
A Hybrid Numeric/Symbolic Program for Checking Functional and

Timing Compatibility of Synthesized Designs*

Chih-Tung Chen and Alice C. Parker

Department of Electrical Engineering

University of Southern California

Los Angeles, CA 90089-2562

Abstract

In this paper, we pn.xent an e~cient and effective

approach for checking synthesized RTL designs. This

approach uses a hybrid numeric/symbolic simulation

to extinct the functional behavior of a design while

taking into account the intemction between the data

and control paths as well as the clocking scheme and

delays, and employs a gmph-comparison procedure to

perform the checking task. The value of this work was

shown by its ability to identify problems with an early

version of the ADAM Control Signal Genemtor (CSG)

software, which was then corrected accordingly.

1 Introduction

Due to the cost of engineering and fabrication and

the critical marketing time, design errors of digital

systems should be eliminated at all costs. Although

one may argue that the synthesized designs should

be correct by construction, in reality there is no such

guarantee unless the whole synthesis process, includ-

ing techniques and programs, can be formally vali-

dated. However, to validate a large software system

like a high-level synthesis system formally is still im-

practical, if not impossible, for current formal verifi-

cation techniques [9]. A more practical alternative is

to verify the synthesized designs with respect to their

specifications.

Although designs can be verified at various levels of

abstraction, it is desirable to find any design problem

as early as possible. In addition, a high-level synthe-

sis system may produce many designs for a given set

●This work was supported by the Advanced Research

Projects Agency and monitored by the Federal Bureau of In-

vestigation under Contract No. JFB190092. The views and

conclusions considered in this document are those of the au-

thors and should not be interpreted as necessarily representing

the official policies, either expressed or implied, of the Advanced

Research Projects Agency or the U.S. Government.

0-81 86-5785-5/94 $03,00 @ 1994 IEEE

of constraints; without proper verification, there is a

lack of sense of correctness while the designs are being

evaluated or compared. On the other hand, pure func-

tional validation is not enough because many design

errors are also related to the control and timing of the

design. Hence, we believe that there is a strong need

for an automatic tool which can check both the func-

tionality and timing of synthesized designs efficiently,

to be integrated in a high-level synthesis system.

This paper presents an efficient approach for check-

ing the RTL designs produced by the USC ADAM

high-level synthesis system. This technique is also

applicable to other synthesis systems incorporating a

similar design flow. Our approach is motivated by

the observation that the structural designs are derived

in a well-defined manner from the behavioral specifi-

cations [11] in the ADAM system. We found that

these RTL designs possess several common properties

so that the symbolic simulation technique can be ef-

fectively utilized tq perform the checking task. Using

this approach, we are able to not only verify the design

functionality formally but also take into account the

interaction between the data path and the controller

aa well as the timing issues, such aa delays and the

clocking scheme.

2 Related Work

There are a variety of approaches for design verifica-

tion (see [3, 10] for a survey). However, formal meth-

ods are still not practical at present and simulation-

bssed ones have theoretical limitations. The RLEXT

system by Knapp and Winslett [8] is the only one we

have found which can achieve some of our objectives.

RLEXT is a rule-based system which relies on a for-

mal model similar to the ADAM Design Data Struc-

ture (DDS) [7]. It allows the user to modify the de-

sign structure and then check the consistency of the

design with the ability to repair some design-rule vio-

lations automatically. Their approach, however, does

112

not mention the control logic, nor the interaction be-

tween the datapath and the controller. How the tim-

ing issues such as the clocking scheme and delays are

handled is not described.

In our work, hybrid numeric/symbolic simulation is

utilized to check the functional and timing compati-

bility of the synthesized chips. The idea behind sym-

bolic simulation is to evaluate circuit behavior over

expanded sets of signal values so that a number of op-

erating conditions can be simulated in a single run. In

late 1970’s, researchers at IBM first applied symbolic

simulation to hardware verification at the register-

transfer level [5]. The research activities [2] on this

problem only lasted till the early 1980’s due to the

weakness of the algebraic manipulation and the non-

determinacy caused by conditional and looping con-

structs [1]. Although this form of symbolic evaluation

is not powerful enough for general functional verifica-

tion at the RT level, we will show in this paper that it

can be made very useful when applied to the synthesis

domain where both the functional behavior and timing

of a design are equally important and the implementa-

tion is derived from the specification in a well-defined

manner.

3 Properties of Synthesized Designs

The problem which we are solving here can be

briefly described as follows:

Show whether or not the RTL implementation I will

perform the required computation specified in the con-

trol data j70w graph CDFGS for every execution in-

stance.

The implementation 1 itself is a static structure

which consists of a data path and a controller. We are

asked in this problem to obtain the dynamic relation-

ship between sequences of inputs and outputs while

I is physically operated under the specified clocking

scheme and input /output protocol. However, even if

we can faithfully obtain this dynamic behavior of I,

it is still very difficult to prove the correctness if 1

and CDFGS are regarded as two independent enti-

ties. This is because the problem is similar to showing

whether or not two dataflow graphs are equivalent,

which is believed to be intractable. Even a simple

problem like determining the equivalence of two finite-

precision algebraic expressions cannot be done in P

nor NP time if NP # CO-NP (see [4] for the proofs).

Fortunately, the implementation 1 is actually the

result of a mapping from CDFGS. The major tasks of

this mapping involve assigning the operations to con-

trol steps (scheduling), assigning the operations and

values to hardware (data path allocation and binding),

and generating a controller to deliver the required con-

trol signals (control synthesis) [11]. Consequently, 1,

if mapped correctly, will have the following properties:

Property 3.1 For each opemtion op in CDFGS,

there exz”sts a functional unit u in I such that u can

be configured to perform op and op is achieved by di-

recting all the input values of op to the corresponding

input ports of u.

Property 3.2 For each data dependence (val, op) in

CDFGS, there exists an interconnect path in I be-

tween the source of val and the corresponding input

port of the functional unit u which is designated to

perform op. The source of val can be an output port

of a functional unit or a stomge element. The path is

set up by using buses and/or switching devices.

Property 3.3 CDFGS dejines the required compu-

tations which have to be done in I for every execution

instance.

In fact, the information regarding these properties is

generally available after the synthesis process. For

example, this information is represented explicitly by

means of bindings in ADAM’s DDS representation.

4 Approach Overview

In order to produce an automatic tool for checking

synthesized designs quickly and effectively, we devel-

oped an approach which combines symbolic simulation

at the RT level with a behavior-comparison procedure

based on the properties described in Section 3.

The motivations to use symbolic simulation for our

approach are twofold. First, it provides formal re-

sults because the simulator operates over a symbolic

domain, and at the same time we are able to take into

account design timing in terms of the clocking scheme,

delays, and input/output protocols. Second, the sym-

bolic simulation results are ready for comparison with

the design specification for high-level synthesis since

they both can be represented in a similar form such

as a CDFG.

Figure 1 shows a flow chart which briefly illustrates

our approach. First, the design data is read from

the DDS. It includes the behavioral specification, the

structural implementation, the physical information if

available, and the module library. Next, we set up

the simulation parameters such as delays and clock-

ing, and the input/output protocol. We estimate the

wiring delays if the floorplan is provided. The control

flow of the design is analyzed to produce a list of all

possible execution paths.

The hybrid symbolic simulation performed next is

event-driven. It is a hybrid model because the data

. . .
L 13

E
START

rssd dssign
data from dds

setup
simulation
psrametars

hybrid
symbolii

simulation

*

no

collision y-
errors ?

no

graph
comparkm

no

1 1

\

udiagnosis
proOSss

&&
Figure 1: A flowchart ofourapprosch

path is evaluated symbolically but the controller is

simulated numerically so that all the control signals

will be either 1, 0 or unknown throughout the simula-

tion. A transport delay model is used in the simula-

tion. Due to lack of space, the delay modeling and tim-

ing checking will not be elaborated in this paper. The

simulator also constantly monitors the occurrences of

value collision on the wires. If any problem is found

during the simulation, a diagnosis procedure is called

to determine the cause. The result of the simulation is

represented by a dataflow graph which describes the

actual data operations and data transfers done by the

design.

Finally, the graphical simulation result is com-

pared with the graphical specification. If the com-

parison procedure finds any difference between these

two graphs, a diagnosis procedure is called to find the

possible design errors. The whole process is repeated

until no more execution paths are left.

5 Hybrid Symbolic Simulation

As we have discussed earlier, what is important for

a synthesized design is whether or not it performs the

required data operations and the correct sequencing of

data transfers for each execution instance. Also, many

design errors are related to the control and timing of

the design. Hence, we need to be able to extract the

circuit behavior in terms of the symbolic data oper-

ations and data transfers that occur in the datapath

and at the same time to emphasize exercising the con-

trol and modeling the timing. The hybrid symbolic

simulation to be described here performs exactly this

task.

Exscutaion Path
Paths Corrdiiion I

Ela
Figure 2: Execution paths of a state-transition graph

In our simulation model, the simulation proceeds

from one execution path to another.

Definition 5.1 An execution path is a direct path

from an initial state to an end state in the state-

transition gmphl of an FSM controller.

For example, the state-transition graph shown in Fig-

ure 2 contains three execution paths, each of which is

associated with a path condition that represents the

assumptions made along the path.

Definition 5.2 A path condition is an assignment for

a set of Boolean symbolic values which together de-

termine alternative paths through the state-tmnsition

gmph.

5.1 Element Evaluation

Data Path

The evaluation of a datapath module depends on its

behavior model. In DDS, this information is available

from the behavioral model of the component used to

implement the module. We represent this information

internally in the form of function tables. The func-

tion table of a datapath module defines the manipu-

lation of symbolic data for each possible condition on

the control lines, For example, a simple four-function

ALU is shown in Figure 3. If the input condition of

a module being evaluated is invalid, its outputs and

data storage, if any, are set to unknown.

The datapath carriers (nets) are used for propa-

gating the symbolic values. A carrier connecting more

than one output port requires those outputs to be tris-

tate. Normally, at most one tristate output is enabled

at any time. A value collision occurs if two or more

1Currently, we require the state-transition graph to be

acyclic. Techniques to handle cycles are under development.

114

so

*

B

S1 c •E
so SI c

00 A+B

01 A-B

10 A&B

11 AIB

propagation delay. 10 ns

Figure 3: A four-function ALU

output ports drive a carrier at the same time [8]. This

type of design error can be essily detected by the sim-

ulator.

Controller

The controller is evaluated when there is a change

on its clock signal. If the clock change results in a

state transition, the outputs are computed and the

controller moves to the next state in the current execu-

tion path. The path condition of the current execution

path is updated, if necessary, at each state transition.

For example, if the state transition requires the inputs

il and i2 to be 1 and O and if the symbolic values cur-

rently appearing at il and i2 are a and b respectively,

then a = 1 and b = O will be added to the path con-

dition. On the other hand, if a required input for the

state transition contains an unknown value, the simu-

lator aborts the current execution path and reports a

data-dependency violation.

5.2 Representation of Symbolic Data

In our simulation model, the symbolic values and

operations produced during the simulation are used to

build a bipartite data flow graph, which is the same

represent ation used for the design specification. A ver-

tex is created in the data flow graph whenever a new

symbolic value or operation is produced during the

simulation. If a symbolic value is the result of an op

eration performed by a functional unit, the operation

becomes its direct predecessor. Similarly, the symbolic

values which appear at the input ports of a functional

unit become the direct predecessors of the operation

being performed.

Our model is different from the early works [5,2] on

symbolic simulation at the RT level in the following

ways:

1.

2.

The overhead to propagate the algebraic expres-

sions is eliminated since we focus only on collect-

ing the actual data operations and data transfers

that occur in the data path.

A powerful algebraic manipulator is not required

since we do not try to simplify the expressions

during the simulation. Instead, the data flow

graph representing the simulation result is com-

pared with the specification using the graph-

isomorphism property to be discussed later.

This difference is also the reason that symbolic simu-

lation can be effectively applied to solve our problem.

6 Graph-Based Verification

In our approach, the behavior comparison is based

on the data flow graph model. Since the design speci-

fication is already represented in this model, only the

behavior of the structural implementation has to be

extracted and translated into this model. The hybrid

symbolic simulation described in Section 5 performs

this task for us. Therefore, the verification of the RTL

implementation 1 becomes the problem of comparing

two control dataflow graphs, CDFGS derived from

the input specification and CDFG1 derived during

the simulation. CDFG1, however, is actually a set

of dataflow graphs (DFG), each of which corresponds

to the result of simulating 1 for one of its execution

paths.

Because the design 1 is the result of a mapping from

CDFGS, there exists a strong relationship between

CDFGS and CDFG1 (see Section 3). In fact, there is

an isomorphic property between them. Consequently,

a graph-matching procedure based on this property

has been developed to compare them efficiently.

6.1 The Isomorphic Property

From Section 3, we know that the RTL implemen-

tation 1, if mapped correctly, will have several proper-

ties. In summary, 1 will perform the required compu-

tations specified by CDFGs for every execution in-

stance. The computations are done by making sure

the input values of each required operation are avail-

able at the corresponding input ports of the designated

functional unit which is configured properly.

Let DFG1 be the result of simulating I for one ex-

ecution instance under the path condition pc. If the

specification CDFGS is interpreted symbolically un-

der the same path condition pc, the result is a data

flow graph DFGs such that the predicate of each op

eration in DFGs is evaluated to true under pc.

Before we present the isomorphic property between

DFGs and DFG1, we first need to establish the cor-

respondence for all their primary input/output values.

This correspondence is important because it provides

the starting point to compare these two graphs.

Lemma 6.1 There ezists an one-to-one correspon-

dence between DFGs and DFGI for the primary in-

put/output values.

115

The detailed proofs of this lemma and the following

theorem can be found in our technical report [4]. In

short, this correspondence is established mainly be-

cause of the input/output protocol which determines

how to apply the input values to 1 and obtain the

corresponding output values.

Intuitively, the isomorphic property between

DFGs and DFG1 exists because I is synthesized in

such a way that each required operation in DFGs will

be performed by a designated functional unit at some

time and every data dependency will be preserved by

establishing a proper interconnection. Hence, if I is

synthesized correctly, each of the corresponding pri-

mary outputs of DFGs and DFGI should have sim-

ilar geometric properties which will be explained by

the following theorem.

Theorem 6.2 For each pair of the corresponding pri-

mary output values (outs, outI) of DFGS and DFG1,

the cones Cs and C12 of outs and outI respectively are

isomorphic.

The isomorphic property between Cs and C1 not only

implies that there is a one-to-one correspondence be-

tween their vertices and edges such that the incidence

relationship is preserved, but also requires that each

pair of corresponding vertices are compatible. In other

words, if the corresponding vertices are operations,

they must be of the same type. If they are values,

they have the same bitwidths.

6.2 A Graph Matching Procedure

Knowing that there is an isomorphic property be-

tween CDFGS and CDFG1, itbecomes straightfor-

ward to develop a method for behavior comparison.

In fact, all we need to do is to check whether or not

the cones of their corresponding output values are iso-

morphic for all the execution paths.

Unlike the general isomorphism problem in graph

theory, which is an important unsolved problem, it is

much easier to check the isomorphic property between

the cones of the corresponding output values because

the correspondences of their primary input and out-

put values are known in advance. Furthermore, the

correspondences of two operations can be established

ss soon as they are of the same type and all their in-

put values are equivalent whereas the vertices in the

general problem are typelesa. Based on this principle,

we developed a procedure for checking the isomorphic

2A cone of a vertex v in a graph G = (V, E) is a subgraph

C = (V’, E’) such that

1. V’ = { v } U predecessors(v)

2. for all VI, V2 in V’ if edge (VI, V2) in E then (VI, ~) is

also in E’.

equiv_check(C~,CJ

Create an attribute for all vertices in CS and Cl

I
t

Give a unique ID to each pair of primary input values

I
t

(find operationa such that >
● they are of the aema typa;

F

● thair attributea are nifi end

● all cerreaponding input valuee hava same

attributes

I
t

Give a unique ID to

. all operations being found, end

● each aet of corresponding output values

I
I +

yee

‘1’no

a vertex whose attribute ia nil

Figure 4: A procedure for the isomorphic check

property between the cones of two corresponding out-

put values as shown in Figure 4. Let outs and Outl of

DFGs and DFG1 be a pair of corresponding output

values and let Cs and C1 be their respective cones to

be checked. This procedure basically tries to estab-

lish the correspondences of the operations and values

between Cs and CI incrementally from the primary

inputs toward the primary outputs outs and outI. If

there is any operation or value whose correspondence

is not established (no ID is tagged), this procedure re-

turns fals~ otherwise, CS and C1 are equivalent and

true is returned.

7 Experiments

In order to show the effectiveness of our approach,

we performed a number of experiments with the de-

signs synthesized from the USC ADAM system. In

fact, our preliminary experiments immediately identi-

fied that the controllers generated by the ADAM con-

trol signal generator (CSG) tool [13] for these designs

were incorrect. CSG was then revised accordingly.

116

Shortly after CSG was revised, we experimented

with a non-pipelined AR filter. MAHA [12] was used

for scheduling and MABAL [6] for datapath allocation

and binding. This design is characterized as follows:

● It has 4 time steps.

● Both the input and output values are not latched.

● A two-phase non-overlapping clocking scheme is

used.

The controller generated by CSG contains only one

execution path with four states. The experiment was

carried out by holding the input values (symbolic) at

the input ports during the execution and obtaining the

symbolic values from the output ports at the end of the

4th clock cycle. The cones of these output values were

then extracted from the data flow graph which was

built during the simulation and compared correctly

with the ones specified in the original data flow graph.

We also experimented with a robot arm controller

whose control flow is much more complex than the

previous one. The design was synthesized in a sim-

ilar way except we required the inputs values to be

latched. The RTL implementation has 12 time steps

and 16 possible execution paths. The controller was

generated by CSG using status registers. We were able

to verify this RTL implementation with the following

conclusions:

All the constant values were required to be sup-

plied externally, which results in inefficient use of

input ports.

Conditional values were unnecessarily routed to

the output ports.

Some of the input values were not latched as spec-

ified.

We are continuing to experiment with other de-

signs under development, including video compression

chips.

8 Conclusions

In this paper, we have identified the properties of

automatically synthesized RTL designs to facilitate

the verification task. We also presented a hybrid sym-

bolic/numeric approach for checking both the func-

tional and timing compatibility of synthesized designs.

Several experiments have been conducted using this

approach, and the results indicate that our approach

is indeed effective and efiicient.

Further experiments with designs whose timing is

critical should be performed to demonstrate our abil-

ity and the advantage to take into account design tim-

ing during verification. In addition, data-dependent

delays and loops needs to be handled in the future.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R.E. Bryant. Symbolic Simulation - Techniques

and Applications. In 27th ACM/IEEE Design Au-

tomation Conference, 1990.

W.E. Cory. Symbolic Simulation for Functional

Verification with ADLIB and SDL. In 18th

ACM/IEEE Design Automation Conference, 1981.

P. Camurati and P. Prinetto. Formal Verification

of Hardware Correctness: Introduction and Survey

of Current Research. IEEE Computer, July 1988.

C.T. Chen and A.C. Parker. A Symbolic Approach

for Checking Functional and Timing Compatibility

of Synthesized Designs. Technical Report CEng

93-26, Univ. of Southern California, May 1993.

J.A. Darringer. The Application of Program Ver-

ification Techniques to Hardware Verification. In

16th ACM/IEEE Design Automation Conference,

1979.

K. Kugiikgakar and A.C. Parker. MABAL - A

Software Package for Module And Bus Allocation.

In lnt. Journal of Computer Aided VLSZ Design,

June 1989.

D.W. Knapp and A.C. Parker. A Unified Rep-

resentation for Design Information. In CHDL-85,

Elsevier, 1985.

D.W. Knapp and M. Winslett. A Formalization of

Correctness for Linked Representations of Datap-

ath Hardware, In IFIP Workshop on Applied For-

mal Methods for Correct VLSI Design, November

1989.

M.C. McFarland. Formal Verification of Sequen-

tial Hardware: A Tutorial. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, pp. 633-654, May 1993.

[10] M.C. McFarland. Practical Lessons in Verifica-

tion and High-Level Synthesis. AT&T Bell Labo-

ratories, Murray Hill, NJ 07974-2070.

[11] M.C. McFarland, A.C. Parker, and R. Cam-

posano. Tutorial on High-Level Synthesis. In 25th

ACM/IEEE Design Automation Conference, 1988.

[12] A.C. Parker, J. Pizarro, and M.J. Mlinar.

MAHA: A Program for Datapath Synthesis. In

23th ACM/IEEE Design Automation Conference,

1986.

[13] J.P. Weng and A.C. Parker. CSG: Control Path

Synthesis in the ADAM System. Technical Report

CEng 92-03, Univ. of Southern California, April

1992.

117

	Main Page
	ISSS94
	Front Matter
	Table of Contents
	Author Index

