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Abstract—We present a model of evolution of large social
networks. Our model is based on the local nature of commu-
nication: a node’s communication energy is spend mostly within
it’s small social area. We test our model on the Blog network
hosted by LiveJournal. Our testing with different definitions of
local areas shows that the best approximation to the observed
statistics occurs when the area is defined as the union of clusters
containing the node, and when nodes communicate with other
nodes within their area using a preferential attachment strategy.
We define clusters as locally maximally dense sets of vertices;
our definition allows for clusters to overlap.

I. I NTRODUCTION

A probabilistic model of the internal processes in the Blo-
gosphere is needed for the development of a network generator
to be used for testing hypotheses regarding the future activity
of the Blogosphere. Using multiple simulations, one learns
the expected level of the “life” of the Blogosphere, and then
one is able to recognize unexpected deviations in the real-life
network.

The structure of large social networks, such as the WWW,
the Internet, and the Blogosphere has been the focus of intense
research during the last decade (see [1], [6], [8], [12], [15],
[17], [18], [19], [20]. One of the main foci of this research has
been the development of dynamic models of network creation
([2], [11], [20], [16]) which incorporates two fundamental
elements: network growth, with nodes arriving one at a time;
and some form of preferential attachment in which an arriving
node is more likely to attach itself to a high degree existing
node than a low degree one (the rich get richer).

Once a network has been created, how does it evolve?
This question has not been adequately addressed in previous
literature, partially because the typical networks studied–the
WWW, the Internet, collaboration networks,–mainly exhibit
growth dynamics, and notevolution dynamics. In networks
such as the WWW or the Internet, the growth dynamic is
dominant. Models of these networks have been able to capture
many interesting properties, in particular, scaling behavior
with power-law degree distributions (the probability of a node
having degreek is given byP (k) ∝ k−α, whereα ∈ [2, 3]
for real networks). Analysis of the LiveJournal Blogosphere
shows that the rate of growth of the network is significantly
smaller than the rate at which new links are formed. In
fact, over a 9 week period in 2006, the number of active
bloggers remained approximately constant. However, looking
at the communication between bloggers reveals that out of
the total 400,000 unique pairs of bloggers that communicated
via the blog comments in an arbitrary week, 240,000 were of
those pairs did not exist in the previous week. Thus, it is the
evolution dynamics of the Blogosphere which are dominant.

Yet, even in such an active environment, certain statisticsare
remarkably stable. For example: the power-law coefficient for
the in-degree distribution, the clustering coefficient, and the
size of the giant component (see Figure 1).

In this paper, we present a novel model for the evolution
dynamics of social networks which supports public commu-
nication (communication which is visible to all members of
the network). Though our model is general, it is particularly
applicable to Blog-networks, which is the domain on which
we do the testing.

We use a directed graph, the blogograph, to represent the
communication activity in the Blogosphere. The nodes of the
blogograph are bloggers and the edges are ordered pairs of
bloggers. The edgeA → B reflects the fact that blogger
A visited the blog of bloggerB and left a message there.
The evolution of of the Blogosphere is represented by a
sequence of such graphs and each next graph is generated
based on the previous one. Our model is based on three
fundamental principles for describing evolution dynamicsin
social networks:
Locality. Every blogger is aware of her local neighborhood.
This local neighborhood could for example describe her inter-
ests, her social groups, etc. It is within this local neighborhood
that the blogger will spend the bulk of her communication
energy.
Attachment. Having determined her locality, the blogger
spends her communication energy predominantly within her
locale. In the context of Blog-networks, communication energy
is expended through commenting on other blogs. We define
the process by which a blogger distributes her communication
within her area as theattachment mechanism.
Iteration. The evolution of the network is attained through
repeated application of steps 1 and 2. After all bloggers have
expended their communication energy in time stept, at time
step t + 1 all bloggers re-evaluate their areas (for example,
a blogger may discover some new blogs within her interests)
and then re-attach their communication links according to the
attachment model.
The definition of a model reduces to specifying the following
two conditions:
(a) How to identify a blogger’s area;
(b) What the attachment mechanism is.
There are a number of intuitively plausible models that one
could identify, and the test of any such model has to be done
against the observed Blog-network. In particular, does the
convergent dynamics of the model reproduce, to a desirable
accuracy, the observed stable properties of the real-world
blogograph? The aim of this paper is twofold. The first



w |V | |E| GC C d α
35 111,248 376,878 96.0% 0.0788 5.336 2.87
36 118,664 411,294 96.0% 0.0769 5.327 2.74
37 120,549 410,735 96.0% 0.0752 5.375 2.79
38 119,451 386,962 95.8% 0.0728 5.455 2.82
39 113,296 323,062 95.2% 0.0666 5.641 2.80
40 124,329 430,523 96.3% 0.0764 5.332 2.77
41 121,609 380,773 95.9% 0.0705 5.471 2.81
42 124,633 415,622 96.2% 0.0739 5.349 2.74
43 123,898 403,309 96.5% 0.0713 5.425 2.81

Fig. 1. Statistics for observed blogograph: order of the graph (|V |), graph
size (|E|), fraction of vertices that are part of giant component (GC size),
clustering coefficient (C), average separation (d), power law exponent (α)

is to present a set of models which are instances of our
framework, and the second is to test the validity of these
models against the observed Blog-network. Our approach is
to experimentally simulate the evolution according to the
model until it converges to an equilibrium steady state, and
compare the statistics of the resultant simulated blogograph
with the observed blogograph. As we will demonstrate, the
model based on defining areas using clusters (defined below)
combined with the preferential attachment mechanism yields
the locality-based model which best describes the evolution
of Blog-networks. The other models we tested, in order of
performance, were: several variations of the two-neighborhood
areas with uniform and preferential attachment; and the global
area with uniform and preferential attachment, which can be
viewed as an extension of the preferential attachment growth
model to a model for evolution dynamics.

We break down the paper as follows. First, we give an
overview of the LiveJournal Blogosphere, which is the source
of our data. We then describe the locality based models which
we will consider and describe how we test their validity.
Finally we present the experimental results using all the
models, and end with some concluding remarks and future
directions.
Acknowledgement.This material is based upon work partially
supported by the U.S. National Science Foundation (NSF)
under Grant Nos. IIS-0621303, IIS-0522672, IIS-0324947,
CNS-0323324, NSF IIS-0634875 and by the U.S. Office of
Naval Research (ONR) Contract N00014-06-1-0466 and by
the U.S. Department of Homeland Security (DHS) through
the Center for Dynamic Data Analysis for Homeland Security
administered through ONR grant number N00014-07-1-0150
to Rutgers University.

II. L IVEJOURNAL BLOG DATA

We define the blogograph to represent the communication
within a fixed time-period; for our experiments, one week.
The blogograph is a directed unweighted graph with a node
for every blogger and a directed edge from the author of
any comment to the owner of the blog where the comment
was made during the observed time period. Parallel edges are
not allowed and a comment is ignored if the corresponding

edge is already present in the graph. To study the evolution
dynamics, we considered consecutive weekly snapshots of the
network; the communication graph contains the bloggers that
either posted or commented during this week and the edges
represent the comments that appeared during the week.

Our data was collected from the popular blogging service
LiveJournal. LiveJournal imposes few restrictions on commu-
nication. Much of the communication in LiveJournal is public,
which allows for easy access, especially given the real time
RSS update feature provided by LiveJournal that publishes
all open posts that appear on any of the hosted blogs. In our
experience, the overwhelming majority of comments appear on
a post within two weeks of the posting date. Thus, our screen-
scraping program visits the page of a post after it has been
published for two weeks and collects the comment threads.
We then generate the communication graph.

We have focused on the Russian section of LiveJournal.
as it is reasonable but not excessively large (currently close to
250,000 bloggers) and almost self contained. We identify Rus-
sian blogs by the presence of Cyrillic characters in the posts.
Technically this also captures the posts in other languages
with Cyrillic alphabet, but we found that the vast majority
of the posts are actually Russian. The community of Russian
bloggers is very active. On average, 32% of all LiveJournal
posts contain Cyrillic characters. Our work is based on data
collected during September and October of 2006.

The observed communication graph has interesting prop-
erties. The graph is very dynamic (on the level of nodes and
edges) but quite stable if we look at some aggregated statistics.
About 70% of active bloggers will also be active in the next
week. Further, about 40% of edges that existed in a week, will
also be found in the next week. A large part of the network
changes weekly, but a significant part is preserved. Some of
the important parameters of the blogograph illustrating their
stability are presented in Figure 1. The giant component (GC)
is the largest connected subgraph of the undirected blogograph.
A giant component of similar size was observed in other
large social networks [16], [14]. The clustering coefficient
(C) refers to the probability that the neighbors of a node are
connected. The clustering coefficient of a node with degreek
is the ratio of the number of edges between it’s neighbors and
k(k − 1). The clustering coefficient of the graph is defined
to be the average of the node clustering coefficients. The
observed clustering coefficient is stable over multiple weeks
and significantly different from the clustering coefficientin a
random graph with the same out-degree distribution, which is
0.00029. The average separation (d) is the average shortest
path between two randomly selected vertices of the graph. We
computed it by sampling 10,000 random pairs of nodes and
finding the undirected shortest path between them. The blog
communication graph is not significantly different with respect
to this parameter from some other social networks [16], [21].

Many large social networks [2], [14] have a power law de-
gree distribution,P (k) ∝ k−α , whereP (k) is the probability
a node has degreek. Figure 2 shows the in-degree distribution
averaged over the collected blogographs. We observed power
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Fig. 2. Average in-degree distribution in the blogograph observed over 9
weeks from Aug. 29, 2006 and Oct. 29, 2006
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law tail with parameterα ≈ 2.81, which is stable from week
to week. This value was computed using maximum likelihood
method described in [10] and Matlab code provided by Aaron
J. Clauset.

III. L OCALITY MODELS OFEVOLUTION

Our goal is to model how the communication structure
evolves, and equilibrates to its observed steady state. Our
model specifies how nodes update their edges in response to
the observed communication activity. In specifying this model
of evolution, we take as given the out-degree distribution of
the Blogograph. The justification for this is that, while theout-
degree distribution would be an interesting object to model,
it mainly reflects the individual properties of the users in the
network (the level of energy and involvement of the user).
Such quantities tend to be innate to a user (different people
have different social habits: some manage to communicate
with hundreds of people while others interact with only a
small group), and hence out-degrees should be specified either
ab initio (e.g. from social science theory) or extracted directly
from the observed data. We will take the latter approach to
specifying the out-degree distribution when it comes to testing

our model.
Given the out-degrees for all nodes, the task is now to

specify how to attach the out-edges of the nodes, and in
particular, to obtain the in-degree distribution. It is thein-
degree distribution that characterizes the global communica-
tion structure of the network (for example, who is considered
by others to be important). Clearly, the out-degree distribution
of a graph alone does not determine its in-degree distribution.
Algorithms for generating undirected random graphs with a
prescribed degree distribution are well known (see [9], [13],
[22]). However, even if those algorithms can be expanded to
the domain of directed graphs, they would still be insufficient
for our purpose of modeling evolution which requires repeated
generation of the next graph given the previous one.

To summarize, we are interested in models which reproduce
the observed evolution,given the out-degrees of the nodes.
Thus, all our locality models assume that a node when
deciding where to attach its communication links, has some
fixed budget of emanating edges which it can attach. The main
task of our model is to develop an evolution mechanism that
re-creates an in-degree distribution close to the observedone.

We will use standard graph theory terminology in describing
our model (see for example [23]). The sequence of Blo-
gographs are represented by directed graphsG0, G1, G2, . . .,
where at every time stept, Gt = (V, Et). V is the common
vertex set of all known bloggers,V = {v1, ..., vn}. An edge
(vi, vj) is in the edge setEt if blogger vi commented on a
post byvj during the time periodt. We take one time period
to equal one week, which appears to be the natural time scale
in the blogosphere.

The input to the model is the set of out-degrees at timet
for each vertex,{k1

t , . . . , kn
t }, and Gt−1, the Blogograph at

time t− 1. The output of the model isGt, the Blogograph at
time t. Our model is locality based: at timet, every nodevi

identifies its area, and assigns it out-edges with destinations
in its area.

More formally, denote the area ofvi at time t by Ai
t ⊆ V .

Ai
t represents the locality of nodevi at time t. Typically, a

node’s locality at timet will depend onGt−1, the Blpgograph
at time t− 1. The attachment mechanism is probabilistic (for
each node). Nodevi attaches itski

t out-edges according to
its own probability distributionpi

t, wherepi
t(v) specifies the

probability for nodevi to attach to nodev for v ∈ V . The
probability distributionpi

t may depend onAi
t andGt−1 (e.g.

higher degree nodes may get higher probabilities). In particu-
lar, we assume that

∑
v∈Ai

t

pi
t(v) = 1, which corresponds to

the assumption that every nodes expends all its communication
energy within its local area. Since we do not allow parallel
edges, ifki

t > |Ai
t|, it is not possible for nodevi to expend

all its communication energy within its local areaAi
t. In this

case we assume thatki
t − |Ai

t| edges are attached uniformly
at random to nodes outside its area, and the remaining edges
are attached within its area.

The evolution model is illustrated in Figure 3. In more
detail, the evolution model first obtains the out-degree distribu-
tion (which is exogenously specified); fromGt−1 it computes



Ai
t and pi

t for all nodesvi ∈ V . For all nodes, it then
attaches edges according topi

t resulting in new graphGt.
This entire process is iterated for a user specified number of
time steps. The model is configured with a procedure that
determines the out-degree of a given node in a given iteration,
a procedure to determine the area based on the graph of the
previous iteration and a procedure to determine the attachment
probabilities according to a given attachment model. We will
now discuss some approaches to defining the areas and the
attachment probabilities. The procedure for obtaining theout-
degrees is discussed in Section IV.

A. Locality Models

The node expends the majority of it’s communication energy
within it’s local area. This captures the intuition that people
mostly communicate with in a small group that contains
friends, family, colleagues, etc. We propose the following
definitions of a node’s area:
Global. Every nodevi is aware of the whole network, the
local area ofvi is Ai

t = V at every time periodt.
k-neighborhood. The local areaAi

t of node vi at time t
consists of allvj such that the undirected shortest distance
δt(vi, vj) ≤ k.
Union of clusters.The area is defined as the union ofclusters
containing a node. A cluster containing a node is a proxy for a
social group that a node belongs to. Our definition of clusters
([4], [3], [5]) allows for clusters to overlap. First, we define
the notion of a density of a set. For our application, we use the
ratio of number of edges within the subset to the number of
edges with at least one endpoint in the subset. Having defined
the density, a cluster is then defined to be any subset of nodes
that is locally maximal w.r.t. to the density. Our experiments
show that clusters overlap quite frequently. This is expected in
social networks, where the same member may belong to more
than one community.

B. Attachment Models

Given the local areaAi
t of the nodevi at timet, the attach-

ment model describes the probabilitypi
t(v) of occurrence of

an edge(vi, v) at timet for v ∈ V . We propose the following
attachment modes:
Uniform. Node vi attaches to anyv ∈ Ai

t with uniform
probability, so thatpi

t(v) = (|Ai
t|)

−1 and pi
t(v) = 0 for

v /∈ Ai
t.

Preferential Attachment. Node vi attaches to anyv ∈ Ai
t

with probability

pi
t(v) ∝ indegt−1(v) + γ (1)

where indegt−1(v) is the in-degree of vertexv in Gt−1

and γ is a constant. Settingγ = 0 corresponds to a pure
preferential attachment.
Markov Chain. To obtain the attachment probabilities for
vertex vi we simulate the particle traveling over undirected
edges of graphGt starting from the nodevi and randomly
selecting edges to travel until it arrives at the first node
ve /∈ Ai

t. Every time the particle arrives at some nodevj ∈ Ai
t,

the counterci
j is incremented. This simulation is repeated

with out resetting the countersci
j a number of times and we

determine the attachment probability aspi
t(v) ∝ ci

j .
Inverse distance.Nodevi attaches to some nodev ∈ Ai

t with
probability

pi
t(v) ∝

1

δρ
t−1

(vi, v)
(2)

where δt−1(vi, v) is the shortest undirected distance be-
tween verticesvi and v in Gt−1 and ρ is a constant. We
experimented withρ ∈ [1, 5].

The combination of the locality model and attachment
model specifies the evolution model that, given the out-degree
distribution, will produce a series of graphs that represent the
Blogograph at different time periods.

IV. T ESTING THE MODEL

In parallel to the design of the evolutionary procedures,
we need to independently design the testing routines to be
used to decide if those procedures are “good” or “bad.” Our
experiments with LiveJournal reveal the remarkable stability
(over time) of the out-degree and in-degree distributions in the
graph.

Any testing of a model should involve the comparison of
selected parameters of the networks generated by the model
with those of the observed networks. Frequently considered
parameters include the degree distribution, clustering coeffi-
cients, the size of the giant component, and its diameter ([2]).
Our decision to consider directed graphs led us to adopt the
out-degree distribution as an input parameter to the model,
and thus, our task was to develop a mechanism for graph
generation that re-creates the in-degree distribution of the
observed graph. The use of the in-degree distribution as a test
of the model is justified since the in-degrees can not be inferred
from the out-degree distribution.

To obtain the numerical value of the model’s quality, we
compare the in-degree distributions of the graphs generated by
the model to the graphs observed in LiveJournal. To compare
the distributions, for each iterationt of the experiment we
compute the normalized in-degree distribution

D′
i(k) =

Di(k)

Ti

whereDi(k) is the number of nodes with in-degreek andTi

is the total number of nodes with in-degree greater then 0.
Similarly, we compute the normalized in-degree distribution
D′

ob(d) for the observed graph. The error measure between
the generated and observed degree distribution is then defined
as:

Et =
∑

k>0

|D′
t(k) − D′

ob(k)|

Notice,Et ∈ [0, 2] and lower values ofEt correspond to a
closer match. To determine the steady state error of the model,
we executed it for enough iterations until the error stabilized.
For all combinations of local area definitions and attachment
methods it took under 30 iterations for the model to stabilize.
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To test the model we need to provide a mechanism for
generating the out-degree for every node at each time period.
We used blogographs observed at LiveJournal to develop such
a mechanism. First, we introduced the type of a node to
indicate the energy level of the node. We defined a type to
be the average degree of the observed node over the 9 weeks
and computed the distribution of types. Then, within each
type we computed the distribution of out-degrees. The input
to the model consisted of the distribution of types and the
distribution of out-degrees conditioned on type. During the
model initialization, each node was assigned some type that
was selected randomly from the type distribution. After the
initial assignment, the type of a node did not change for the
duration of the model execution. Each time period the out-
degree of a node was selected randomly from the distribution
of out-degrees conditioned on the type of the node. This
simulates the observation that the communication energy of
a blogger expended during particular time period (in out case
one week) depends on their personal activity level, which in
our setup is the type.

We initialized the model to a random graph with assigned
out-degrees, based on the distribution of the out-degrees ob-
served in LiveJournal blogosphere.

V. EXPERIMENTAL RESULTS

We tested a variety of local area definitions and attachment
methods. The global area model did not produce good re-
sults in combination with any of the attachment mechanisms.
The combination of global area and the uniform attachment
mechanism is a variation of Erdös-Rényi random graph. Such
random graphs are known to produce an in-degree sequence
that is very different from a power-law. Global area models
combined with preferential attachment yielded a model similar
to scale-free graphs model by Bollobás et al [7] and the
Barabási-Albert scale-free model [1]. Our model is different
from these due to the introduction of evolution. Forγ = 0 (see
equation (1)), the attachment probability is strictly proportional
to the in-degree of the node in the previous iteration of the
model. If the node had zero in-degree, then the probability of
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Fig. 5. Generated in-degree distribution.α = 2.81 corresponds to observed
distribution.

linking to this node is nearly zero (some nodes with area size
smaller then out-degree still may select this node in random
selection from the whole graph). For this reason the model
with γ = 0 predictably tends to develop power houses - a
small set of very high in-degree nodes that attract almost all
the out-degree and very few nodes with non-zero out-degree.
A distribution that contains ”power houses” is considerably
different from the observed power law distribution. Because
of this, we did not pursue the combination of global area and
preferential attachment further. Forγ = 1 the model converged
to error value of0.89 after about 30 iterations. The in-degree
distribution obtained from this combination is shown along
with the observed and other distributions on Figure 4.

We experimented with global area combined with inverse
distance attachment and attachment based on a combination
of inverse distance and preferential attachment (in this com-
bination the probability of attachment is computed as the
product of the attachment probabilities of each component).
The experiment was executed for different values ofρ (see
equation 2). None of these instances of the model arrived at a
reasonable steady state. Global area with the combination of
inverse distance and preferential attachment tended to develop
”power houses” for all exponents. The combination of global
area and inverse distance produced an average error of0.62
for ρ = 2. Other values ofρ that were tried produced greater
error.

The k-neighborhood locality model withk = 2 improved
the error considerably. Combining the random attachment
method with 2-neighborhood area resulted in graphs which
converged to the error value of0.485 after about 10 itera-
tions. The combination of 2-neighborhood with preferential
attachment tended to a power house.

Next, we experimented with a cluster locality model. We
used the following density function:

F (S) =
|Ein(S)|

|Ein(S)| + |Eout(S)|

whereEin(S) is a set of all edges(i, j) such thati ∈ S, j ∈ S
and Eout = E(S, V \ S) + E(V \ S, S) where E(A, B)



2-neighb. clusters global
pref. att. 0.814 0.152 0.822
random 0.485 0.759 1.148

Fig. 6. In-degree error for different experiment setups

denotes a set of all edges(a, b) with a ∈ A, b ∈ B. In
other words, the density is the ratio of the number of edges
inside the subset to the number of edges where either or both
ends of inside the subset. The Iterative Scan algorithm [4]
that was used to find clusters takes seeds as an input. These
seeds are optimized by the algorithm into clusters which are
locally optimal subsets with respect to a density function.
We experimented with different seeding approaches including
node seeds, edge seeds and the seeds found by Link Aggregate
algorithm [4]. The best results were obtained using edges
as seeds. We tested this area model with random attachment
and preferential attachment methods. The model instance with
clusters and random attachment converged to error0.759
after about 25 iterations and the instance with preferential
attachment converged to0.152 after about 30 iterations. The
latter combination produces the best results. The in-degree
distribution obtained by this model instance is presented in
Figure 5. The results of the most interesting combinations are
presented in Figure 6.

To evaluate how well we simulate the evolution that takes
place in the LiveJournal Blogosphere we devised the following
metric called ”edge history”. For every edge(i, j) that appears
in time step t we compute the shortest distance betweeni and
j in graph corresponding to time step(t − 1) and compute
distribution of such distance for every edge that appears at
time t. Intuitively this metric measures how far an individual
blogger has to travel to leave a comment, which describes
one of the core parameters that influences the evolution of
the blogograph. The distribution of edge histories for different
locality models with preferential attachment is given in Figure
7. It is evident from the plot that while the cluster-based area
curve is somewhat different from the observed one, it follows
its general shape. Alternatively, the global area model shows
strong deviation which corresponds to the fact that bloggers
have to travel far until they find the place to comment. In 2-
Neighborhood model most bloggers only travel 2 steps, but
a few whose area was smaller then their out-degree travel
further.
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