
Applications of Attributed-Behavior Synthesis

Lawrence F. Arnstein and Don Thomas

Carnegie Mellon University, Pittsburgh Pennsylvania

The goal of this paper is to demonstrate some of the

Wpes of design problems that can be ad~iressed using the

ottribute~l-beh avior approach to high-level synthesis

bused design. In one example, assertions ure used to en-

jbrce a template hierarchy in an effort to expk)it data-jiow

regulario during high-level synthesis. In anothe~ asser-

tions are used 10 account for a probable <fleet of logic

rynthesis on register transfer level results, The advanta~e

of using the attributed-behavior approach to addressing

design problems at the algorithmic level is the flexibility

that stems from the use of a single general purpose syn-

lhesis tool and modeling language.

In attributed-behavior design, the engineer can exer-

cise control over a high-level synthesis tool by establish-

ing temporal and structural rekitionships between

operations in an ,algoritlnnic model that must be reflected

in the register transfer level model it pmduces[1]. This

paper centers ,around ARFILT and DIFFEQ, two bench-

mark examples that are frequently found in higl] level

:synthesis literature, and fully described in [3].

We first present results to show that Marionet [1], our

attributed-behavior synthesis tool, performs well in the

absence of design assertions. We then show that the at-

tributed-behavior approach to design specification and

synthesis is expressive and flexible enough to address a

range of issues that may ,arise in the course of design

space exploration.

1 AR-FILTER
FirsL we comp,we the performance of M,arionet with

that of SAM [2] for a range of schedule lengths. We use

the module library shown in Table 1 that is t,aken from

Jain and Parker [4] because we ,are interested in synthesis

resul~s that are obtained in the presence of a rich module

library. SAM is based on an enhancement of force-direct-

ed scheduling techniques first described by Paulin [8], in

which specific module instances and interconnection itl-

formation is considered in the computation of forces for

scheduling. In Marionet the concept of force-directed

scheduling is genemlized to include module inst.ame al-

location and mapping as well as scheduling.

The cost/performance trade-offs that were reatized

by SAM and by M,arionet ,are comp,ared in Figure 1. The

improvement of M,arionet over SAM can be attributed to

the more inclusive network based force formulation that

is implemented in M<MiOIleC it is more likely than SAM

to resist using sk)w/cheaper functional units that cm se-

verely reduce the scheduling freedom of other operations

in the graph.

TABLE 1. Module Library from [4]

Name Area mi12 Delay nS

add_l 4200 (21 uuits) 340

FIGURE 1. CosUPerformance Comparison

1400.0

1300,0
1200.0:

1100,0- Raw SAW Results ~

~ 1000.0:

g 900.0:

800,0 ;

; 700.0:

,= 600.0:

; 500.0:
; 400,0:
g 300,0-
“; 200,0] E
z 100.0
1? 0,0;

I
10 12 14 16 18

Schedule Leng~O 22 24 26 “

FIGURE 2. Run Time Comparison

20000.0 .Run ~rne~ .

Seconds

15000,0-

10000.0-

5000.0- Marionet

0’0: 10 12 14 16 18 20 22 24 26
Schedule Length

29
()-8186-5785-5/94 $03.00 @ 1994 IEEE

The run-time results of Figure 2 indicate that, though

Marionet performs consistently better than SAM in the

presence of a rich module library, there is a significant

cost in complexity. The increased complexity is due both

to the constraint propagation that is necessary for the sup-

port of attributed-behavior assertions, and to the extra

computation required for the more inclusive force com-

putation.

Though Marionet has the ability to select resources

from a rich module library, the complexity of the algo-

rithm is sensitive to the size of the domains of operations

(t-he set of possible control-step and functional unit as-

signments). Thus, for practical applications, it is impor-

tant to keep the domains as small as possible. In the next

section we examine how attributed-behavior assertions

can be used with Marionet both to control complexity and

to address a design issue that has heretofore been ad-

dressed only by specially designed synthesis tools. We

look at two closely related problems: that of module se-

lection and that of regularity exploitation as described by

Rim and Kurdahi[9].

1.1 Module Selection

One way to reduce the complexity that results from a

rich module library is to exclude some module types from

consideration for some operations. Though the module

selection choice can be left up to the engineer, the possi-

bility that these choices can be made automatically based

on the structure of the synthesis problem was investigated

by Jain and P,arker[4]. In that work, subsets of a given rich

module library are r,anked based on area and cost esti-

mates derived from the structure of the given data-flow

graph. A particular subset of the module library is chosen

based on the cost/performance objectives of the design.

To adapt this technique to the attributed-behavior ab-

straction, module selection decisions tnade using the

techniques described by J,ain and Parker can be expressed

~asunary cost ‘wsertions that require certain operations to

utilize certain resource types (not instances) from the full

module libmty. For instance, the assertions:
1. (cost (*i) == 36)

2. (cost (*2) == 36)

2. (cost (*4) == 245)

3. (cost (*5) == 245)

Effectively selects the fastest multiplier type for op-

erations 4 and 5 in Figure 3, while dictmiug that opera-

tions 1 and 2 utilize a slow multiplier, However, as unary

expressions, these assertions do not specify any particular

resource sharing relationship between the operations. In

adhering to these assertions, hhrionet will have fewer de-

sign decisions to make during synthesis, resulting in

shorter run-times. in the next section a generalization of

the module selection problem is discussed and some ex-

periments are presented,

1.2 Regularity Exploitation

One problem that most synthesis heuristics suffer

from is the lack of global perspective. While synthesis

tools are good at extracting fine groin regulm-ity, they may

fail to exploit important coarse grained relationships.

This limitation was addressed by Rao and Kur&hi [9].

They developed a special tool that identifies subgraphs

that appear frequently in a given data-flow graph. A mini

data-path, called a template, is designed (or synthesized)

for each type of sub-graph that is identified. These tem-

plates then become the primitive module library used for

synthesizing the super-graph that has anode for each sub-

gntph in the original graph. This hierarchical approach at-

10WSfor the exploiwtion of coarse-graiued regularity that

can be overlooked by many synthesis heuristics.

Note that in the trivial case, where each intlividuaJ

operation is its own sub-graph, this is equivalent to per-

forming module selection as described above. In fact, like

Jain and Parker, Rao and Kurdahi use a cost/performance

estimation function to evaluate the effect that warious

template configurations have on the design space of the

super-graph. There ,are two problems with the Rao and

Kurdahi’s approach: (1) the capabilities of the specialized

regularity analysis and extraction tool cannot be e,asily

combined with the capabilities of other speci,at synthesis

tools during the design process, and (2) some flexibility is

lost by rigidly enforcing the template hiemrchy. These

two problems can be solved by performing regularity ex-

traction at the attributed-behavior level prior to synthesis,

using assertions that establish temporal and structural re-

lationships between operations in a sub-graph.

To illustrate how the attributed-behavior abstraction

~audMarionet can support hierarchical regularity extrac-

tion, we apply assertions to the AR-FILTER to reproduce

the template hierarchy given by Rao and Kurdahi shown

in Figure 3.

FIGURE 3. A Hierarchy for AR-FILTER

template t 1
schedule data-path

Ff5

*
,.

*
. mu]t_ 1

+

Pa(id_1

tem~>latet2

30

To enforce this template hierarchy in M,arione~ the

following steps ,are taken: First, a primitive module li-

brary is seated that does not have multipliers and adders

per se, rather it has two types of resources, t 1 aUd t 2,

that can perform both add and multiply operations. The

cost of each type of template is derived from the cost

found for the mini data-path that implements it. The com-

plete module library for the templates t 1 and t 2 is

shown in Table 2; the costs ,are based on the module li-

br,ary shown in Table 1.

TABLE 2. Template Module Library

I I I I 1 I

E3EEiw=le uerarc y N en orce y cost an pa I .assertlous

that establish the internal scheduling and resource shariug

relationships between all of the nodes in each subgraph,

Additionally, a unary cost assertion is applied to one of

the nodes from each sub-graph to select a template type

from the module library. The assertions that should be

used for sub-graphs tl:{*l,*2,+3} <and

t 2: { *4,*5,+6,+7 } of Figure 3 are shown below:

//
1.
2.

3.

4.

5.

II

6.

7.

8.

9.

10

11.

assertions for template tl

(cost (*l, *2) == cost (’1)) // sharing. . .
(cost (*l, +3) == cost (’1)) // relatiOnshi?x.

(cost (*l) == 266) // choose template type.

(path (*l, *2) == 1) // establish internal . . .

(path (*l, +3) == 2) // schedule.

assertions for template t2

(cc)st(*4,*5) == c0st(*4)

(cost(*4,+6) == cost(*4)

(cost(*4, +7) == cost(*4)

(cost(*l) == 287)

(path(*4,’5) == 1)

(path(*4,+6) == 2)

12. (path(*4,+7) == 3)

There is one problem with this approach that would

require some modification of our tool. Marionet wintry

to ,allocate registers ,aud interconnections forw.tues that

,areintemal tothetemplate, andthus, akeadyprovided. To

solve this problem, it would be necessary for M.arionet to

accept directives smting that some value tmnsfers and

value life-times remain un-mapped in the synthesized re-

suit. Support for such directives wouldbeauseful feature

in its own right, that would ,allow an engineer to use a syn-

thesis tool to produce p<artiat rather than complete de-

scriptions. In this case, the p,artial implementation that

would result is j ust the top level of the hierarchy.

Ignoring the extra interconnect produced by Mario-

net, the hierarchical design was synthesized for a range of

global schedule lengths, the results are shown in Table 3

which Comp,ares the ULUnber of ttH@atW of each type re-
quiredby M.ariouet to the numberof templates of each

type required by the optind hierarchical implementation

t.hatwas found by hand. Adrawbacko fthehier,wchical

approach is that it tends to inhibit the realization of fine

grained cost)perfotmance trade-offs. The advantage is

that the templates con be designed by hand at a lower lev-

el of abstraction for incre.med performance and decreased

size. Inthisexample, M,wionet lags onecont.rOl step be-

hind optimal in discovering when fewer t1 templates are

needed.

TABLE 3. Hkrarchical Synthesis Results

Results: 11-steps 14-steps 15-steps

Marwnetv.

Optimal tl t2 tl t2 tl t2

Marionet 2 2 2 2 1 2

(“)ptimal 2 2 1 2 1 2

l’hese results tend to support our cl.ann that the con-

straint propagation technique aud force-directed synthe-

sisfonnulation in Marionet, arecapableof the swne type

of hier,mchical synthesis that was previously available

only from a specialized tool

An advantage of the attributed-behavior approach is

increased flexibility. Due to the rigid hierarchy, Rae’s

system does not appe,ar to exploit the fact that the t2

template data-path can also implement the tl sub-

graphs. Thus, no matter how long the schedule gets, the

hiermchy alone requires that at least one template of each

type repurchased. Additional flexibility canbegivento

M,arionet by removing the unary cost assertions that re-

strict tl sub-graph stotheuseof only tl templates (re-

move assertion 3 above). The result of this simple

modification issl~own Table4. At 14-steps, two t2 ten-

plates <mesufficient forimplementing allofti]etl and

t2 subgraphs; this isdiscovered by M,arionet fertile 15-

step schedule, again one step behind optimal.

TABLE 4. Flexible Hierarchy Results

Resuh: 1l-steps 14-steps ls-stt?ps

Mzrionetv.

Optimal tl t2 tl t2 tl t2

Marionet 1 2 1 2 0 2

()ptimal 1 2 0 2 0 2

10 Mustrate t.he ettect ot granu anty extraction on

the time required for synthesis, the execution times for

the AR-FILTER witiltile l]ier,wcl]y el]forci:lg: lsseniolls”

carecomp~ared in Figure 4 to the execution times for the

flatAR-FILTE Rexperimen tsofFigure l, Tl)eatJditionof

assertions actually serves to reduce rather than increase

the complexity of synthesis.

Inthe above example, assertions whereused toex-

pose regularity in a data-flow graph. By expressing llier-

~archy requirements in terms of attributed-behavior

~assertions.,and graphically superimposing thetn on the

origiual textual ,algorithmicmodel, the engineer can eas-

ilyobserve,and modify tl~edecisiol~s made byti~e special

31

hierarchy extraction tool. New assertions can then be

a&led to address other issues that may arise in the course

ofdesign s~lce exploration, such aschiplevel p(mtition-

iug[tl] and external timing constraints[7][5]. The adVaU-

tage of the attributed-behavior approach is that a range of

design issues can be addressed using only a general pur-

pOse synthesis tool and modeling language.

FIGURE 4. Execution Times w/ Assertions

15000,0 l— w/o assertions h

10000.0- — WI’assertions

5000.0-

0.0

2 DIFFEQ
The example presented in this section is the differ-

ence equation solver [3] shown below that is common] y

used as a benchmark for high-level synthesis tools.

Again, we first compare the synthesis results obtained by

Marionet with those obtained by SAM to provide support

for our claim tilat Marionet performs well in the absence

of [any design assertions.

Diffeq
while (x < a) t6=u-t4;

begin u=t6–t5;

tl = u *1 dx; y~ = u ‘6 dx;

t2=3*~x; y=y+yl;

t3=3*3Y; x=x+dx;

t4 = tl *4 t2; end

t5 = dx *5 t3;

We theo show that assertions can be used to address

a design issue that is relevant to this example. The mod-

ule library used in this example, shown in Table 5, is dif-

ferent from that use for the AR-FILTER above. The cost

model is based on FPGA technology and the costs <are

given roughly in numbers of look-up tttbles (JXJT’S) re-

quired for 8-bit input functional units. As indicated in

Figure 5, Marionet performs generally better than SAM,

with relative run-times that look simil,m to the graph of

Figure 2,

The inner hop of the DIFFEQ algorithm consists of

a single basic block that contains only multiply, add, and

subtract operations. Two of the multiply operations pro-

duce only multiples of three; these operations can be im-

plemented by a special multiplier whose cost is more like

that of an adder than that of multiplier. However, in the

literature [8], and in the above experiments, it is ,asstuned

that all multiply operations must use a fully general mul-

tiplier. III the experiment below, we investigate how m-

sertions can be used to account for the collapsibility of the
multiply-by-three operations (*2 and *3).

TABLE 5. Module Library for DIFFEQ
I m 1 (

Name cost in Luz”s Delay aS

addwb_l 9 60

add_2 15 35

add_3 20 25

I nlult_l I 40 I 100 I

E#i#!2
FIGURE 5. Cost/Performance Comparison

DIFFEQ
400.0 ~

300.0 -
-co G
m . -u
J
~zoo,l) -

6
6

100.0 -

o.(lj~
f”0sd%%de2&f’gth ‘ 3’0 12.0

2.1 Collapsible Multipliers

Though we know that logic synthesis, when applied

to the synthesized register transfer level design, can col-

lapse multiply functional units that have constant inputs,

this information does not happen to be encoded into M,ar-

ionet. Ideally, to communicate this information to the

synthesis tool the following attributed-behavior relation-

ships would be expressed, where X is the cost of a genend

multiplier and Y is the cost of a collapsed multiplier:

1. if (cost (*2,*1,*4,*5,*6) ==

cost (*l, *q, *5, *~))

then (cost (*2) == X)

else (cost (*2)) == Y)

2. if (cost (*3r*1, *4r *5,*6) ==

cost (*~, *Q, *5, *~))

then (cost (*3)) == X

else (cost (*2)) == Y

These ntles simply state that if *2 or *3 sh,are re-

sources with any of the more gener,al multiply operations
then the cost of the resource is the full cost of a general

multiplier, otherwise, savings can be realized. This con-

cept is simikar to the add-function cost Qhle approach to

constructing multiple function ALU’s that is used in some

high-level synthesis systems[10]. The fact that M,arionet

does not currently accept expressions of this type is a hm-
itation of the tool rather than of the attributed-behavior

approach. More generally, a primitive module library can

be modeled by a set of attributed-behavior rules of this

type instead of by a cost ~~ble.

32

Because M,arionet does not currently accept rules of

this type we must use assertions that are somewhat over-

constraining. In this experiment, we ran the high-level

synthesis tool without assertions (design A), and with t-he

two different sets of assertions shown below (designs B

aml C) that an be accepted by M.arionet.

1.

2.

3.

4.

1.

2.

3.

4.

Design B

cost (*2, *1, *~, *~, *~) >

cost (*1, *4, *5, *~)

cost (*3, *1, *4, *~, *~) >

cost (*~, *4, *5, *~)

cost (*2) == 80
cost (*3) == 80

Design C

cost (*2, *1, *4, *~, *~) >

cost (*~, *4, *5, *~)

cost (*~, *1, *4, *~, *~) >

cost (*~, *Qr*5, *~)

cost (*~, *~) == Cost (*Z)

cost (*2) == 80

The first two assertions, which ,are the same in both

sets, effectively create two partitions of multiply opera-

tions within which resource sharing is allowed. one part-

ition is the set {*~ ,*4,*5,*6} and the other is the set {*2,

*3}. ThottglI resource sh,aring across partition bound,wies

is prohibited, sharing within the partitions is left to the

discretion of the synthesis tool. Also, un,ary cost asser-

tions have been added to ensure that the synthesis system

does not try to save cost by using slower multiply ti-mc-

tional units for *2 or *7.

Design B differs From Design C, in that, in the latter,

the two multiply-by-three operations ,arerequired to share

a single resource {*2, *~ }, If the two operations happen to

be on the sequential critical-path of the design then an ad-

ditional control-step will be required, as happens to be the

case for this ex,ample. The results for each set of asser-

tions t’or a range of schedule lengths a-e shown in Tables

6-8.
In filling the tables, any multiply functional unit that

was used for only *2 and/or *3 w,as replaced by a hypo-

thetical functional unit called times_three that has

simil,ar delay and cost W.mcteristics as ,anordin,ary adder

from the module libr,ary. Tbe “Raw Cost” of a design is

the totzzl cost of the multipliers allocated, whether or not

they can be collapsed. The “Final Cost” is the total cost

of the multipliers ,after accounting for collapsibility. We

are only concerned with multiplier utilization in the this

experiment, so the quantities and types of other fttnct.iom

al units have been omitted from the tables. Following the

tables are some interpretations of the results.

TABLE 6. Results for Design A

DesignA I No Assertions

I Furr.timnt Unit I A-5 I A-6 I A-7 I A-8

tinles_three(9) I 1 2 I
mult_1(40) I 1 I 1 3

I nllJlt_2(50) I 1111

I mult_3 (80) 1211

Raw Cost 240

Find Cost la]

1

170 200 120

Design B Partitioning Only

Functionnt Unit B-5 B-6 B-7 B-8

tinles_three(9) 2 1 1 1

nmlt_l (40) 1 2

mult_2 (50) 1

mult_? (80) 2 1 1

Raw Cost 320 210 200 160

Find Cast ‘ ““”i?&: xi$~. ,,’;M9: :, : “$9..,. ,,, .: ,,, ,,

TABLE 8. Results for Design C

Design C Partition and Sharing

Fnnctionat Unit C-5 C-6 c-7 C-8

tinles_three (9) 1 1 1

nmlt_l (40) 1 2

mult_2 (50)

mult_3 (80) 1 1

Raw Cost 160 200 160

Final Cost ;.~’,-.; =J :.12;;; ‘ .gg

2.2 Interpretation

10 all cases but one (Design C-6), the raw cost for the

designs with no assertions are better than the ones with

assertions, for mme-schedule-length designs. This tends

to support the conclusion that Marionet perfortns well

with respect to the information that is encoded into the

tool.

In all cases but one (Design A-5), the final cost for

designs with assertions are better thau without, for the

s:une-schedule-l ength designs. This tends to supports our

cl,aim that the attributed-behavior approach, even with the

limited expressiveness supported by Marionet is an etiec-

tive way to account for information that external to the to

the synthesis tool, like the effect of’ collapsible multipli-

ers.

The one case in which the final cost for-no assertions

is better than the one with assertions (Design A-5 com-

pared to Design B-5) can be attributed to luck. By chance,

*3 in Design A-5 was bound t~~a multiplier ttl~lt is not
used for any other operations and so is collapsible. Fur-

thermore, *2 is bound to a multiplier that is in fact used

33

for some of the general multiply operations, so Design A-

5 does not satisfy the requirements established in the as-

sertions. Thus, the f,ailure of Marionet to discover this

good design in the presence of assertions was due to the

over-specification required by restrictions on the asser-

tions language rather than on any particular weakness in

the attributed-behavior approach.

The best results, both raw and final, were obtained

when the tool was forced to share the two multiply-by-

three operations in Design B. Serendipitously, a better

raw cost for was obt,ained for design C-6 than for Design

A-6. This result simply indicates that the synthesis tool is

not guaranteed to find an optimal design under any cir-

cumstances, but that additional information provided by

the engineer can be used exposes otherwise inaccessible

regions of the design space.

Though there are other distinguishing aspects of

these designs such as combinational aitical-path, which

is lower in Design C-8 than in C-(i, and the cost of multi-

plexors, registers, and other functional units, it is the glo-

bal schedule length and multiplier costs that dominate the

overall me,asures of design quaJit y for this ex,ample. The

important result of this experiment is that without getting

involved in intricate data-flow analysis, it is possible for

the engineer to use assertions for rapid generation of de-

sign alternatives that take into account information that is

external to the given synthesis tool.

3 Conclusion and Future Work
The above ex,arnples demonstrate that a single high-

level modeling language and synthesis algorithm can be

used to address a range of design issues that may ,arise

during design space exploration without forcing the engi-

neer to abandon the .algorittnnic perspective. Additional-

ly, these experiments reflect our experience that the

bimary constraint network based force-directed synthesis

ttigOrlthln implemented in M~arionet is well behaved in
the presence of assertions.

In future experiments we hope to show that more

than one or two design issues can be simultaneously ad-

dress at the attributed-behavior level for a single algorith-

mic model. We will also show that attributed-behavior

relationships are an effective metans for presenting syn-

thesis results to the engineer in terms of the original, fa-
miliar algorithmic model. Given this type of feedback,
high-level synthesis based design becomes a process of

explorative refinement of an attributed-behavior specifi-

cation in cooperation with a high-level synthesis tool like

M,ariouet.

There are many issues that must be addressed during

the design of VLSI circuits that vary in degree of impor-

tance from design to design and from technology to tech-

nology. Though it may not be reasonable to hope for a

monolithic synthesis tool that takes all relevant factors

into consideration, weighs them appropriately, and termi-

nates quickly, it is reasonable to expect CAD algorithms

to do a good job on a few closely related sub-tasks.

However, to overcome the short-sightedness of sub-

task b,ased solutions, synthesis systems have tended to be-

come monolithic--simultaneously performing module se-

lection, scheduling, allocation, binding, and interconnect

synthesis. In fact, Marionet is an example of this tread.

The difference is that by redefining the synthesis task in

terms of attributed-behavior, we ,are hoping to encourag-

ing the re-development of specialized tools for specific

sub-tasks, some of which are discussed above. If these
new specialized tools ,are designed to perform at the at-

tributed-behavior level, not only by writing assertions,

but by reading, responding to, and perhaps modifying ex-

isting assertions, then synthesis knowledge can again be

distributed, but this time without losing the potential for

cooperation ,among interrelated sub-tasks.

Acknowledgments

This rese,arch was funded by an NSF Graduate Re-

se,arch Fellowship and by NSF Grant#MIP-911 2930.

References

[1]Arnstein, L. F., Thomas, D. E., “A General Consistency
Tecimique for Increasing the Controllability of High
Level Synthesis Tools”, Proceedings of the International
Conference on Computer Aided Design, November, 1993.

[2] Cloudier, R., “Force Directed Sclleduliug Allocation and
Mapping”, Proceedings of the 27th ACM/IEEE Design
Automation Conference, pp. 71-76, 1990.

[3] Dutt, N., Rarnacllandra, C., Benchmarks for the 1992 High
Level Synthesis Workshop, Technical Report 92-107, U~li-
versity of California, Irvine, oct. 1992.

[4] Jain, R., Parker, A., Park, N., ‘“Mo&rle Selection for Pipe-
lined Synthesis”, Proceedings of the 25th ACM/IEEE
Design Autotnation Gx@rence, pp. 542-547, 1988.

[5] Ku, D. C., De Micheli, G., Relative Scheduling under Tln-
ing Constrain: Algorithms for High Level Syntl]esis of
Digitat Circuits, IEEE Transactions on Computer A ided
Design, Vol 11, No 6, June 1992, pp 696.

[6] Lagnese, E., Architectural Partitioning for Systetn Level
Design of Integrated Circuils, P1l.[). Thesis, Carnegie
Mellon University, ECE Department, 1989.

[7] Nester, J. A., SpecJ7caiion and Synthesis of Digital Systems
with Interjiices. Phfl thesis, Carnegie-Melkm University,
April 1987.

[8] Paulin, P., High Level Synthesis of Digikd Circuits Using
Gk)baJ Scheduling and Binding Heuristics, Pl].D. Thesis,
Department of Electronics, Faculty of Engineering. Carle-
ton University, Jauuary 1988.

[9]Rao, D. S., Kurdahi, F.J., “Hierarcllical Design Space Explo-
ration for a Class of Digital Systems”, IEEE Transactions
on Very Large Scale Integration Systems, %1 1, Nc) 3,
September 1993, pp. 282-29S.

[10]Tlmmass, D., The SysRwZ A rr:hitect k Wbrkbench User k
Guide, Technical Report CMUCAI)-91 -42, Department
of Electrical and Computer Engineering, Carnegie Mellon
University, May 1991.

34

	Main Page
	ISSS94
	Front Matter
	Table of Contents
	Author Index

