) or local network congestion
effects [13] (losses, voltage regulation, equipment aging).

The next two sections introduce two different charging
scheduling problems, depending on the information available
to the operator. Note however that in both problems, the
operator is assumed to know in advance (before the first
charging time slot) the nonflexible consumption `0.

III. OFFLINE OPTIMIZATION PROBLEM

In this section, the operator is assumed to know in advance
all arrival 𝑎 and departure 𝑑 time slots and the corresponding
charging needs 𝐿 (𝑎,𝑑) before the beginning of the whole time
period T . In practice, all EVs could declare this information

2See French network tariff: https://www.enedis.fr/sites/default/files/
TURPE 5bis plaquette tarifaire aout 2020.pdf (in French).

through an app before the first charging time slot, or the
operator could base the values 𝐿 (𝑎,𝑑) on statistical data.
Therefore, the operator can compute the optimal charging
profiles offline, i.e. before the beginning of T , by solving the
following charging scheduling problem P:

min
(ℓ (𝑎,𝑑)𝑡 ) (𝑎,𝑑)∈R

𝑎≤𝑡≤𝑑

𝑇∑︁
𝑡=1

𝑓
©«ℓ0

𝑡 +
∑︁

(𝑎,𝑑) ∈R
ℓ
(𝑎,𝑑)
𝑡

ª®¬ ,

s.t. ∀(𝑎, 𝑑) ∈ R ,

{∑𝑑
𝑡=𝑎 ℓ

(𝑎,𝑑)
𝑡 = 𝐿 (𝑎,𝑑)/𝛿 ,

ℓ
(𝑎,𝑑)
𝑡 ≥ 0 , ∀𝑡 ∈ {𝑎, . . . , 𝑑} .

(P)

It is difficult to find an explicit charging scheduling algo-
rithm solution of P. However, P is a quadratic optimization
problem (QP) and is easily solved by built-in Python function
minimize (in SciPy package), relying on a sequential least
squares programming method. As the objective function to
minimize in P is strictly convex (because 𝑓 is), there is
a unique minimal value �̃�, but several possible optimal
charging profiles ˜̀ = (ℓ (𝑎,𝑑)𝑡 ) (𝑎,𝑑) ∈R

𝑎≤𝑡≤𝑑 may exist.
In practice, such a scheduling may suffer from forecast

errors made on arrival and departure time slots “seen from”
time slot 0 (i.e. the time when the problem has to be solved).
However, this (unrealistic) offline problem where all EV
classes’ demands are supposed to be known in advance can
provide an upper bound for the performance of a more
realistic method presented below, in order to measure its
efficiency.

IV. ONLINE TWO-STEP PROCEDURE

In this section, a more realistic assumption on the opera-
tors’ access to information is studied. Here, the operator does
not know all the arrival and departure times in advance: the
operator knows the arrival/departure time slots of an EV and
its charging need only when the EV arrives at the EVCS (and
communicates this information to the operator). Therefore,
for the whole time period T , the operator waits for the next
EV arrival to update charging scheduling decisions.

A. Description

At each EV arrival time slot 𝑎 ∈ {1, . . . , 𝑇} at the EVCS,
the operator does the following procedure:

1) Update the quantities 𝐿𝑑
𝑎 left to charge from this

arrival time slot 𝑎 to each possible departure time
𝑑 ∈ {𝑎, . . . , 𝑇}. For each 𝑑 ≥ 𝑎, 𝐿𝑑

𝑎 is made of
the charging need 𝐿 (𝑎,𝑑) aggregated over EVs which
arrived at 𝑎 and leave at 𝑑, plus the charging need left
to charge of EVs which arrived earlier (and leave also
at 𝑑). This charging need corresponds to the quantity
𝐿𝑑
𝑎− which was left to charge from the previous EV

arrival time slot 𝑎− (up to departure time 𝑑), minus
the amount 𝛿 ×∑𝑎−1

𝑡=𝑎− ℓ̃𝑑𝑎− ,𝑡 (defined in step 2) that has
already been charged since 𝑎−:

∀𝑑 ∈ {𝑎, . . . , 𝑇}, 𝐿𝑑
𝑎 = 𝐿𝑑

𝑎−− 𝛿

𝑎−1∑︁
𝑡=𝑎−

ℓ̃𝑑𝑎− ,𝑡+𝐿 (𝑎,𝑑) . (1)

Note that if no EV arrived before time slot 𝑎, the
quantity 𝐿𝑑

𝑎 is simply equal to 𝐿 (𝑎,𝑑) . The (increas-
ingly) ordered set of departure times 𝑑 ∈ {𝑎, . . . , 𝑇}

https://www.enedis.fr/sites/default/files/TURPE_5bis_plaquette_tarifaire_aout_2020.pdf
https://www.enedis.fr/sites/default/files/TURPE_5bis_plaquette_tarifaire_aout_2020.pdf


Algorithm 1: (run at time 𝑎) Solution of P (L𝑎)
1 Available information: departure times D𝑎 and

charging needs 𝐿𝑑
𝑎 , ∀𝑑 ∈ D𝑎

2 for each departure time 𝑑 ∈ D𝑎 do
3 Optimal charging profile of EVs leaving at 𝑑

using Water Filling solution `WF (see Def. 1):

(ℓ̃𝑑𝑎,𝑡 )𝑎≤𝑡≤𝑑 = `WF ©«𝐿𝑑
𝑎 ,

(
ℓ0
𝑡 +

𝑢<𝑑∑︁
𝑢∈D𝑎

ℓ̃𝑢𝑎,𝑡

)
𝑎≤𝑡≤𝑑

ª®¬
4 Minimal operator cost �̃�𝑎 =

∑𝑇
𝑡=1 𝑓

(
ℓ0
𝑡 +

∑
𝑑∈D𝑎

ℓ̃𝑑𝑎,𝑡

)
Output: Charging profiles (ℓ̃𝑑𝑎,𝑡 )

𝑑∈D𝑎

𝑎≤𝑡≤𝑑 and cost �̃�𝑎

where 𝐿𝑑
𝑎 > 0 is denoted D𝑎. Seen from instant a,

it corresponds to all the (future) departure times for
which a nonzero charging need has to be satisfied.

2) Use Algo. 1 to compute the optimal value �̃�𝑎 and per-
class aggregated charging profile

(
ℓ̃𝑑𝑎,𝑡

)
(𝑑 ∈ D𝑎, 𝑎 ≤

𝑡 ≤ 𝑑), solutions of the following problem P (L𝑎). This
problem corresponds to the online charging schedul-
ing of the per-class remaining energy needs L𝑎 =

{𝐿𝑑
𝑎 , ∀𝑑 ∈ D𝑎} left to charge at arrival time 𝑎:

min
(ℓ𝑑𝑎,𝑡 )

𝑑∈D𝑎
𝑎≤𝑡≤𝑑

𝑇∑︁
𝑡=𝑎

𝑓

(
ℓ0
𝑡 +

∑︁
𝑑∈D𝑎

ℓ𝑑𝑎,𝑡

)
,

(P (L𝑎))

s.t. ∀𝑑 ∈ D𝑎,

{∑𝑑
𝑡=𝑎 ℓ

𝑑
𝑎,𝑡 = 𝐿𝑑

𝑎/𝛿 ,
ℓ𝑑𝑎,𝑡 ≥ 0, ∀𝑡 ∈ {𝑎, . . . , 𝑑} .

Note that ℓ𝑑𝑎,𝑡 is the charging power programmed for
time slot 𝑡 and aggregated over all EVs which arrived
at the EVCS at 𝑎 or before and leave at 𝑑: ℓ𝑑𝑎,𝑡 =∑𝑎

𝑏=1 ℓ
(𝑏,𝑑)
𝑡 . The charging power of these EVs at time

𝑡 may be updated later.

B. Analysis

By following this two-step procedure for the whole time
period T , the operator minimizes at each arrival time
slot 𝑎 the corresponding charging costs (objective function
of P (L𝑎)). Note that the procedure only gives, at each time
slot 𝑡 and for each departure time slots 𝑑 ≥ 𝑡, the optimal
charging power aggregated over all EVs leaving at 𝑑 and
which arrived at 𝑡 or before. This power is given by the last
update ℓ̃𝑑𝑡,𝑡 done at 𝑡, the last EV arrival time slot before (or
at) 𝑡. Then, there are infinite ways to dispatch this power
among the different EV classes (𝑎, 𝑑) with 𝑎 ≤ 𝑡, so that∑𝑡

𝑎=1 ℓ̃
(𝑎,𝑑)
𝑡 = ℓ̃𝑑𝑡,𝑡 . The fact that at each arrival time slot

𝑎, Algo. 1 provides an optimal solution to problem P (L𝑎)
relies on the following definition.

Definition 1. If 𝑓 is increasing and convex and `0 is increas-
ingly sorted, the vector solution of the following charging
scheduling problem during time period U = {𝑡𝑖 , . . . , 𝑡 𝑓 }:

min
(ℓ𝑡 ) 𝑡∈U

∑︁
𝑡 ∈U

𝑓

(
ℓ0
𝑡 + ℓ𝑡

)
, s.t.

{∑
𝑡 ∈U ℓ𝑡 = 𝐿/𝛿 ,

ℓ𝑡 ≥ 0 , ∀𝑡 ∈ U ,
(S)

is:

`WF
(
𝐿 ,

(
ℓ0
𝑡

)
𝑡 ∈U

)
=

{
𝐿 + 𝐿0

𝑡0

𝑡0 (𝐿)
− ℓ0

𝑡 , ∀𝑡 ∈ U
}
, (2)

where 𝐿0
𝑡 =

∑
𝑠≤𝑡 ℓ

0
𝑡𝑖+𝑠 and 𝑡0 (𝐿) ≥ 1 is such that 𝐿 ∈

]Δ𝑡0 ;Δ𝑡0+1], with Δ𝑡 = 𝑡 × ℓ0
𝑡𝑖+𝑡 − 𝐿0

𝑡 for 𝑡 ≤ 𝑡 𝑓 − 𝑡𝑖 and
Δ𝑡 𝑓 −𝑡𝑖 = +∞.

This is a standard solution called Water-Filling (WF) [8],
[14]. In this solution, the total load (charging plus nonflexible
consumption) at each time slot utilized for the charging
operation is the same (it has the same ”water level”3), while
the total load is higher in non-used time slots. Equation (2)
shows that any increasing and convex function 𝑓 leads to the
same optimal charging profile `WF, which smoothes as much
as possible the total power load (made of the charging and
nonflexible terms). Also note that unlike the offline problem
for which an optimization solver is needed, the solution has
here an explicit form; it is obtained “immediately”.

The core idea of Algo. 1 is to first solve (solution written
˜̀𝑑1
𝑎 = (ℓ̃𝑑1

𝑎,𝑡 )𝑎≤𝑡≤𝑑1 ) the standard charging scheduling prob-
lem( S) introduced in Def. 1 for EVs leaving the EVCS at
the first departure time slot 𝑑1 ∈ D𝑎, in function of the per-
class aggregated charging need 𝐿

𝑑1
𝑎 and the nonflexible vector

`0. Then, to solve this standard optimization problem( S) for
EVs leaving the EVCS at the second departure time slot 𝑑2,
in function of 𝐿

𝑑2
𝑎 and a fictitious nonflexible vector `0 + ˜̀𝑑1

𝑎

which includes the charging profile of EVs which will have
left earlier, and so on. . .

The following Prop. 1 proves that Algo. 1 gives an op-
timal solution of P (L𝑎) at each EV arrival time slot 𝑎.
Algorithm 1 can actually be extended to problems with EV
classes with presence time slots at the EVCS embedded in
one another. Note that the solution suggested in Algo. 1 is
not the only optimal charging profile ˜̀ to give the unique
minimal value �̃�𝑎 of the corresponding charging cost func-
tion (e.g., the algorithmic solution with some charging power
“exchanged” between two EV classes and two time slots).

Proposition 1. The output ˜̀𝑑
𝑎 (∀𝑑 ∈ D𝑎) of Algo. 1 is a

solution of optimization problem P (L𝑎).

Proof. This can be shown by recurrence according to the
departure time slots, using Def. 1 and the Karush-Kuhn-
Tucker conditions given that 𝑓 is convex and differentiable.
The complete proof is given in Appendix. �

C. Example

The global online charging scheduling procedure is il-
lustrated in Fig. 1 with an example on a time period of
𝑇 = 6 time slots (e.g., the working hours from 8 am to 8
pm with 𝛿 = 2 h) and five EV classes. The operator starts by
scheduling the charging profile of the EV classes which arrive
for the first charging time slot: (1, 1), (1, 2), (1, 3). Following
Algo. 1, the operator starts with EV class (1, 1), which has no
choice but to charge only during the first time slot. Then, the
operator charges EV class (1, 2) only during the second time
slot because of the high total power load in the first slot, due

3As would the water do by filling time slots with less nonflexible
consumption.



Fig. 1: Example of the optimal charging profiles of five
EV classes (𝑎, 𝑑) (colored bars), computed with the online
scheduling charging problem of Sec. IV in function of a
nonflexible consumption profile (black bars). The resulting
total power load is less smooth than the one obtained by
solving the offline scheduling problem P (diamond line), due
to unexpected EV arrivals in the online procedure.

to EV class (1, 1). Finally, the charging need of EV class
(1, 3) is adequately split between the first three time slots
in order to smooth the total power load over the first three
time slots. When other EVs arrive at the fourth time slot,
the charging needs of EV classes which arrived before have
already been fulfilled. The operator plans to charge EV class
(4, 6) during the fourth and fifth time slots. Unfortunately,
at time slot 𝑡 = 5, the operator must charge EV class (5, 5)
which just arrived and has to postpone the charge of EV class
(4, 6) to the sixth and last time slot. Note that if the operator
knew in advance that EVs would arrive at the fifth time slot,
it could have charged more charging need of EV class (4, 6)
during the fourth time slot, as in the offline charging problem
(diamond line).

V. CHARGING UNIT PRICE (CUP)

In addition to optimizing online the EV charging profiles,
the operator of the EVCS sets a smart CUP (in price unit
per energy unit) in order to indicate to EVs the actual
(operator’s) cost of their charging operation. In this work, we
suggest a smart CUP _ (𝑎,𝑑) for each EV class (𝑎, 𝑑) based
on the charging costs the operator minimized by adequately
choosing the per-class aggregated charging profiles of all EV
classes. More precisely, we define _ (𝑎,𝑑) as the marginal
operator costs corresponding to the charging need 𝐿 (𝑎,𝑑) of
EV class (𝑎, 𝑑), based on the Locational Marginal Pricing
scheme [10]. Note that by definition, different EV classes
may have different CUPs. An interesting property of such a
pricing scheme is that the EV class staying at the EVCS the
whole time period T leads to a smaller marginal charging
cost than an EV class staying only one time slot, because the
former charging profile is more flexible than the latter (i.e.
can be scheduled on a larger temporal period). Therefore,
such a pricing mechanism can be used as an incentive for EV
users to become more flexible for their charging operations.

In the offline charging scheduling problem introduced in
Sec. III, the operator’s charging cost �̃� is the one obtained

by solving problem P, which gives the following CUPs:

_ (𝑎,𝑑) =
𝜕�̃�

𝜕𝐿 (𝑎,𝑑)

(
`0 ,L

)
. (3)

By definition of the offline charging scheduling problem, the
operator knows in advance all arrival and departure time slots
and the corresponding per-class aggregated charging needs.
Therefore the operator can compute the minimal charging
cost �̃� by solving problem P and directly transmits the CUPs
to EVs offline, before the whole time period T .

In the online charging scheduling problem introduced in
Sec. IV, the operator’s charging cost considered to establish
the CUP of EV class (𝑎, 𝑑) is �̃�𝑎, the one computed at the
arrival time slot 𝑎 of these EVs:

_ (𝑎,𝑑) =
𝜕�̃�𝑎

𝜕𝐿 (𝑎,𝑑)

(
`0 ,

(
𝐿𝑑
𝑎−

)𝑑∈D𝑎−
𝑎−≤𝑎

)
. (4)

Note that this cost �̃�𝑎 may be different from the one when
these EVs leave the EVCS, or from the one at the end of
the whole charging operation at 𝑡 = 𝑇 : if additional EVs
arrive between 𝑎 and 𝑑, the operator updates the charging
profiles and its costs with the online Algo. 1. As mentioned
in the introduction, the chosen pricing mechanism defined in
Eq. 4 has the advantage of providing a price to EVs at their
arrival, thus answering one of the main current EV users’
expectations.

VI. NUMERICAL RESULTS

A. Commuting framework with real data

A natural use case corresponding to the charging schedul-
ing problems introduced in this work is commuting. Workers
leave their EVs plugged in at an EVCS during working
hours. The EVCS is assumed to own PhotoVoltaic (PV) solar
panels and use its PV generation to charge EVs and re-inject
the remainder into the grid. This PV generation is the only
nonflexible term at the EVCS, and thus the vector `0 is
nonpositive. The data4 used for the PV generation comes
from [15] and represents the hourly generation of a 560
kilowatt peak during a random5 day (January 15, 2014) in
Paris (see green curve in Fig. 3). The operator wants to
minimize its charging costs by scheduling the EV charging
during this day.

If at a time slot, there is more PV generation than EV
charging, the operator is remunerated when re-injecting what
is left of the PV generation into the grid. However, as too
much electricity re-injected may be potentially harmful for
the local distribution grid, this remuneration decreases with
the quantity re-injected6. If electricity from the grid is needed
when EV total charging load exceeds PV generation, the
operator’s charging costs are often modeled in the literature
by a quadratic proxy [13]. All this justifies the use of an
increasing and quadratic function 𝑓 of the total load (either
negative or positive) at each time slot in order to guide the
operator’s charging schedule.

4Available at https://www.renewables.ninja/.
5The choice of the day does not affect the nature of the numerical results.
6See taxes on network companies: https://bofip.impots.gouv.fr/bofip/

797-PGP.html/identifiant=BOI-TFP-IFER-30-20210210 (in French).

https://www.renewables.ninja/
https://bofip.impots.gouv.fr/bofip/797-PGP.html/identifiant=BOI-TFP-IFER-30-20210210
https://bofip.impots.gouv.fr/bofip/797-PGP.html/identifiant=BOI-TFP-IFER-30-20210210


Fig. 2: Arrival and departure discretized distributions, both
with ENTD data and in the case where both variances were
multiplied by three. The arrival distribution is more peaky
than the departure one.

The distribution of EVs in the different (𝑎, 𝑑) classes is
given by the data from the French mobility survey ENTD7

2008. The arrival and departure time slots are both modeled
by independent normal distributions, respectively with means
8 am and 6 pm and variances 22 and 45 minutes (the
arrival distribution is more peaky). These distributions are
discretized into time slots of one hour (following the PV
generation data discretization) and shown in Fig. 2, with
ENTD data and in the case where both variances were
multiplied by three. The latter scenario with higher variance
could be realized with the remote working of nowadays. We
consider 𝑁 = 100 EVs, and the number 𝑁 (𝑎,𝑑) of EVs in class
(𝑎, 𝑑) is the product of 𝑁 with the distribution values of 𝑎

and 𝑑 + 1 (according to the convention that EV class (𝑎, 𝑑)
can charge between the 𝑎-th and 𝑑-th time slots included, and
leave at the beginning of time slot 𝑑 + 1). EVs are assumed
to have the same charging need, equivalent to their daily
driving consumption: 6 kWh, due to the 30 km daily driving
distance according to ENTD survey, at a 0.2 kWh/km average
consumption per distance unit. The charging need aggregated
over class (𝑎, 𝑑) is therefore 𝐿 (𝑎,𝑑) = 6 × 𝑁 (𝑎,𝑑) kWh.

B. Comparison of online and offline charging profiles

Figure 3 shows the optimal per-class aggregated charging
profiles obtained with the online and offline charging prob-
lems and corresponding to the charging needs associated to
ENTD data. We can see that considering the online charging
problem, the operator does not charge the few EVs which
arrived at the EVCS at 7 am right away, but wait for time slots
with higher PV generation. In the offline charging problem,
the operator knows that a lot of the PV generation will be
used to charge the large number of EVs arriving at 8 am and
therefore starts to charge the EVs arriving at 7 am as soon
as possible.

Figure 4 studies the power overload of the online charging
profile with respect to the offline one. More precisely, Fig. 4
shows the number of time slots when the online charging
power is greater than the offline one, and the average overload

7Enquête Nationale Transports et Déplacements: https://www.statistiques.
developpement-durable.gouv.fr/sites/default/files/2018-11/La mobilite des
Francais ENTD 2008 revue cle7b7471.pdf (in Fr.).

Fig. 3: Comparison of optimal per-class aggregated charging
profiles obtained with online and offline charging problems.
In the online charging problem, the operator waits for a
higher PV generation before charging the EVs which arrived
at 7 am, while in the offline charging problem, the operator
starts charging them right away because it knows at lot of
EVs arrive at 8 am.

Fig. 4: Average power overload of the online charging profile
over the offline one and number of overload time slots in
a day, in function of the EVs distribution variance. As the
number of EVs arriving early increases with the variance, the
overload increases too (see Fig. 3), but may be divided into
more time slots (when a new departure time is considered).

value during these time slots (blue line). From 125 % of
EVs distribution variance, some EVs start to leave at 8 pm
from the EVCS (see Fig. 2) and thus the online overload
(see Fig. 3) can be divided into 11 time slots instead of 10,
which mechanically reduces the average overload. The same
goes from 225 % of the variance, where some EVs start to
leave at 9 pm. However from 250 %, some EVs start to
arrive at 6 am at the EVCS which allows the offline charging
scheduling to start one hour earlier while the online one
still waits for the PV generation peak (see Fig 3), hence the
average overload increase. Except from these discontinuities,
the average overload increase with the variance for the same
reasons: the higher the variance, the higher the nuber of EVs
arriving early.

Finally, note that the explicit computations of the online
charging profile are approximately a thousand times faster
than a QP solver used for example for the offline optimization
problem.

https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-11/La_mobilite_des_Francais_ENTD_2008_revue_cle7b7471.pdf
https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-11/La_mobilite_des_Francais_ENTD_2008_revue_cle7b7471.pdf
https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-11/La_mobilite_des_Francais_ENTD_2008_revue_cle7b7471.pdf


C. Comparison of online and offline CUPs

The last Fig. 5 compares the CUPs obtained with the online
and offline methods. To better illustrate the differences, the
prices are plotted for different variances of EV arrival and
departure distributions. More precisely, we suppose that the
variances of both the arrival and departure distributions can
go up to 300 % of the ENTD values (see Fig. 2). The vertical
axis of Fig. 5 is normalized so that the highest point is equal
to one.

First, Fig. 5 shows that from 250 % of variance values,
the discretized EV classes distribution starts to consider EVs
arriving at the EVCS at 6 am or 10 am (see corresponding
online CUPs), which also explains the discontinuities in the
CUPs. Note that by definition, the online CUP _ (𝑎,𝑑) reflects
the marginal cost of the operator computed at the arrival 𝑎

of the EV class (𝑎, 𝑑), and not the effective marginal cost
(calculable at the departure 𝑑 of the EV class). Therefore, in
the online charging problem, EVs arriving at some time 𝑎1
are likely to pay a CUP cheaper than EVs arriving at 𝑎2 > 𝑎1,
because the prices of the former only take into account the
charging of EVs arriving at 𝑎1, while the latter take both EV
classes into account (see Fig. 5).

This fairness aspect seems not addressed in the literature
and could constitute a future work. Similarly, most part of
the increasing and decreasing features of the CUPs are also
caused by this issue: for example, for a higher variance
of arrival distribution, there is a lower proportion of EVs
arriving before or at 8 am, which explains why the CUP
associated to 𝑎 = 8 decreases. Aside from that, Fig. 5 shows
that the online CUPs do not depend on the departure time and
the offline CUP is the same for all EV classes. The reason
is that, in this use case of commuting and PV generation,
any small change in the charging need of an EV class can be
compensated by the charging profiles of the other EV classes
in order to keep a smooth total load (this is not true in the
example given in Fig. 1).

VII. CONCLUSIONS AND PERSPECTIVES

This paper introduces an online charging scheduling algo-
rithm adapted for asynchronous EVs arrival and departure.
At each EV arrival time slot, the operator of the EVCS
updates the remaining quantities to charge until each potential
departure time slot. Algorithm.1 is used to find the corre-
sponding optimal per-class aggregated charging profiles. This
online procedure requires minimal information and yields
operator’s charging costs only 1 % higher than the optimal
value (obtained by an omniscient operator performing an
offline scheduling optimization). The CUPs defined as the
optimized marginal operator’s costs are guaranteed at EVs
arrivals, but still suffer from fairness issues (first EVs to arrive
likely to pay less).

The design of a CUP more correlated with the total time
spent by an EV at the EVCS is currently under investigation.
The following working topic will be to integrate this CUP
into the complete system taking into account the driving and
charging decisions of EVs as well as the interactions between
different system operators, and to show that this CUP can be
an optimal incentive mechanism.

Fig. 5: CUPs (vertical axis normalized) in function of the
variance of EV classes’ distribution, for each EV class (𝑎, 𝑑)
and both online and offline scheduling problems. The offline
CUP does not depend on the EV class due to the smoothed
total load (see Fig. 3). For the same reason, the online CUP
does not depend on the EV departure time. However, because
this CUP is given at the EV arrival, it is cheaper for EVs
arriving earlier because the charging load of future EVs is
not taken into account.

APPENDIX: PROOF OF PROP 1: ALGO 1 OPTIMAL

Proof. Let (ℓ̃𝑑𝑎,𝑡 )
𝑑∈D𝑎

𝑎≤𝑡≤𝑑 be the output of Algo 1. The sorted
departure times set can be written D𝑎 = {𝑑1, . . . , 𝑑𝐻 }
with 𝐻 the set’s cardinal. Let D𝑛

𝑎 = {𝑑1, . . . , 𝑑𝑛} and
L𝑎,𝑛 = {𝐿𝑑

𝑎 , ∀𝑑 ∈ D𝑛
𝑎 }. We are going to show that

𝑃(𝑛) = “(ℓ̃𝑑𝑎,𝑡 )
𝑑∈D𝑛

𝑎

𝑎≤𝑡≤𝑑 is solution of P
(
L𝑎,𝑛

)
” for all 𝑛 ∈

{1, . . . , 𝐻} by recurrence, which will prove Prop. 1 because
problems P (L𝑎) and P

(
L𝑎,𝐻

)
are equivalent.

Initialization: By definition, problems P
(
L𝑎,1

)
and S are

equivalent, therefore (ℓ̃𝑑1
𝑎,𝑡 )𝑎≤𝑡≤𝑑 = `WF

(
𝐿
𝑑1
𝑎 ,

(
ℓ0
𝑡

)
𝑎≤𝑡≤𝑑1

)
is

solution of P
(
L𝑎,𝐻

)
.

Recurrence: For any 𝑛 ∈ {1, . . . , 𝐻−1} we show 𝑃(𝑛+1),
assuming 𝑃(𝑛). Problem P

(
L𝑎,𝑛+1

)
is convex and differen-

tiable because function 𝑓 is, so that it is equivalent to its
Karush-Kuhn-Tucker (KKT) conditions:

∀𝑑∈D𝑛+1
𝑎 ,∀𝑡, ℓ𝑑𝑎,𝑡×

( ≥0︷                               ︸︸                               ︷
𝑓 ′

(
ℓ0
𝑡 + ℓ

𝑑𝑛+1
𝑎,𝑡 +

∑︁
𝑑∈D𝑛

𝑎

ℓ𝑑𝑎,𝑡

)
− `𝑑

)
= 0, (5)

with `𝑑 the (charging need) equality constraints Lagrange
multipliers. We show that (ℓ̃𝑑𝑎,𝑡 )

𝑑∈D𝑛+1
𝑎

𝑎≤𝑡≤𝑑 is solution of (5).
By definition of (ℓ̃𝑑𝑛+1

𝑎,𝑡 )𝑎≤𝑡≤𝑑 and the KKT conditions of S,
(5) is verified for 𝑑 = 𝑑𝑛+1 and all 𝑡 ∈ {𝑎, . . . , 𝑑}, with
`𝑑𝑛+1 = `𝑛+1 the Lagrange multiplier of S.

Let `1, . . . , `𝑛 be the Lagrange multipliers of P
(
L𝑎,𝑛

)
.

For 𝑑𝑘 ∈ D𝑛
𝑎 , there are two cases. For 𝑡 such that ℓ𝑑𝑛+1

𝑎,𝑡 = 0,
(5) is verified with `𝑑𝑘 = `𝑘 . Otherwise, (5) is verified with
`𝑑𝑘 = `𝑛+1. �
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