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Abstract—In this paper, we investigate the management of
energy storage control and load scheduling in scenarios consider-
ing a grid-connected photovoltaic (PV) system using packetized
energy management. The aim is to reduce an average aggregated
system cost through the proposed packetized energy management
controller considering household energy consumption, procure-
ment price, load scheduling delays, PV self-sufficiency via gen-
erated renewable energy and battery degradation. The proposed
approach solves the joint optimization problem using estab-
lished heuristics, namely genetic algorithm (GA), binary particle
swarm optimization (BPSO), and differential evolution (DE).
Additionally, the performances of heuristic algorithms are also
compared in terms of the effectiveness of load scheduling with
delay constraints, packetized energy transactions, and battery
degradation cost. Case studies have been provided to demonstrate
and extensively evaluate the algorithms. The numerical results
show that the proposed packetized energy management controller
can considerably reduce the aggregated average system cost up
to 4.7%, 5.14%, and 1.35% by GA, BPSO, and DE, respectively,
while meeting the packetized energy demand and scheduling
delays requirements.

I. INTRODUCTION

As a result of the high penetration of renewable energy

resources (RERs) and modern communication technologies,

power system operations have been improved considerably in

terms of sustainability and economics [1]. The RERs have

now become an alternative solution to replace fossil fuels and

protect environmental concerns. Among RERs, photovoltaic

(PV) energy with the storage system is the most feasible

and fast-spreading technology due to storing surplus energy,

improving energy efficiency, and enhancing the stability of

the system. Though promising, energy generation from PV is

stochastic in nature to time which affects the lifetime of the

storage system due to the frequent charging and discharging

rate and hence, becomes less successful to manage fluctuating

peak load demand (PLD) [2]. Therefore, PV with a storage

system may not be the simple solution for the PLD problem.

In this regard, energy management techniques (EMTs) are

the potential way to address optimally the PLD problem

and reduce energy usage cost considering demand response

strategies (DRS) and the exchange of surplus energy between

smart homes and interconnected microgrids.

Recently, numerous EMTs have been exploited to determine

economical and optimal energy allocation plans considering

energy sources (like PV and grid energy) [1]–[4] and DRS

with dynamic pricings [5]–[7] subject to the various household

loads, quality of service [8], [9] and energy trading [10]–[12]

constraints. For instance, the authors in [5], [6] studied energy

scheduling of residential users to reduce the peak to average

ratio (PAR) and minimize energy cost. Ahmed et al. [7] exam-

ined consumer behavior patterns for the prediction of future

aggregated load and analyzed different user reference models,

comfort, and control parameters of appliances in the context

of activation delay. Some authors [8], [9] proposed packetized

energy management (PEM) approach to address the demand

of thermostatically controlled loads (TCL) and validate the

quality of service (QoS). In contrast, the authors in [1]–[4],

[10]–[12] focused on incorporating RERs together with battery

storage system and management techniques. Shafie et al. [10]

investigated energy cost minimization and consumer satisfac-

tion level in home energy management system (HEMS) under

demand response programs (DRPs), while Dinh et al. [11]

conducted a study for optimizing energy consumption costs

and participating in bilateral energy trading with the main (ex-

ternal) grid. Similarly, other authors [1]–[3], [12] proposed an

HEMS model to reduce the peak load and energy usage costs,

while Leithon et al. [4] considered joint optimization of energy

scheduling at consumer and trading for profit maximization.

Some of the former works [5]–[7] have addressed consumer-

centric problems such as load scheduling and energy cost

minimization, but they ignored the integration of RERs and

bilateral energy trading. Others [8], [9] considered interesting

PEM approaches, but they did not discus the role of energy

retailers (i.e., utilities) that coexist with consumers and provide

pricing mechanisms. In subsequent works [1]–[4], [10]–[12],

RERs with battery storage systems were incorporated in the

system model, but the impacts of user inconvenience and PEM

approaches have not been explicitly studied. Further, the above

mentioned works have less thoroughly investigated bilateral

energy exchange between the consumer and utility (except

[10]–[12]). Moreover, most of the existing works (e.g., [5]–[7]

[1]–[4], [10]–[12]) have not been considered PEM approach

specifically.

In this paper, we propose a packetized energy management

controller (P-EMC) and present a joint energy scheduling and

storage system management for PV system with the aim to
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minimize the energy packet transactions cost, load scheduling

delays, and cost of the storage battery degradation. The battery

can be charged from roof-top PV panels and an on-grid

(external) power grid. For the PV system, we assume that

energy generation from PV system will first serve the load, and

the remaining energy is stored in the energy storage system.

We consider three types of loads and characterized them based

on arrival time, length of operation time, unit energy packets

demand, and maximum allowable delay. For batteries, the

constraints are related to the charging/discharging operation,

and the resulting degradation costs.

The main contributions of the paper are:

• We propose a packetized energy management controller

(P-EMC) for the household loads with the characteristics

such as unit energy packets (EP), the cost of EP, and

scheduling of the EP. We also model the internal pric-

ing mechanism for the EP transactions considering the

respective constraints.

• The internal pricing model provides a general criteria

(subject to constraints) for bilateral energy trading be-

tween users and the energy packet service provider.

• The proposed P-EMC solves a joint stochastic optimiza-

tion problem considering well-known optimization algo-

rithms such as genetic algorithm (GA), binary particle

swarm optimization (BPSO), and differential evolution

(DE).

II. SYSTEM MODEL

Consider a residential smart home connected with renewable

and non-renewable energy sources, an energy storage system

(i.e., an energy storage battery), and collection of household

loads as shown in Fig. 1. The energy generation sources

include an external utility grid and a roof-top photo-voltaic

(PV) system. A P-EMC is installed in the smart home to

perform the following tasks: (i) communicate with the energy

sources, storages and loads in the system; and (ii) devise

and actuate optimal PEM schedules for the considered energy

sources, storage and loads.

A. Load model

The smart home loads i ∈ {1, 2, ..., L} are energy con-

sumption elements that operate at discrete time slots t ∈
{0, 1, 2, ..., T0 − 1}. Each load is characterized by different

attributes as follows; Load arrival time (λi
t), Scheduling start

time (Si
t), Length of operation time (ρit), Maximum allowable

delay (dit,max), Load departure time (γi
t), and Unit energy

packets demand (Ei
t). Consider that load i consumes energy

in the form of discrete value packets, and each discrete packet

is denoted by Ei
t . Where, Ei

t =
Ej−Ej−1

tk−tk−1
, ∀ j ∈ {1, 2, ..., J}

and ∀ k ∈ {1, 2, ...,K} as illustrated in Figure 1.

Let ni
t be the number of unit Ei

t demanded by load i at time

slot t. The total energy packets demanded by all the loads

(L) over the entire scheduling horizon (T0) is given by the

following equation.

EL
T0

=

L
∑

i=1

T0−1
∑

t=0

ni
t × Ei

t (1)

Fig. 1: Schematic diagram of the residential smart home

Let dit be the actual delay incurred by load i at time slot t

after serving, such that,

dit =
Si
t − λi

t

dit,max − ρit
(2)

In (2), if λi
t = Si

t then dit=0, and the load is immediately

served. Otherwise, it is delayed as per (2). A greater value

of dit in (2) means downgraded comfort level of the end-user.

Thus, (3) is formulated to imposed user QoS based lower and

upper limits on dit.

dit,min ≤ dit ≤ dit,max (3)

Following up on (2) and (3), the average experienced delay

of a specific load i over the entire scheduling horizon T0 is

calculated as follows.

d
i

T0
=

1

T0

T0−1
∑

t=0

dit, (4)

Finally, (5) is formulated to ensure that the user QoS based

average bounds (0 and d
i

T0,max) on d
i

T0
are satisfied over the

entire scheduling duration T0.

0 ≤ d
i

T0
≤ d

i

T0,max (5)

Let Cd(d
i

T0
) be the function to denote the cost incurred due

to d
i

T0
under the assumptions that Cd(.) is a non-decreasing

continuous convex function and its derivative C′

d(.) < ∞.

Thus, the objective here is to minimize Cd(d
i

T0
).

B. Internal price model

Smart home customers either have a deficiency or a surplus

of energy packets. Energy deficient customers have greater

energy demand than their locally generated and stored energy,

and customers with an energy surplus have a smaller energy

demand than their locally generated and stored energy. Energy

deficient customers can buy energy packets from the external

grid through an energy packet service provider (P-ESP) to



meet their demand. Similarly, customers with surplus energy

packets can sell them back to the external grid through the

P-ESP to avoid energy wastage.

Buying and selling of energy packets is carried through an

internal pricing model of the P-ESP [13], which considers

constraints of feed-in-tariff of the utility, and demand-and-

supply ratio (RDS
t ) within the energy packet sharing zone.

The P-ESP acts an agent for all the smart home prosumers. It

buys energy packets from the prosumers in homes and utility

grid at unit prices P
buy
t and Q

buy
t , and sells energy packets to

them at unit prices P sell
t and Qsell

t , respectively.

P sell
t =

{

Qsell
t Q

buy
t

(Qbuy
t −Qsell

t )RDS
t +Qsell

t

if 0 ≤ RDS
t ≤ 1

Qsell
t otherwise

(6)

It is evident from (6) that: (i) if RDS
t = 0, the smart home

prosumers do not sell energy packets and the required number

of energy packets are procured from the utility at Q
buy
t ; (ii)

if RDS
t ≥ 1, the smart home prosumer has an energy packet

surplus and this surplus is fed back to the utility at Qsell
t ; and

(iii) if 0 < RDS
t < 1, the selling price is dynamically adjusted

between Qsell
t and Q

buy
t . On the other hand, internal energy

packet buying price is defined in (7) considering internal

energy packet selling cost, P-ESP’s charge and utility’s charge.

P
buy
t =

{

P sell
t RDS

t +Q
buy
t (1−RDS

t ) if 0 ≤ RDS
t ≤ 1

Qsell
t otherwise

(7)

In (7), 0 < RDS
t < 1 means that the total energy packet

demand is greater than the total energy packet supply of the

smart home prosumers in the energy packet sharing zone, and

this energy packet deficiency is fulfilled by buying energy

packets from the utility at Q
buy
t .

Based on the load and the internal price models in this

article, the cost of buying and selling energy packets from

and to the utility at time slot t via P-ESP can be expressed by

(8) and (9), respectively, as follows.

C
buy
t = P sell

t

(

EL
t − (Epv

t + Es
t )
)

if EL
t > E

pv
t + Es

t (8)

Csell
t = P

buy
t

(

(Epv
t + Es

t )− EL
t

)

if E
pv
t + Es

t > EL
t (9)

Thus, the average cost of energy packets transactions (C
tx

t )

can be calculated by the following equation.

C
tx

t =
1

T0

T0−1
∑

t=0

(

Csell
t − C

buy
t

)

(10)

The objective is to maximize the prosumer’s energy packet

revenue by minimizing the difference between total energy

packets selling and buying. However, this buying and selling

of energy packets is constrained by the following equations:

L
∑

i=1

T0−1
∑

t=0
xi
t = EL

T0
(11)

Ei
t,min ≤ xi

t ≤ Ei
t,max (12)

Ei
t − xi

t ≤ Bmax (13)

In the above, (11) implies that flexible loads can be scheduled

to operate at other allowable time slots (xi
t); however, in doing

so, the total energy packet demand must be kept constant.

Similarly, (12) ensures that the scheduling of flexible loads

(xi
t) should not violate user’s base energy packet demand

(Ei
t,min) and the upper bound of supply capacity (Ei

t,max),

Finally, (13) imposes a constraint on the feed-in energy packets

when the utility prohibits selling of additionally generated

energy packets (Bmax) due to grid security issues.

C. PV system

The smart home prosumers are equipped with roof-top PV

panels generating renewable energy. Adopting the model in

[14], let E
pv
t be the amount of harvested energy from the PV

source at t, such that,

E
pv
t = ηpv ×Apv × Iir(1− 0.005(Ta((t) − 25)) (14)

where ηpv is conversion efficiency of the PV system Apv

is the area of the generator, Iir is the solar irradiance at

time t, 0.005 is temperature correction factor and Ta is the

outdoor temperature. We assume that E
pv
t is firstly given to

the scheduled load at t (xL
t =

L
∑

i=1

xi
t), and the remaining (r

pv
t ),

if any, is stored in the energy storage system. Let the consumed

portion of E
pv
t be c

pv
t , such that,

c
pv
t = min

{

xL
t , E

pv
t

}

(15)

0 ≤ r
pv
t ≤ E

pv
t − c

pv
t (16)

It is worth noting here that charging and discharging activities

of energy storage battery incur a degradation cost in it. Thus,

the decision to store the unused portion of E
pv
t (i.e., r

pv
t ) in the

battery is taken by the packetized energy controller installed

in the smart home.

D. Energy storage system

Depending on the current energy packet demand and sup-

ply conditions, energy storage system can be characterized

by three possible states: charging, discharging and idle. For

instance, it can be charged from a roof-top PV system, or a P-

ESP or a combination of both. Similarly, it can be discharged

to meet the energy packet requirement of different loads. In

an idle state, it is neither charging nor discharging. These state

transitions are bounded by the following set of constraints.

0 ≤ r
pv
t + E

g
t ≤ Hmax (17)

0 ≤ kt ≤ Kmax (18)

Es
min ≤ Es

t ≤ Es
max (19)

Specifically, (17) ensures that the total charging amount at

time slot t (r
pv
t + E

g
t ) does not exceed its upper bound

(Hmax). While, (18) limits the total discharging amount at t

(kt) by its upper bound (Kmax), and (19) imposes minimum

and maximum capacity constraints (Es
min and Es

max) on the

current energy state of the battery (Es
t ). The dynamics of the



current energy state of the storage battery evolve according to

the following equation.

Es
t+1 = αtE

s
t + η

(+)
t

(

r
pv
t + E

g
t

)

− η
(−)
t

(

kt

)

(20)

In (20), αt accounts for a decay rate in the battery with

the passage of time, and η
(+)
t and η

(−)
t denote the charg-

ing and discharging efficiencies, respectively. Let a
(+)
t ,

{1, if r
pv
t +E

g
t > 0; 0, otherwise} indicate whether a charging

activity occurred (a
(+)
t = 1) or not (a

(+)
t = 0). Similarly,

a
(−)
t , {1, if kt > 0; 0, otherwise} is defined to track

the occurrence of a discharging activity. These charging and

discharging activities incur degradation cost in the battery,

denoted by c
(+)
t and c

(−)
t , respectively. Based on extensive

analyses of the authors in [15], the degradation costs in the

storage battery at t can be modelled as follows.

c
(+)
t = hr

ht

{(

rpvr +Eg
r

r
pv
t +E

g
t

)w0

× exp
w1(

r
pv
t

+E
g
t

r
pv
r +E

g
r
−1)

}

(21)

c
(−)
t = hr

ht

{(

kr

kt

)w2

× expw3(
kt
kr

−1)

}

(22)

In (21) and (22), if the actual cyclic depth-of-charge (i.e., r
pv
t +

E
g
t ) and depth-of-discharge (kt) are kept at their rated values

(i.e., rpvr +Eg
r and kr), then the lifetime of the storage battery

is affected by current variations corresponding to their rated

values. Thus, from (21) and (22), the battery degradation cost

is modelled at t is given in (23) and its average over the T0

duration is given in (24).

Cs
t = a

(+)
t c

(+)
t + a

(−)
t c

(−)
t (23)

C
s

T0
= 1

T0

T0−1
∑

t=0
Cs

t (24)

Our aim is to minimize the average degradation cost in (24).
III. PROBLEM FORMULATION

Let θt , [Eg
t , c

pv
t , r

pv
t , kt] be a vector of energy flow control

actions at time slot t. Here, our objective is to minimize an

average aggregated system cost consisting of: (i) the cost of

energy packet transactions (selling and buying) with the P-

ESP (C
tx

T0
), (ii) the cost of household load scheduling delays

(Cd(d
I

T0
)), and (iii) the cost of energy storage battery degra-

dation (C
s

T0
). Our aim is to find an optimal policy {θt, d

I
t }

while minimizing the average system cost. Thus, the problem

is formulated as follows.

minimize

{θt, d
I
t }

Cd(d
I

T0
) + C

tx

T0
+ C

s

T0

Subject to: (2),(3),– (9), (12), (13), (15) – (19), and

r
pv
t + E

g
t ∈ [0,min{Hmax, E

s
max − Es

t }] (25)

kt ∈ [0,min{Kmax, E
s
t − Es

min}] (26)

Where, dIt , [d1t , d
2
t , ..., d

L
t ], and Cd(d

I

T0
) ,

[Cd(d
1

T0
), Cd(d

2

T0
), ..., Cd(d

L

T0
)]. Clearly, the above problem

is a joint stochastic optimization problem between the three

considered system costs. This joint scheduling makes the

problem very difficult to solve by traditional mathematical

optimization techniques [16]. Therefore, in the next section,

we solve it through heuristic optimization techniques.

IV. OPTIMIZATION TECHNIQUES

Heuristic algorithms are often used to solve joint stochastic

optimization due to: (i) their ability to solve high dimensional

and complex problems with a fast convergence rate, (ii) ease

in implementation, and (iii) capable of avoiding local optima

in pursuit of a global optima [16]. We solve the optimization

problem in Section III via three popular heuristic algorithms:

genetic algorithm (GA), binary particle swarm optimization

(BPSO) algorithm, and differential evolution (DE) algorithm.

Their brief description is given next (more details in [16]).

A. Genetic Algorithm (GA)

1) Generate an initial population of solutions (i.e., P0) ran-

domly and binary encode it such that Xa ∈ {1 ifP0(a) >
0.5, otherwise 0}. Each binary coded individual Xab, b ∈
[1, k] is a k-dimensional vector denoting ON and OFF

states of a given load.

2) Use {Eg
t , E

pv
t , Es

t , E
i
t , P

sell
t , P

buy
t } as the inputs, and

equations (2),(3),(5),(14),(20) to determine the objective

function in Section III.

3) Determine the fitness of each individual in P0 with

respect to the objective function in step 2 above.

4) Adopt the process of tournament selection and select

the best individuals (who perform better on objective

function) from P0, as parents.

5) Employ local crossover and bit-flip mutation with a

probability between 0 and 1 to reproduce new individ-

uals and update P0.

6) Repeat step 2 above until the individuals in P0 approach

the optimal values or the total number of generations

reach a preset number.

B. Binary Particle Swarm Optimization (BPSO)

1) Randomly generate an initial swarm (S0) in a pair

(−→psi,
−→vi ), where the vector −→psi ∈ Rn represents the

position of the particles and −→vi corresponds to their

velocity −→vi ∈ Rn. Here, −→psi is computed with respect

to −→vi as follows.

−→psi(t) =
−→psi(t− 1) +−→vi (t) (27)

where −→psi(t− 1) is the previous position of the particle

in the swarm.

2) Evaluate each particle in the swarm using the input val-

ues from {Eg
t , E

pv
t , Es

t , E
i
t , P

sell
t , P

buy
t } and equations

(2),(3),(5),(14),(20) to determine the objective function

in Section III. If the evaluated particle minimizes the

objective function then remember the particle as pbest.

3) Update S0 and −→vi of each particle in the swarm using

(28), while respecting the upper and lower bounds of −→vi
in (29).

−→vi (t) =
−→vi (t− 1) + α1rand1

(

pi −
−→psi(t− 1)

)

+ · · ·

α2rand2

(

pg −
−→psi(t− 1)

)

(28)



−→vi (t) =

{

−→vimax if−→vi >
−→vimax

−−→vimax if−→vi < −−→vimax

(29)

In (28), α1.rand1 and α2.rand2 are random weights for

local and global positions (pi and pg) of the particle,

respectively. And −→vimax and −−→vimax are the maximum

and minimum velocities of the particle at any point,

respectively. Note that −→psi is bounded between [0,1].

4) Evaluate the updated swarm (S1) by comparing it with

S0 using objective function in Section III and select

the particles with lowest value of objective function and

refer their position as pgbest.

5) Repeat step 4 above until particles in S1, S0 approach

the optimal values or the total number of generations

reach a preset number.

C. Differential Evolution (DE)

1) Generate an initial population Pe ∈ Rn randomly using

(30), where Pe = [pe1, pe2, pe3, pe5, · · · pen].

Pe = pLe + randi(p
U
e − pLe ) (30)

pUe , p
L
e are the upper and lower bounds of Pe, respec-

tively, and randi is the uniformly distributed random

number between 0 and 1. Note that the individuals in

Pe represent the operation states of appliances.

2) Generate a mutation (Mde) vector using equation (31)

to determine the objective function in Section III con-

sidering values from {Eg
t , E

pv
t , Es

t , E
i
t , P

sell
t , P

buy
t } and

equations (2),(3),(5),(14),(20).

Mde = vr1 + C(vr2 − vr3) (31)

Where C is a constant between [0,1], vr1, vr2, and

vr1 are three vectors randomly picked up from Pe and

r1, r2, r3 are positive integers ∈ {1, 2, 3, 4...n}.

3) Generate a new trial vector Tv through crossover be-

tween Pe and Mde using (32). Calculate objective func-

tion based on Tv. Step (2) and (3) are compared to

achieve minimal value of objective function.

Tv =

{

Mde if rand(j) ≤ cr

Pe if rand(j) > cr
(32)

4) Repeat step 3 above until individuals in Pe approach the

optimal values or the total number of generations reach

a preset number.

V. RESULTS AND DISCUSSION

Considering a scheduling horizon of one day (i.e., 24 hours),

let the PV system generate a maximum energy E
pv
t,max=9.62

kWh with ηpv=18%, and Apv=0.5. For simulation purpose,

the solar irradiance and temperature data are taken from [14].

The maximum battery storage capacity is set at 20 kW. In

simulations, surplus energy packets are fed back to the utility

via P-ESP with minimum and maximum P sell
t are 0.06 cents

and 0.57 cents, respectively [17]. Similarly, energy packets

are bought from utility at P
buy
t which fluctuates between 0.6

cents/kWh and 3.7 cents/kWh [18].

5 10 15 20 25 30 35 40 45 50 55
1

2

3

4

5

6

7

8

9

10

Fig. 2: Delay performance of GA, BPSO, and DE: d
i

T0
vs d

i

T0,max, ∀i ∈
{1, 2, ..., L}

5 10 15 20

Time (hour)

-20

-10

0

10

P
E

C
 (

ce
nt

s)

Without P-EMC

Selling cost
Buying cost

P-EMC with GA

5 10 15 20

Time (hour)

-10

-5

0

5

10

P
E

C
 (

ce
nt

s)

Selling cost
Buying cost

P-EMC with BPSO

5 10 15 20

Time (hour)

-20

-10

0

10

P
E

C
 (

ce
nt

s)

Selling cost
Buying cost

P-EMC with DE

5 10 15 20

TIme (hour)

-10

-5

0

5

10

P
E

C
 (

ce
nt

s)

Selling cost
Buying cost

Fig. 3: Performance of GA, BPSO, and DE in terms of packetized energy
transactions

Figure 2 illustrates the relative performance between the

selected algorithms (GA, BPSO and DE) in terms of aver-

age experienced load scheduling delay against the maximum

allowable delay. It can be seen from the figure that as the

maximum allowable delay requirement of loads (d
i

T0,max)

is relaxed/increased, their average experienced delay (d
i

T0
)

also increases. However, the increase in d
i

T0
is sublinear for

all the compared algorithms as compared to the increase in

d
i

T0,max. For example, GA has achieved d
i

T0,max=53.09, which

is greater than BPSO and DE by 11.03 % and 19.03% ,

respectively. This means scheduled load can be delayed which

in turn reduces the average system cost and consequently the

user QoS is compromised.

Figure 3 depicts the relative performance of the selected

algorithms (GA, BPSO and DE) employed in the P-EMC

and a special case without the P-EMC in terms packetized

energy transactions that involve both selling to and buying

of energy packets from the utility. As shown in the figure,

without P-EMC case has a selling cost of 34.9 cents and
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a buying cost of 108.08 cents in a day. When optimization

algorithms are employed, the selling costs are increased to

88.9 cents, 54.4 cents, and 57.9 cents for P-EMC with GA,

with BPSO, and with DE, respectively. Similarly, the buying

costs are decreased to 67.33 cents, 99.74 cents, and 95.51 cents

for P-EMC with GA, with BPSO, and with DE, respectively.

It is can be seen that GA has a higher selling cost than BPSO

and DE, because GA tends to schedule the load in later time

slots (achieves greater delay) and utilizes the harvested energy

from the PV system and the storage system in a more efficient

manner, thus it sells greater amount of energy to the utility.

This means that the optimization algorithms help to allocate

the energy resources effectively and also facilitate the user

to sell back the surplus energy to the utility grid via P-ESP.

Further, BPSO and DE moderately schedule the load at time

slots when energy from PV system is less or not available.

Hence, achieving a relatively lower selling cost than GA.

Figure 4 reflects the impact of battery capacity on the

average system cost under the selected algorithms. It is evident

from the figure that when increase in the battery capacity

induces a decrease in the average system cost for all the

selected algorithms including the unscheduled special case of

without P-EMC. A higher battery capacity provides more flex-

ibility in scheduling loads at low peak hours. Thus, resulting

in reduced average system cost. The optimization algorithms

reduced average system cost to 4.7%, 5.14% and 1.35% by

P-EMC with GA, BPSO, and DE, respectively.

VI. CONCLUSION

This paper proposed P-EMC for a residential smart home

considering household loads, energy transaction cost, PV

energy generation and energy storage system. The proposed P-

EMC employs the internal pricing model and solves the joint

stochastic problem using optimization algorithms such as; GA,

BPSO, and DE. Simulation results have shown that optimiza-

tion algorithms are capable to schedule the load effectively

and reduced the energy procurement cost to 37.65%, 7.5%,

and 11.5% by GA, BPSO, and DE, respectively. Furthermore,

the proposed P-EMC helps the consumer to sell surplus energy

up to 88.9 cents, 54.4 cents, and 57.9 cents with the help of

GA, BPSO, and DE, respectively. In the future, we aim to

extend our case study for the different PV generation profiles

and pricing signals and analyze the level of accuracy of each

designed optimization algorithm.
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