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Abstract—Grid-forming inverters-based autonomous micro-
grids present new operational challenges as the stabilizing ro-
tational inertia of synchronous machines is absent. We propose
in the paper a control architecture for frequency and voltage
control with good scalability properties. At slower timescales
it allows to incorporate a distributed secondary control policy
for which we provide a stability result with line conductances
taken into account. At faster timescale this control architecture
satisfies a passivity property for a wide range of parameters. The
distinctive feature of the voltage control scheme is that it has a
double loop structure that uses the DC voltage in the feedback
control policy to improve performance. The frequency control
policy employs the inverter output current and angle to provide
an improved angle droop policy. The performance of the control
schemes is illustrated via advanced simulations.

I. INTRODUCTION

A microgrid can be described as an interconnection of
inverter-interfaced distributed generators into a controllable
system, which can be operated in grid-connected or au-
tonomous mode. The latter relies on grid-forming inverters
for frequency and voltage regulation. Grid-forming inverters
do not have the stabilizing rotational inertia as synchronous
machines (SMs). Hence these present new operational chal-
lenges, and it becomes crucial to design control policies that
guarantee the stability of autonomous microgrids.

The design of efficient control schemes for frequency and
voltage regulation, and power allocation is still an important
problem that is receiving a significant amount of research
effort. Existing schemes often have various drawbacks such
as steady state frequency deviation, as in e.g. droop control
strategies [1]–[3], or inaccurate power allocation at faster
timescales as in angle droop control [4]–[7]. Other alternatives
based on numerical optimization exist, e.g. the linear matrix
inequalities (LMIs) based full-state feedback policies [8], [9],
which are single loop schemes, and implemented together with
non-droop techniques. [8]. In general, non-droop techniques
require that an optimal power flow (OPF) problem is solved for
the entire microgrid at predefined intervals and the setpoints
transmitted to each inverter [8]. Hence, proportional power
sharing cannot be guaranteed during the period between the
load change and the new OPF setpoints being communicated.
Another approach is passivity based techniques, which allow
a decentralized control design with scalability guarantees as
in e.g. [9], [3].
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In this paper we propose a control architecture for frequency
and voltage control with good scalability properties. In contrast
to single loop strategies e.g. state feedback schemes [8], [9]
and more conventional approaches as in [1], [7], our scheme
has a double loop structure that uses the DC voltage in the
feedback policy to eliminate power imbalance, thereby pro-
viding current limiting capabilities and improving DC voltage
regulation. Also, we propose a frequency control scheme that
exploits the angle dynamics to provide an improved angle
droop policy which allows appropriate passivity properties.
Furthermore, a distributed secondary control policy at slower
timescales is proposed. This achieves power sharing without
requiring an OPF to be solved, and is provably stable, under
certain design conditions, even when line conductances are
taken into account. By contrast, secondary control schemes in
the literature usually assume lossless lines to prove stability,
e.g. [10], or require an OPF to be solved [8], [9]. Our main
contributions are summarized as follows:
• Our control architecture allows to incorporate a distributed

secondary control policy at slower timescales for which a
stability result can be proven with line conductances taken
into account. At faster timescales a passivity property is
satisfied for a wide range of parameters.

• The voltage control policy has a double loop structure
that uses the DC voltage in the feedback control policy to
improve performance. The frequency control scheme uses
the inverter output current direct coordinate and angle to
provide an improved angle droop.

• We demonstrate the performance of the proposed schemes
via advanced simulations.

The remainder of the paper is organised as follows. In
section II we give various preliminaries. In section III we de-
scribe the frequency and voltage control schemes. A secondary
control policy is proposed in section IV. Finally, simulation
results are given in section V and conclusions in section VI.

II. PRELIMINARIES AND MODELS

A. Notation and Definitions

Let R≥0 = {x ∈ R|x ≥ 0}, R>0 = {x ∈ R|x > 0},
and S = (−π2 ,

π
2 ). Let 1n denote the n-dimensional column

vector of ones, In is the identity matrix of size n, e = [1 0]>,
e1 = [0 1]>, e2 =

[
0 1
0 0

]
, J =

[
0 1
−1 0

]
and j =

√
−1. Let

x = col(x1, . . . , xn) ∈ Rn denote a column vector with entries
xj ∈ R, and whenever clear from context we use the notation



x = col(xj). We denote diag(aj) an n×n diagonal matrix with
diagonal entries aj , and blkdiag(Aj) is a block diagonal matrix
with entries Aj ∈ Rn×n. The Kronecker product is denoted
by ⊗, and ‖A‖2 denotes the 2-norm of matrix A ∈ Rm×n. We
use the Park transformation, as in [3], to transform a balanced
three phase AC signal into its direct-quadrature components.
Such quantities at a bus j in the local reference frame are
found by using the local frequency ωj(t) in the transformation,
and we refer to these by the lower-case dq subscript. Similarly,
quantities in the common reference frame are found by using
a constant common frequency ω0 in the transformation, and
for such variables we use the upper-case subscript DQ. The
dq and DQ frames are related by

xDQ(t) =R(δ(t))xdq(t),

R(δ(t)) =

[
cos δ(t) − sin δ(t)
sin δ(t) cos δ(t)

]
, δ̇(t) = ω(t)− ω0,

(1)

where δ(t) ∈ S is the angle between the dq and DQ reference
frames. The time argument t will often be omitted in the text
for convenience in the presentation.

B. Network model
The network is described by a graph (N,E) where N =
{1, 2, . . . , |N |} is the set of buses, and E ⊆ N × N is the
set of edges (lines). The grid-forming inverters and loads are
connected at the respective buses. The entries of the incidence
matrix B ∈ R|N |×|E| are Bjz = 1 if bus j is the source of
edge z and Bjz = −1 if bus j is the sink of edge z, with
all other elements being zero. L = BB> ∈ R|N |×|N | is the
Laplacian matrix. We assume that all the power lines and loads
are balanced and symmetric. Consider the π-model of a line
connecting a bus j ∈ N to a bus k ∈ N with resistance
and inductance Rjk, Ljk ∈ R>0 and shunt capacitance and
conductance Cj , Gj ∈ R>0; and a resistive-inductive load with
parameters R`j , L`j ∈ R>0. The line and load dynamics in DQ
coordinates are given by

ClV̇bDQ = (−Gl + ω0ClJ)VbDQ + IoDQ − I`DQ −BIlDQ

LlİlDQ = (−Rl + ω0LlJ)IlDQ + B>VbDQ

(2)

L`İ`DQ = (−R` + ω0L`J)I`DQ + VbDQ (3)

where IlDQ = col(iDQ,jk) ∈ R2|E|; VbDQ = col(vbDQ,j),
IoDQ = col(ioDQ,j), I`DQ = col(i`DQ,j) ∈ R2|N |; Rl =
(diag(Rjk)⊗ I2), Ll = (diag(Ljk)⊗ I2) ∈ R2|E|×2|E|; Cl =
(diag(Cj)⊗I2), Gl = (diag(Gj)⊗I2), R` = (diag(R`j )⊗I2),
L` = (diag(L`j ) ⊗ I2), J = blkdiag(J) ∈ R2|N |×2|N |; B =
(B ⊗ I2) ∈ R2|N |×2|E|; iDQ,jk, ioDQ,j , i`DQ,j , vbDQ,j are
two-dimensional vectors that include the DQ components of
the line current, injected current, load current and bus voltage
respectively.

C. Grid-forming Inverter Model
1) Grid-forming inverter model in local reference frame:

Fig. 1 shows the schematic of a three-phase DC/AC grid-
forming inverter. The DC circuit consists of a controllable
current source idc which takes values in R>0, a conductance
Gdc ∈ R>0 and capacitance Cdc ∈ R>0. The AC circuit has
an LCL filter with inductances Lf , Lc ∈ R>0, resistances
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Fig. 1. Grid-forming inverter circuit diagram.
Rf , Rc ∈ R>0, a conductance Gs ∈ R>0, and a shunt
capacitance Cf ∈ R>0. m is a balanced three-phase sinusoidal
control input signal. We describe the inverter dynamics by
its average model since the switching frequency is very high
compared to the microgrid frequency and the filter sufficiently
attenuates the harmonics. Hence, we consider the inverter
model, formulated in the local (dq) reference frame, rotating
with the local frequency ωj , as in ([3]). To interconnect the
inverters with the network (2), it is convenient to transform the
dq model ([3]) to the common (DQ) reference frame, rotating
at the constant common frequency ω0. Using (1), the repre-
sentation of the dq model ([3]) in the DQ frame is compactly
given for the multi-inverter model, with mDQ = R(δ)mdq , as

CdcV̇dc =−GdcVdc + Idc −
1

2
I>DQmDQ, δ̇ = ω − ω01n

Lf İDQ =(−Rf + ω0LfJ)IDQ +
1

2
VdcmDQ − VoDQ

Cf V̇oDQ =(−Gs + ω0CfJ)VoDQ + IDQ − IoDQ

LcİoDQ =(−Rc + ω0LcJ)IoDQ + VoDQ − VbDQ

(4)

where ω = col(ωj), Idc = col(idc,j), Vdc = col(vdc,j) ∈
R|N |; δ = col(δj) ∈ S|N |; IDQ = col(iDQ,j), VbDQ =
col(vbDQ,j), IoDQ = col(ioDQ,j), mdq = col(mdq,j) ∈
R2|N |; Cdc = diag(Cdcj ), Gdc = diag(Gdcj ) ∈ R|N |×|N |;
Rf = (diag(Rfj ) ⊗ I2), Rc = (diag(Rcj ) ⊗ I2), Lf =
(diag(Lfj )⊗ I2), Lc = (diag(Lcj )⊗ I2), Cf = (diag(Cfj )⊗
I2), Gs = (diag(Gsj ) ⊗ I2), Vdc = (diag(vdc,j) ⊗ I2),
R(δ) = blkdiag(R(δj)) ∈ R2|N |×2|N |; IDQ = (diag(iD,j) ⊗
e + diag(iQ,j) ⊗ e1) ∈ R2|N |×|N |; mDQ = col(mDQ,j) ∈
R2|N |, n = |N |; iDQ,j , ioDQ,j , vDQ,j , voDQ,j are two-
dimensional vectors that include the DQ components of the
inverter currents and voltages respectively.

D. Passivity
We review below the notion of passivity, and its use to

guarantee microgrid stability in a decentralized way. We use
the notion of passivity as defined in [11, Definition 6.3], but
with the system state vector x and input u replaced by the
deviations x − x∗, u − u∗ respectively, where (x∗, u∗) is an
equilibrium point. By exploiting the passivity property of the
lines when these are represented in DQ coordinates it can
be shown that Assumption 2.1 is a sufficient decentralized
condition for stability, as stated in Theorem 2.2 (see e.g. [9]
where a more advanced line model is also used).

Assumption 2.1: Each inverter in the system (4) with state
vector x = [δ>, V >dc , I

>
DQ, V

>
oDQ, I

>
oDQ]>, input u = −VbDQ

and output y = IoDQ satisfies the passivity property [11,
Definition 6.3] about an equilibrium point (x∗, u∗).

Theorem 2.2 (Closed-loop stability): Suppose there exists
an equilibrium point x∗m = (x∗N , x

∗) of the interconnected in-



verter dynamics (4) and network (2), (3), for which the inverter
dynamics satisfy Assumption 2.1. Then such an equilibrium
point is asymptotically stable.

III. PROPOSED CONTROL SCHEMES

A. Proposed Frequency Control

Grid-forming inverters must operate in a synchronized man-
ner despite load variations and system uncertainties. Our aim
is to design a decentralized frequency control scheme that
restores frequency to its nominal value after a disturbance,
and can be incorporated with a secondary control policy to
provide power sharing capabilities.

To this end, we propose a frequency control scheme that
can be seen as an improved angle droop policy that leads
to passivity properties in the DQ frame. This scheme takes
the inverter output current IoD := e>IoDQ (i.e., the first
component of IoDQ) and the angle δ as feedback to adapt
the frequency as described below:

ω = ω01n − kpe>IoDQ − kIδ + χ (5)

where kp = diag(kp,j), kI = diag(kI,j) ∈ R|N |×|N |>0 are
the matrices of the droop and damping gains respectively,
e = (In ⊗ e) ∈ R2|N |×|N |, and χ = col(χj) ∈ R|N | are
set-points. Considering (5) with the δ̇ in (4) results in an
improved version of angle droop where the term kIδ provides
the necessary damping of the angle dynamics which helps the
inverter model (5) to satisfy a passivity property in the DQ
frame (discussed in section V-A). The current IoD allows to
achieve power sharing by appropriately adjusting χ, and the
choice of kp sets the power sharing ratio (section IV). The
parameters χ are assumed to be transmitted to each inverter
by secondary control. χ can provide additional capability to
correct clock drifts which may arise due to clock inaccuracies
as discussed in [4]. Furthermore, considering (5) with the δ̇
in (4) the frequency of each inverter at equilibrium equals the
common constant frequency, i.e. ω∗ = ω01n (section V).

A further benefit of our proposed controller (5) is that it
provides inertia and damping similar to the dynamic behaviour
of the SM, which is not achievable with traditional angle droop
control [4]–[7]. To show this, substitute (5) into the δ̇ dynamics
in (4), to give

Mδ̇ = −Dδ − e>IoDQ +Mχj , (6)

where M = k−1
p , D = k−1

p kI . Equation (6) is analogous to a
swing equation, with the frequency replaced by the angle δ. M
corresponds to the inertia, and D the damping coefficient. The
droop gains kp can be chosen to shape the desired (virtual)
inertia M , and kI provides an additional degree of freedom to
design D. This is an improvement compared to the traditional
angle droop control [4]–[7] where the inertia M is zero and
only kp is available to design D.

B. DC voltage regulation

To ensure DC voltage regulation we present a DC voltage
proportional-integral (PI) controller

Idc = −ΛP (Vdc − 1nvdc,r)− ΛIζ, ζ̇ = Vdc − 1nvdc,r, (7)

where ζ = col(ζj) ∈ R|N | is the integrator state, ΛP =

diag(ΛP,j), ΛI = diag(ΛI,j) ∈ R|N |×|N |>0 are the proportional
and integral gains respectively.

C. Inverter output voltage regulation

Grid-forming inverters must regulate the voltage of the
grid they form, hence they need to have voltage regulation
capability. This is achieved in our proposed scheme via the
control signal mDQ in (4). In particular, we follow the standard
double loop design where the inner loop is faster than the
outer one. One distinctive feature of our scheme is that it
uses the DC voltage to eliminate power imbalance in the
inner loop. First, the reference current irDQ,j is generated by
the outer voltage loop by means of PI control acting on the
voltage deviation voDQ,j −R(δj)eVn−nq,je2ioDQ,j . We use
−nq,je2ioDQ,j = −nq,jioQ,j to adjust the direct-coordinate
of R(δj)eVn, similar to the conventional reactive power based
voltage droop control in [1], [7]. Then, the inner control loop
generates mDQ,j by means of PI control acting on the power
imbalance iDQ,jvdc,r − irDQ,jvdc,j . The compact form of the
voltage control scheme is given by

β̇DQ =VoDQ −R(δ)eVn − nqIoDQ

IrDQ =− cp(VoDQ −R(δ)eVn − nqIoDQ)− cIβDQ

ξ̇DQ =IDQ1nvdc,r − IrDQVdc

mDQ =− λP (IDQ1nvdc,r − IrDQVdc)− λIξDQ.

(8)

where βDQ = col(βDQ,j), ξDQ = col(ξDQ,j), IrDQ =

col(irDQ,j) ∈ R2|N |; cp = (diag(cp,j) ⊗ I2), λP =
(diag(λP,j)⊗ I2), cI = (diag(cI,j)⊗ I2), λI = (diag(λI,j)⊗
I2), nq = blkdiag(e2nq,j) ∈ R2|N |×2|N |

>0 ; IrDQ =

(diag(irD,j)⊗ e+ diag(irQ,j)⊗ e1) ∈ R2|N |×|N |; Vn ∈ R>0 is
the nominal voltage, nq,j ∈ R>0 is the voltage droop gain.

IV. SECONDARY CONTROL SCHEME

Here we discuss the active power sharing that (5) can
provide when χ is updated via the distributed scheme de-
scribed below, which can be seen as a secondary control policy
occurring at slower timescales:

χ̇ = −αLχ+ αLkIδ. (9)

where α > 0. The power sharing property achieved by (9) at
equilibrium is stated below (proof given in the Appendix).

Proposition 4.1 (Power sharing): At equilibrium the dynam-
ics given by (2)–(5), (7)–(9) satisfy

I∗oD,j

I∗oD,k

=
kp,k
kp,j

, ∀j, k ∈ N. (10)

Remark 4.2: (10) gives approximate power sharing at equi-
librium. Given the active power P ∗o,j := V ∗oD,jI

∗
oD,j ,∀j ∈ N

and (10), the power sharing ratio between inverter j, k ∈ N is

P ∗o,j
P ∗o,k

=
V ∗oD,j

V ∗oD,k

I∗oD,j

I∗oD,k

=
V ∗oD,j

V ∗oD,k

kp,k
kp,j

, ∀j, k ∈ N. (11)

If V ∗oD,j = V ∗oD,k, which is a property that approximately
holds since the voltage does not vary much compared to
its nominal value, the active power is proportionally shared



among the inverters according to the ratio kpk/kpj . kp,j are
chosen inversely proportionally to the inverter ratings.

It can be shown that the equilibrium point is also locally
asymptotically stable under an assumption of timescale sepa-
ration between the secondary control and the inverter/network
dynamics. For the analysis below we assume that χ is updated
at a much slower timescale (e.g. 100 ms) than the inverter and
line dynamics (typically about 1 ms) such that in this timescale
(2)–(5), (7), (8) is assumed to have reached equilibrium, thus
we obtain the linearized static model (12).

δ̃ = −(kIk
−1
p + F (δ∗)Vn)−1k−1

p χ̃ (12)

where F (δ∗) = e>Y2J
>R(δ∗)e, Y2 = ((Rc − ω0LcJ) +

Y −1
1 −nq)−1, Y1 = (Gl−ω0ClJ)+(R`−ω0LlJ)−1+B(Rl−
ω0LlJ)−1B>. Linearizing (9) around (χ∗, δ∗) gives

˙̃χ = −αLχ̃+ αLkI δ̃. (13)

We now state the stability result. Its proof is in the Appendix.
In the theorem we make use of the following quantity:

M(δ∗) = In + kI(kIk
−1
p + F (δ∗)Vn)−1k−1

p . (14)

Theorem 4.3: Consider the system (12), (13) andM(δ∗) as
in (14). Suppose |δ∗j | < π/2, ∀i ∈ N , and kp,j , kI,j ,∀j ∈ N
are selected such that τ = kI,j/kp,j ∀ j ∈ N, for some τ > 0.
When |δ∗j | are sufficiently small at an equilibrium point of
the interconnected system, then this is locally asymptotically
stable. In particular, asymptotic stability is guaranteed if

‖∆‖2 < K−1λn−1(H) (15)

where ∆ = L(M(δ∗) −M(0n)), H = LM(0n) and K =∥∥V −1
∥∥

2
‖V ‖2 is the condition number of H , where V is its

diagonalizing eigenbasis, and λn−1(H) is its second smallest
eigenvalue (all eigenvalues of H are real).

Remark 4.4: The upper bound in (15) can easily be com-
puted as L and M(0n) are known matrices. It should also be
noted that in the example given in section V, this condition
is only slightly conservative and is easily satisfied (with
considerable margin) for all realistic values of δ∗.
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Fig. 2. An autonomous inverter-based microgrid consisting of five grid-
forming inverters. The sign ↓ denotes loads.

V. SIMULATION RESULTS

In this section we assess numerically the passivity of the
inverters and illustrate via simulations their performance.

A. Passivity assessment of inverters

We investigate whether the passivity property stated in As-
sumption 2.1, i.e. a decentralized condition for stability, is sat-

TABLE I
MICROGRID PARAMETERS

Description Value
Inverter parameters Rfj

=0.1 Ω, Lfj
=5 mH, Cfj

=50 µF, Cdc,j=10 mS,
Rcj

=0.2 Ω, Lcj
=2 mH, Gdc,j=10 mS, Gsj

=3 mS
Controller parameters ω0 = 2π(50) rad/s, vdcr =103 V, Vn=311 V, α = 667,

kp,j=0.06, nq,j=0.078, kI,j=40, cp,j ,ΛP,j=1,
cI,j ,ΛI,j=10, λP,j = 1/vdc,r , λI,j = 25/vdc,r

Loads parameters R`,1, R`,2, R`,3=20 Ω, R`,4, R`,5=25 Ω,
L`,1, L`,3=30 mH, L`,2, L`,4=40 mH,
L`,5=20 mH, 3.0 kW/0.5 kVar at bus 1

Switched loads 2.5 kW at buses 1, 2, 3 & 4
Line parameters R12=0.2 Ω, R45 = 0.15 Ω, R23, R34, R51=0.1 Ω,

L12, L34 = 4 mH, L23=2.8 mH, L45=3.5 mH,
L51=3 mH, Cj=0.1 µH, Gj=1 mS

Conventional scheme kp,j=0.06/311, nq,j=0.078/311,
Kpv=5, Kiv=10, Kpi=2, Kii=15

TABLE II
EQUILIBRIUM VALUES

δ∗1=-0.0231, δ∗2=-0.0162; I∗DQ1=(14.3,-3.18), I∗DQ2=(14.2,-2.73);
V ∗
oDQ1=(310,-3.55), V ∗

oDQ2=(311,-5.04); I∗oDQ1=(13.4,-7.83),
I∗oDQ2=(13.2,-7.39); m∗

DQ1=(0.33,0.036), m∗
DQ2=(0.33,-0.037).

δ∗1=-0.0194, δ∗2=-0.0192, δ∗3=-0.0254, δ∗4=-0.025, δ∗5=-0.0268; I∗DQ1=(14.7,-1.06),
I∗DQ2=(14.6,-0.633), I∗DQ3=(14.6,-1.14), I∗DQ4=(14.6,-0.367), I∗DQ5=(14.6,-0.129);
V ∗
oDQ1=(310,-8.55), V ∗

oDQ2=(311,-6.14), V ∗
oDQ3=(310,-8.08), V ∗

oDQ4=(311,-4.32),
V ∗
oDQ5=(311,-5.41); I∗oDQ1=(13.7,-5.97), I∗oDQ2=(13.7,-5.57), I∗oDQ3=(14.6,-1.14),
I∗oDQ4=(13.7,-5.11), I∗oDQ5=(13.7,-4.41); m∗

DQ1=(0.35,0.078), m∗
DQ2=(0.35,

-0.077), m∗
DQ3=(0.36,0.057), m∗

DQ4=(0.36,0.070), m∗
DQ5=(0.35,0.079)
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Fig. 3. Passivity of grid-forming inverters: (a) with proposed control scheme;
(b) with conventional frequency droop and voltage scheme [1]; (c) with
proposed control scheme for the example presented in section V-B

isfied with the proposed control scheme (5), (7), (8). We con-
sider a fast timescale, i.e. the secondary control parameter χ is
taken as constant, since this is adjusted at slower timescales.
Passivity is numerically assessed via the KYP Lemma [11]
which requires G(jω) +G∗(jω) ≥ 0 for all frequencies, where
G(jω) is the frequency response matrix of the linearization of
(4), (5), (7), (8) with input ũ = −ṼbDQ and ỹ = ĨoDQ.
The test is performed on various benchmark examples in [3],
[4], [6], [7], [12] commonly used in the literature to validate
control policies for grid-forming inverters. Table II presents
a set of realistic equilibrium points typical for inverters with
rating 10-15 kVA around which the analysis can be performed.
Fig. 3(a) shows the passivity assessment with the proposed
scheme, where each plot corresponds to benchmark examples
in [3], [4], [6], [7], [12], and this is compared to that with
the conventional frequency and voltage scheme [1] shown in
Fig. 3(b). Fig. 3(a) shows that the minimum eigenvalue of
G(jω) + G∗(jω) is non-negative over all frequencies, thus
validating that the inverters in these examples satisfy the
passivity property for appropriate values of kI,j , in contrast
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to those with conventional schemes shown in Fig. 3(b). We
also tested the proposed scheme on a five-inverter system
presented in section V-B, with validation of the passivity
property illustrated in Fig. 3(c).

B. Numerical simulation
We show via simulations in MATLAB / Simscape Electrical

the performance of the proposed control policy (5), (7)–(9).
Fig. 2 shows the five-inverter test system, and Table I presents
the system parameters where the subscript j=1, . . . , 5. The
simulation model is detailed and realistic, and includes the
PWM switching of the inverters. The values of kI,j , kp,j
satisfy the selections in Proposition 4.3. The performance of
the proposed scheme is compared to that with conventional
frequency droop and voltage control, as in [1], in the presence
of disturbances: a 2.5 kW load is switched on at buses 1 and 3
at t = 1.5 s, and an equivalent load is switched off at buses 2
and 4 at t = 3.5 s. All other loads are connected to the corre-
sponding buses throughout the simulation. The response with
the proposed control scheme is shown in Fig. 4(a)–(e), and that
with the conventional frequency droop and voltage scheme
[1] shown in Fig. 4(g)–(k). The frequencies synchronize to
ω0/2π Hz, in contrast to the conventional frequency droop
that has steady-state frequency deviation. The active power
sharing with communication agrees with Proposition 4.1. The
proposed control scheme also distributes the reactive power
and shows improvement in the transient response. Since the
proposed voltage scheme uses the DC voltage in its feedback
control policy, its response shows significant improvement in
the DC voltage regulation, in contrast to the conventional
voltage scheme [1]. The output voltages satisfy the typical
requirement 0.9Vn < ‖VoDQ,j‖ < 1.1Vn, ∀j ∈ N .

VI. CONCLUSION

We have proposed a control architecture for frequency and
voltage control with good scalability properties. At slower

timescales it allowed to incorporate a secondary control policy
which is provably stable with line conductances considered. At
faster timescale it offered passivity properties for a wide range
of parameters. The voltage control scheme has a double loop
structure that uses the DC voltage in the feedback control pol-
icy to improve performance. The frequency control policy uses
the inverter output current and angle to provide an improved
angle droop. Simulations on advanced models showed that the
control schemes lead to good transient performance.
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APPENDIX

Proof of Proposition 4.1 At equilibrium we have 0n =
Lkpe>I∗oDQ, which holds if and only if kpe

>I∗oDQ =
kpI
∗
oD = κ̄1n, for some κ̄ > 0. The latter implies (10).

Proof of Theorem 4.3: Substituting (12) in (13) gives
˙̃χ = −αLM(δ∗)χ̃ (16)

With τ as in Theorem 4.3, M(0n) is positive definite. H
(i.e. LM(0n)) is diagonalizable [13] and has a single zero
eigenvalue and the rest strictly positive. LM(δ∗) always has
the same single zero eigenvalue, and since the eigenvalues vary
continuously with δ∗ [14], there exist sufficiently small values
of δ∗ such that the eigenvalues of LM(δ∗) are non-negative.
Suppose the second smallest eigenvalue of H , λn−1(H),
satisfies condition (15). Then, from an application of the
Bauer-Fike theorem on ∆+H it can be deduced that all other
eigenvalues of LM(δ∗) are strictly positive and hence (16) is
asymptotically stable.


