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Abstract—We present a model of evolution of large social Yet, even in such an active environment, certain statisties
networks. Our model is based on the local nature of commu- remarkably stable. For example: the power-law coefficient f

nication: a node’s communication energy is spend mostly Wiin e jn_gegree distribution, the clustering coefficientd ahe
it's small social area. We test our model on the Blog network . . -
size of the giant component (see Figure 1).

hosted by LiveJournal. Our testing with different definitions of . .
local areas shows that the best approximation to the obserde [N this paper, we present a novel model for the evolution
statistics occurs when the area is defined as the union of chiess dynamics of social networks which supports public commu-

containing the node, and when nodes communicate with other nication (communication which is visible to all members of
nodes v_vithin their area using a pref_erential attachment stategy.  the network). Though our model is general, it is particylarl
We define clusters as locally maximally dense sets of vertige . L . .
our definition allows for clusters to overlap. applicable to Blog—networks, which is the domain on which
we do the testing.
|. INTRODUCTION We use a directed graph, the blogograph, to represent the
A probabilistic model of the internal processes in the Blgsommunication activity in the Blogosphere. The nodes of the
gosphere is needed for the development of a network gemerdt@gograph are bloggers and the edges are ordered pairs of
to be used for testing hypotheses regarding the futureigctivbloggers. The edgel — B reflects the fact that blogger
of the Blogosphere. Using multiple simulations, one learn$ visited the blog of blogge3 and left a message there.
the expected level of the “life” of the Blogosphere, and thehhe evolution of of the Blogosphere is represented by a
one is able to recognize unexpected deviations in the ifeal-lsequence of such graphs and each next graph is generated
network. based on the previous one. Our model is based on three
The structure of large social networks, such as the WwW\Wyndamental principles for describing evolution dynamits
the Internet, and the Blogosphere has been the focus ofimtesocial networks:
research during the last decade (see [1], [6], [8], [12]],[15Locality. Every blogger is aware of her local neighborhood.
[17], [18], [19], [20]. One of the main foci of this researcash This local neighborhood could for example describe hermrinte
been the development of dynamic models of network creati@sts, her social groups, etc. It is within this local neigtiood
(2], [11], [20], [16]) which incorporates two fundamentalthat the blogger will spend the bulk of her communication
elements: network growth, with nodes arriving one at a timepergy.
and some form of preferential attachment in which an argvirAttachment. Having determined her locality, the blogger
node is more likely to attach itself to a high degree existingPends her communication energy predominantly within her
node than a low degree onthé rich get richer). locale. In the context of Blog-networks, communicationrgye
Once a network has been created, how does it evolis?expended through commenting on other blogs. We define
This question has not been adequately addressed in previtgprocess by which a blogger distributes her communicatio
literature, partially because the typical networks stddtee Wwithin her area as thattachment mechanism.
WWW, the Internet, collaboration networks,—mainly exhibilteration. The evolution of the network is attained through
growth dynamics, and nagvolution dynamics. In networks repeated application of steps 1 and 2. After all bloggerghav
such as the WWW or the Internet, the growth dynamic @xpended their communication energy in time stept time
dominant. Models of these networks have been able to captétept + 1 all bloggers re-evaluate their areas (for example,
many interesting properties, in particular, scaling bétrav & blogger may discover some new blogs within her interests)
with power-law degree distributions (the probability ofede and then re-attach their communication links accordindéo t
having degreek is given by P(k) o« k~“, wherea € [2,3] attachment model.
for real networks). Analysis of the LiveJournal BlogospherThe definition of a model reduces to specifying the following
shows that the rate of growth of the network is significantlfwo conditions:
smaller than the rate at which new links are formed. I(a) How to identify a blogger's area,
fact, over a 9 week period in 2006, the number of actii®) What the attachment mechanism is.
bloggers remained approximately constant. However, togpki There are a number of intuitively plausible models that one
at the communication between bloggers reveals that out aifuld identify, and the test of any such model has to be done
the total 400,000 unique pairs of bloggers that communicatagainst the observed Blog-network. In particular, does the
via the blog comments in an arbitrary week, 240,000 were obnvergent dynamics of the model reproduce, to a desirable
those pairs did not exist in the previous week. Thus, it is tleecuracy, the observed stable properties of the real-world
evolution dynamics of the Blogosphere which are dominartlogograph? The aim of this paper is twofold. The first



W |4 £ GC c d @ edge is already present in the graph. To study the evolution
35| 111,248 376,878 96.0% 0.0788 5.336 2/87dynamics, we considered consecutive weekly snapshotgof th
36 | 118,664 411,294 96.0% 0.0769 5.327 2{74network; the communication graph contains the bloggers tha
37| 120,549 410,735 96.0% 0.0752 5.375 2.79jther posted or commented during this week and the edges
38 | 119,451 386,962 95.8% 0.0728 5.455 82represent the comments that appeared during the week.
39 | 113,296 323,062 95.2% 0.0666 5.641 Our data was collected from the popular blogging service
40 | 124,329 430,523 96.3% 0.0764 5.332 2,77 jyeJournal. LiveJournal imposes few restrictions on camm
411 121,609 380,773 95.9% 0.0705 5.471 28lpjcation. Much of the communication in LiveJournal is pabli
42 | 124,633 415,622 96.2% 0.0739 5.349 2/74\yhich allows for easy access, especially given the real time
43 | 123,898 403,309 96.5% 0.0713 5.425 81Rss update feature provided by LiveJournal that publishes
Fig. 1. Statistics for observed blogograph: order of theparéV'|), graph  all open posts that appear on any of the hosted blogs. In our
size (E|), fraction of vertices that are part of giant componeGt{ size), experience, the overwhelming majority of comments appear o
clustering coefficient@), average separatiorl); power law exponentc() a post within two weeks of the posting date. Thus, our screen-
scraping program visits the page of a post after it has been
published for two weeks and collects the comment threads.
is to present a set of models which are instances of Ol then generate the communication graph.
framework, and the second is to test the validity of theseWe have focused on the Russian section of LiveJournal.
models against the observed Blog-network. Our approachais it is reasonable but not excessively large (currentlgecto
to experimentally simulate the evolution according to th250,000 bloggers) and almost self contained. We identify-Ru
model until it converges to an equilibrium steady state, arsibn blogs by the presence of Cyrillic characters in thegost
compare the statistics of the resultant simulated blogwgraTechnically this also captures the posts in other languages
with the observed blogograph. As we will demonstrate, theith Cyrillic alphabet, but we found that the vast majority
model based on defining areas using clusters (defined bel@f’the posts are actually Russian. The community of Russian
combined with the preferential attachment mechanism gieldloggers is very active. On average, 32% of all LiveJournal
the locality-based model which best describes the evaiutiposts contain Cyrillic characters. Our work is based on data
of Blog-networks. The other models we tested, in order abllected during September and October of 2006.
performance, were: several variations of the two-neighbod The observed communication graph has interesting prop-
areas with uniform and preferential attachment; and thbajlo erties. The graph is very dynamic (on the level of nodes and
area with uniform and preferential attachment, which can leelges) but quite stable if we look at some aggregated statist
viewed as an extension of the preferential attachment growAbout 70% of active bloggers will also be active in the next
model to a model for evolution dynamics. week. Further, about 40% of edges that existed in a week, will
We break down the paper as follows. First, we give aalso be found in the next week. A large part of the network
overview of the LiveJournal Blogosphere, which is the seurchanges weekly, but a significant part is preserved. Some of
of our data. We then describe the locality based models whittte important parameters of the blogograph illustratingjrth
we will consider and describe how we test their validitystability are presented in Figure 1. The giant componéidt)
Finally we present the experimental results using all thethe largest connected subgraph of the undirected blagbgr
models, and end with some concluding remarks and futude giant component of similar size was observed in other
directions. large social networks [16], [14]. The clustering coeffidgien
Acknowledgement.This material is based upon work partially(C) refers to the probability that the neighbors of a node are
supported by the U.S. National Science Foundation (NS&Qnnected. The clustering coefficient of a node with degree
under Grant Nos. [1S-0621303, 11S-0522672, 11S-032494i4 the ratio of the number of edges between it's neighbors and
CNS-0323324, NSF 11S-0634875 and by the U.S. Office d@f(k — 1). The clustering coefficient of the graph is defined
Naval Research (ONR) Contract NO0014-06-1-0466 and by be the average of the node clustering coefficients. The
the U.S. Department of Homeland Security (DHS) througbbserved clustering coefficient is stable over multiple ksee
the Center for Dynamic Data Analysis for Homeland Securitgnd significantly different from the clustering coefficienta
administered through ONR grant number N00014-07-1-01&ndom graph with the same out-degree distribution, wtsch i
to Rutgers University. 0.00029. The average separatiod)(is the average shortest
path between two randomly selected vertices of the graph. We
computed it by sampling 10,000 random pairs of nodes and
We define the blogograph to represent the communicatifinding the undirected shortest path between them. The blog
within a fixed time-period; for our experiments, one weelcommunication graph is not significantly different with pest
The blogograph is a directed unweighted graph with a nottethis parameter from some other social networks [16],.[21]
for every blogger and a directed edge from the author of Many large social networks [2], [14] have a power law de-
any comment to the owner of the blog where the commegtee distributionP (k) < k=% , whereP (k) is the probability
was made during the observed time period. Parallel edges anmeode has degréde Figure 2 shows the in-degree distribution
not allowed and a comment is ignored if the correspondirayeraged over the collected blogographs. We observed power
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our model.

RN observed distrilbution + ] . .
| a=281 ===en . Given the out-degrees for all nodes, the task is now to
e ] specify how to attach the out-edges of the nodes, and in
001 L particular, to obtain the in-degree distribution. It is tme
= degree distribution that characterizes the global comopaini
! 0001 | tion structure of the network (for example, who is considere
& by others to be important). Clearly, the out-degree distiin
0.0001 of a graph alone does not determine its in-degree distdbuti
1e05 | Algorithms for generating undirected random graphs with a
prescribed degree distribution are well known (see [9]],[13
1e-06 [22]). However, even if those algorithms can be expanded to

the domain of directed graphs, they would still be insuffitie
for our purpose of modeling evolution which requires repdat

Fig. 2. Average in-degree distribution in the blogograptsesbed over 9 generation of the next graph given the previous one.

weeks from Aug. 29, 2006 and Oct. 29, 2006 To summarize, we are interested in models which reproduce
the observed evolutiorgiven the out-degrees of the nodes.
Initial Graph Iterate Thus, all our locality models assume that a node when
For each node: deciding where to attach its communication links, has some
fixed budget of emanating edges which it can attach. The main
e @j@ task of our model is to develop an evolution mechanism that
out-degees \{/ re-creates an in-degree distribution close to the obserued
We will use standard graph theory terminology in describing
Assign Form our model (see for example [23]). The sequence of Blo-
out-degrees ”e‘”@ gographs are represented by directed graghsG:, Go, .. .,
where at every time ste G; = (V, E;). V is the common
Place edges vertex set of all known bloggerd/ = {v1,...,v,}. An edge

wiin area (vi,v5) is in the edge seE; if blogger v; commented on a

post byv; during the time period. We take one time period
to equal one week, which appears to be the natural time scale
in the blogosphere.

The input to the model is the set of out-degrees at time
for each vertex{k;,...,k'}, andG,_1, the Blogograph at

law tail with parametery ~ 2.81, which is stable from week time ¢ — 1. The output of the model i&;, the Blogograph at

to week. This value was computed using maximum likelihodine . Our model is locality based: at time every nodev;
method described in [10] and Matlab code provided by Aardfentifies its area, and assigns it out-edges with destingti

J. Clauset. in its area. |
More formally, denote the area of at timet by A; C V.

Al represents the locality of node at timet. Typically, a
node’s locality at timeg will depend onG,_1, the Blpgograph
at timet¢ — 1. The attachment mechanism is probabilistic (for
Our goal is to model how the communication structureach node). Node; attaches itsk{ out-edges according to
evolves, and equilibrates to its observed steady state. Gmrown probability distributiorpi, wherep:(v) specifies the
model specifies how nodes update their edges in responserobability for nodev; to attach to node» for v € V. The
the observed communication activity. In specifying thisdalo probability distributionp! may depend om andG;_; (e.g.
of evolution, we take as given the out-degree distributibn digher degree nodes may get higher probabilities). In @arti
the Blogograph. The justification for this is that, while tha- lar, we assume thaZveAi pi(v) = 1, which corresponds to
degree distribution would be an interesting object to modehe assumption that every nodes expends all its commuaicati
it mainly reflects the individual properties of the usershe t energy within its local area. Since we do not allow parallel
network (the level of energy and involvement of the usergdges, ifki > |A¢], it is not possible for node; to expend
Such quantities tend to be innate to a user (different peoplit its communication energy within its local ared. In this
have different social habits: some manage to communicatse we assume that — |A%| edges are attached uniformly
with hundreds of people while others interact with only at random to nodes outside its area, and the remaining edges
small group), and hence out-degrees should be specifiest eithre attached within its area.
ab initio (e.g. from social science theory) or extracted directly The evolution model is illustrated in Figure 3. In more
from the observed data. We will take the latter approach tketail, the evolution model first obtains the out-degre&itis-
specifying the out-degree distribution when it comes ttings tion (which is exogenously specified); fro6%y_; it computes

Fig. 3. Model execution flow
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At and pi for all nodesw; € V. For all nodes, it then the counterc§ is incremented. This simulation is repeated
attaches edges according o resulting in new graph=;. with out resetting the countet% a number of times and we
This entire process is iterated for a user specified numberdstermine the attachment probability ggv) o ¢’

time steps. The model is configured with a procedure thiatverse distance.Nodew; attaches to some nodec A: with
determines the out-degree of a given node in a given iteratigprobability

a procedure to determine the area based on the graph of the Pi(v) o 1 )
previous iteration and a procedure to determine the attaohm ! 6f 1 (vi,v)

probabilities according to a given attachment model. Wé wil |\ hare 8_1(vi,v) is the shortest undirected distance be-
now discuss some approaches to defining the areas and {{igen verticesy; and v in G,_; and p is a constant. We
attachment probabilities. The procedure for obtainingahe experimented withp € [1, 5].

degrees is discussed in Section IV. The combination of the locality model and attachment
A. Locality Models model specifies the evolution model that, given the out-ekegr
distribution, will produce a series of graphs that représiea

The node expends the majority of it's communication ener%ogograph at different time periods

within it's local area. This captures the intuition that péo
mostly communicate with in a small group that contains IV. TESTING THE MODEL

friends, family, colleagues, etc. We propose the following |n parallel to the design of the evolutionary procedures,
definitions of a node’s area: we need to independently design the testing routines to be
Global. Every nodev; is aware of the whole network, theysed to decide if those procedures are “good” or “bad.” Our
local area ofv; is A} = V' at every time period. experiments with LiveJournal reveal the remarkable stgbil
k-neighborhood. The local aread; of nodew; at timet (overtime) of the out-degree and in-degree distributiorihie
consists of allv; such that the undirected shortest distanggraph.
6t (vi,vj) < k. Any testing of a model should involve the comparison of
Union of clusters. The area is defined as the unionatdisters  selected parameters of the networks generated by the model
containing a node. A cluster containing a node is a proxy forgth those of the observed networks. Frequently considered
social group that a node belongs to. Our definition of clsstesarameters include the degree distribution, clusteringffieo
([4], [3], [5]) allows for clusters to overlap. First, we deéi cients, the size of the giant component, and its diametg). ([2
the notion of a density of a set. For our application, we use tlour decision to consider directed graphs led us to adopt the
ratio of number of edges within the subset to the number gfit-degree distribution as an input parameter to the model,
edges with at least one endpoint in the subset. Having defingfll thus, our task was to develop a mechanism for graph
the density, a cluster is then defined to be any subset of nogesieration that re-creates the in-degree distributionhef t
that is locally maximal w.r.t. to the density. Our experirteen observed graph. The use of the in-degree distribution asta te
show that clusters overlap quite frequently. This is expet@t  of the model is justified since the in-degrees can not berieder
social networks, where the same member may belong to méigm the out-degree distribution.
than one community. To obtain the numerical value of the model's quality, we
B. Attachment Models compare the in-degree distributions of the graphs gera:tate
the model to the graphs observed in LiveJournal. To compare
Given the local areal; of the nodev; at timet, the attach- the distributions, for each iteration of the experiment we

ment model describes the probabiligy(v) of occurrence of compute the normalized in-degree distribution
an edgeg(v;, v) at timet for v € V. We propose the following Di(k)

attachment modes: D'i(k) =
Uniform. Node v; attaches to anw € A! with uniform T
probability, so thatpi(v) = (]Ai|)~! and pi(v) = 0 for whereD;(k) is the number of nodes with in-degréeandT;

v ¢ Al is the total number of nodes with in-degree greater then 0.
Preferential Attachment. Node v; attaches to any € A Similarly, we compute the normalized in-degree distribnati
with probability D’ (d) for the observed graph. The error measure between
. _ the generated and observed degree distribution is thenedefin
Pi(v) o indegy—1 (v) +7 D) e
where indeg;—1(v) is the in-degree of vertex in G;_;
and v is a const:Emt. Setting = 0 corresponds to a pure By =Y |Ds(k) = D' o (k)|
preferential attachment. k>0

Markov Chain. To obtain the attachment probabilities for Notice, E; € [0, 2] and lower values of2; correspond to a
vertex v; we simulate the particle traveling over undirectedloser match. To determine the steady state error of the inode
edges of graplG; starting from the node; and randomly we executed it for enough iterations until the error stabili
selecting edges to travel until it arrives at the first nod€or all combinations of local area definitions and attachtmen
ve ¢ Al Every time the particle arrives at some nades A}, methods it took under 30 iterations for the model to stadiliz
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Fig. 4. Cumulative in-degree distributions for differenbdel instances  Fig. 5. Generated in-degree distributian.= 2.81 corresponds to observed
distribution.

To te;t the model we need to provide a mechanism Tﬁﬁking to this node is nearly zero (some nodes with area size
generating the out-degree for every_node at each time per'gﬂ‘laller then out-degree still may select this node in random
We used b_Iogogrz_;\phs obs_erved at LiveJournal to develop Slé%mection from the whole graph). For this reason the model
a mechanlsm. First, we introduced the type_of a node 9h ~ = 0 predictably tends to develop power houses - a
indicate the energy level of the node. We defined a type gll set of very high in-degree nodes that attract almdst al

be the average degre.e qf th_e observed node over ,th? 9 WetPE out-degree and very few nodes with non-zero out-degree.
and computed the distribution of types. Then, within eac distribution that contains "power houses” is consideyabl

type we computed the distribution of out-degrees. The ianffferent from the observed power law distribution. Be@aus

to the model consisted of the distribution of types and g s \ve did not pursue the combination of global area and
distribution of out-degrees conditioned on type. During th, oferential attachment further. For= 1 the model converged

model initialization, each node was assigned some type thateror yajue of).89 after about 30 iterations. The in-degree

was selec;ted randomly from the type Q|str|but|on. After eisyribution obtained from this combination is shown along

|n|t|al_aSS|gnment, the type Of_ a node d'd_ not chgnge for theih the observed and other distributions on Figure 4.

duration of the model execution. Each time perlod_th_e Ol_,lt- We experimented with global area combined with inverse

degree of a node was _selected randomly from the d'smbuuagtance attachment and attachment based on a combination

O,f out-degrees condlthned on the type Of_ th? node. Thi§ jhverse distance and preferential attachment (in this-co

simulates the observation that the communication energy \gfiasion the probability of attachment is computed as the

a blogger expended during particular time period (in OUBCaS, 4 ct of the attachment probabilities of each component)

one Week)_ depends on their personal activity level, which i, . experiment was executed for different valuespofsee

our se_tu_p_ IS the type. ) . equation 2). None of these instances of the model arrived at a
We initialized the model to a random graph with assignedsonable steady state. Global area with the combinafion o

out-degrees, based on the distribution of the out-degrbes @y erse distance and preferential attachment tended telajev

served in LiveJournal blogosphere. "power houses” for all exponents. The combination of global

area and inverse distance produced an average err@6df

for p = 2. Other values op that were tried produced greater
We tested a variety of local area definitions and attachmeattor.

methods. The global area model did not produce good re-The k-neighborhood locality model wittk = 2 improved

sults in combination with any of the attachment mechanisnibe error considerably. Combining the random attachment

The combination of global area and the uniform attachmemethod with 2-neighborhood area resulted in graphs which

mechanism is a variation of Erdos-Rényi random graphhSuconverged to the error value @485 after about 10 itera-

random graphs are known to produce an in-degree sequetieas. The combination of 2-neighborhood with preferdntia

that is very different from a power-law. Global area modeRttachment tended to a power house.

combined with preferential attachment yielded a modellsimi  Next, we experimented with a cluster locality model. We

to scale-free graphs model by Bollobas et al [7] and thésed the following density function:

Barabasi-Albert scale-free model [1]. Our model is digfer B (S)]

from these due to the introduction of evolution. Fo+= 0 (see F(S) = m

equation (1)), the attachment probability is strictly podponal [ Ein(S)| + [Eout ()]

to the in-degree of the node in the previous iteration of thehereE;,, (S) is a set of all edge&, j) suchthat € S,j € S

model. If the node had zero in-degree, then the probabifity and E,,; = E(S,V \ S) + E(V \ S,S) where E(A, B)

V. EXPERIMENTAL RESULTS
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Fig. 6.

denotes a set of all edgds,b) with a € A,b € B. In
other words, the density is the ratio of the number of edges
inside the subset to the number of edges where either or both
ends of inside the subset. The Iterative Scan algorithm [4]
that was used to find clusters takes seeds as an input. These
seeds are optimized by the algorithm into clusters which are
locally optimal subsets with respect to a density function.
We experimented with different seeding approaches inotydi,

g. 7.

(i.j) O By, P(Dy(i)) < k)

observed ———
clusters
2-neighbourhood
global|' —

10

0.2
0.1
0

8 12

Edge history for different model instances. Cumwiatistribution

node seeds, edge seeds and the seeds found by Link Aggregat® shortest distance in gragh; _; of nodes that are connected by an

algorithm [4]. The best results were obtained using edgedge
as seeds. We tested this area model with random attachment
and preferential attachment methods. The model instanite wi
clusters and random attachment converged to e@r@b9 (5]
after about 25 iterations and the instance with preferentia
attachment converged @152 after about 30 iterations. The [6]
latter combination produces the best results. The in—cdaegr%]
distribution obtained by this model instance is presented i
Figure 5. The results of the most interesting combinatioras a
presented in Figure 6. g
To evaluate how well we simulate the evolution that take£
place in the LiveJournal Blogosphere we devised the fotgwi
metric called "edge history”. For every ed@e j) that appears o]
in time step t we compute the shortest distance betweet |10
j in graph corresponding to time stép— 1) and compute
distribution of such distance for every edge that appears &
time ¢. Intuitively this metric measures how far an individuaj;
blogger has to travel to leave a comment, which describes
one of the core parameters that influences the evolution [
the blogograph. The distribution of edge histories foretfit
locality models with preferential attachment is given igutie
7. It is evident from the plot that while the cluster-baseeaar
curve is somewhat different from the observed one, it folow
its general shape. Alternatively, the global area modeWsho[15]
strong deviation which corresponds to the fact that blogg 56]
have to travel far until they find the place to comment. In 2-
Neighborhood model most bloggers only travel 2 steps, baft]
a few whose area was smaller then their out-degree travel
further.
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(18]
REFERENCES [19]

[1] R. Albert and A.-L. Barabasi. Statictical mechanics afmplex net-
works. Reviews of Modern Physics, 74(47-97), 2002. (20]

[2] A. Barabasi, J. Jeong, Z. Néda, E. Ravasz, A. Shubed, & Vicsek.
Evolution of the social network of scientific collaboratsorPhysica, A
311(590-614), 2002.

[3] J. Baumes, M. Goldberg, M. Krishnamoorthy, M. Magdomésl, and
N. Preston. Finding comminities by clustering a graph intertapping
subgraphs. Proceedings of IADIS International Conference, Applied
Computing 2005, pages 97-104, 2005.

[4] J. Baumes, M. Goldberg, and M. Magdon-Ismail. Efficiedeéntifica-
tion of overlapping communities.IEEE International Conference on
Intelligence and Security Informatics (1S9), pages 27-36, May, 19-20
2005.

[21]

[22]

[23]

in graphG:.

J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallat@entifi-
cation of hidden groups in communicatiortdandbooks in Information
Systems, Volume 2: National Security, 2007, 2007.

T. Berger-Wolf and J. Saia. A framework for analysis ohdynic social
networks. DIMACS Technical Report, 28, 2005.

B. Bollobas, C. Borgs, J. Chayes, and O. Riordan. Daécscale-free
graphs. InSODA '03: Proceedings of the fourteenth annual ACM-SAM
symposium on Discrete algorithms, pages 132-139, Philadelphia, PA,
USA, 2003. Society for Industrial and Applied Mathematics.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. RajagopaR. Stat,
A. Tomkins, and J. Wiener. Graph structure in the weBomputer
Networks, 33(1-6):309-320, 2000.

F. Chung and L. Lu. Connected components in random grayitis
given degree sequencAnnals of Combinatoreics, 6:125-1456, 2002.
A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-thstributions
in empirical data, 2007.

P. Doreian and E. F.N. Stokman. Evolution of social reks. Gordon
and Breach, 1997.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On ptaverelationships
of the internet topology. I'8§GCOMM, pages 251-252, 1999.

C. Gkantsidi, M. Mihail, and E. Zegura. The markov chaimulatiopn
methods for generating connected power law random grapte. of
ALENEX' 03, pages 16-50, 2003.

K.-l. Goh, Y.-H. Eom, H. Jeong, B. Kahng, and D. Kim. Stiure and
evolution of online social relationships: Heterogeneity unrestricted
discussionsPhysical Review E (Satistical, Nonlinear, and Soft Matter
Physics), 73(6):066123, 2006.

J. M. Kleinberg and S. Lawrence. The structure of the .walscience,
pages 1849-1850, 2001.

G. Kossinets and D. J. Watts. Empirical analysis of aohemg social
network. Science, 311:88-90, 2006.

R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. Stmectand
evolution of blogospace.Communications of the ACM, 33(1-6):309—
320, 2004.

R. Kumar, J. Novak, and A. Tomkins. Structure and evotubf online
social networks. IrKDD’06, 2006.

M. Newman. The structure and function of complex netgorS AM
Review, 45(2):167-256, 2003.

M. Newman, A.-L. Barabasi, and D. Watts. The structanel dynamics
of networks. Princeton University Press, 2006.

M. E. J. Newman. The structure of scientific collabaratinetworks.
PROC.NATL.ACAD.SCI.USA, 98:404, 2001.

A. O. Stauffer and V. C. Barbosa. A study of the edge-shitg markov
chain method for the generation of random graphet xi v: cs.
DM/0512105, 2006.

D. B. West. Introduction to graph theorPrentice Hall, Upper Saddle
River, NJ, 2003.



