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Abstract—This work experimentally examines different no-
tions of stability of the behavior of individuals and groups in
a network of blogs. Our experiments are conducted on data
collected from LiveJournal. All stability notions aim to locate
stable behavior within an individual’s area, which is defined
in a variety of manners. Our experiments confirm an earlier
observation of the highly dynamic nature of the network. Roughly
70% of the communication of a typical week was not observed in
the previous week. Depending on the definition of stability and
area used, we find small, but highly stable, sets of individuals
with stable behavior in the network.

I. Introduction

The emergence of vast, easily observable networks such as
those formed by the WWW, email activity, social networking
sites, and blog communications has enabled a large amount
of research focusing on network dynamics. Recent work has
shown that some networks have connections which are very
dynamic while vertex sets remain comparatively static [1][2].
Given these intense reconnection dynamics, the identification of
stability becomes important, as it enabes classification, prediction,
and understanding of individual and group behavior within the
network.

Previous research has focused on locating stability in the
sea of statistics that can be generated from evolving, dynamic
graphs [3]. This has led to a better understanding of universal
trends such as network size during a given period, what portion of
edges remain constant, and how out-degree and in-degree relate
in a given snapshot of a network. However, this work did not
aim to locate individual users or groups whose behavior is stable.
Using a series of snapshots of communication patterns in a blog
network, this work will present and locate various notions of
behavioral stability at both the individual and collective level.
Rather than focus on the stability of social groups or topics, an
individual’s behavior will be examined through the concept of
an area. Conceptually, areas are defined as a subset of the graph
where a specific user is likely to attach edges in the future. The
stability of a variety of areas are examined further in the text,
offering glimpses into the stability of the network’s behavior at
different levels of granularity.

The dynamics of the blogograph, a series of networks formu-
lated from actual communications within a blog provider, make
it incredibly difficult to pin down a singular notion of stability.
Individuals may be inactive for long stretches of time, though their
behavior when they do appear may be incredible stable. In order
to circumvent this, we examine multiple flavors of stability:

• Universal Stability: A real value which quantifies how stable
an individual’s area is when viewed from the perspective of
the entire network. Vertices are considered unstable if they

do not appear in the graph regularly.
• Conditional Stablility : A real value which quantifies how

stable an individual’s area is when viewed from his or her
perspective. Stability is measured without taking into account
user inactivity.

• Parameterized Stability: A binary classification where an
individual’s area is described as stable or unstable based on
some behavioral thresholds.

Each of these metrics have some drawbacks and advantages which
will be explored as well as statistics showing the distribution of
stability among users of the network.

The formalization and observation of stability within net-
works such as the blogosphere have various implications. First,
any identification of stability will result in better models of the
overall behavior of individuals in these networks. Better models
will result in better results for predicting who will communicate
with whom and how ideas will spread between them. Identification
of stability also gives a global picture of expected behavior in a
network. If, all of a sudden, distributions and statistcs change
drastically, either for a stable individual or for the network as a
whole, an observer would know that some significant event has
happened with respect to the individual in question or the network
as a whole.

II. Data

The popular blogging service LiveJournal has grown quite rapidly
over the years. As of Janurary 2009, 18 million blogs have
been created since the service’s inception in 1999[4]. LiveJournal
offers users the ability to create their own blogs, as well as
declare friends and interests, join community centered groups, and
discuss other user’s blog posts through comments. Our research
focuses on the Russian language subset of LiveJournal and uses
commenting and posting activity to generate graphs representing
weekly snapshots of the communications dynamics in the network.
One of the advanced features of LiveJournal is an RSS feed which
publishes newly created posts as they appear in the system. Our
collection software records every post published in this feed and
stores a record of each comment that appears in response to that
post.

From this collected data, weekly snapshots of activity within
LiveJournal are created. Weeks were considered to be a natural
until of time based on the cyclic nature of activity levels in the
data, where weekends result in much fewer comments and posting
than weekdays. From the collected data for each week, a weighted,
directed graph is created in the following manner. If an individual,
A, comments on one of the posts of userB, the graph will contain
an edge fromA to B. The edges are weighted based on the
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Fig. 2. A histogram showing how many vertices appear in a givennumber
of weeks of the observed data.

number of posts ofB userA has commented on. For example, if
A comments 10 times on one ofB’s posts, the resulting edge will
have weight 1. However, if userA comments once on 10 ofB’s
posts, the edge fromA to B would have weight 10. An example
of this construction is given in Figure 1. Detailed descriptions of
the statistics of these graphs are given in [1] and [3].

The most significant feature of the LiveJournal data collected
is its instability. Over the 46 weeks of observed data, the presence
of an individual in a given week’s graph indicates that at the
very least, the user in question posted a comment or received
a comment from another user on one of his or her posts. If a
user does not participate in either of these activities, they are an
isolate in the graph formulated from the week’s postings. These
users are considered inactive for the given week. The ability of
bloggers to become inactive from week to week causes difficulties
in the search for stability. Figure 2 is a histogram showing how
many vertices appear a given number of weeks in the observed
data. A proportionally large number of individuals appear only a
handful of weeks.

Due to this instability in vertex set, it makes sense to examine
the stability of specific subsets of the vertices. Thus, in this
analysis we examine graphs based on the data. First, we consider
the set consisting of all vertices. This graph is constructed as
described above. We also consider the subsets of vertices which
appear at least 30 weeks and those which appear at least 40 weeks.
This restricts the graph to only active and ultra-active individuals.
In the graphs analyzed for vertices with at least 30 appearances
and 40 appearances, edges from the original graph are dropped
if they do not contain endpoints in the same set. This removes
vertices below the appearance threshold from the analysis.

The connections between individuals in the data are also
highly dynamic. For any week’s graph, 60% of the edges will
not be present in the next week’s graph. Many of these edges
do not reappear at any point in the observed 46 weeks. Figure 3
shows how often individual edges appear in the observed data for
each of the three graphs described above. Note that the number
of edges shown on the y-axis is a raw count in order to show

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40  45  50

P
or

tio
n 

of
 E

dg
es

Appearances

Edge Appearance Distribution

All Data
30 Appearances
40 Appearances

Fig. 3. Distribution of how often edges repeat for the various graph
formulations.

that the values converge as values along the x-axis increase.
Proportionally however, the graphs with appearance thresholds
predictably contain a larger number of stable edges.

III. Area

In a network such as the one described above, the dynamics of
the network complicate the search for stable behavior. In order
to combat this, the notion of anarea is defined. In [1], an area
is defined as a region of the graph from which a user is more
likely to reconnect its edges in the next evolution of the graph.
Simply put, an individual’s area in a given snapshot of the graph
is defined by some criteria which indicates the belief that a user
has more of a connection to individuals within their area than
individuals in the rest of the graph. The criteria used to define
this set can be varied and range from simple definitions such as
the 1-neighborhood to complex definitions such as the union of
social groups which contain an individual. This text will examine
the stability of these two area definitions, an individual’s one
neighborhood and the union of their social groups, over all users
in the observed networks.

The community detection algorithm used to locate social
groups to use as areas is Iterative Scan, with input seeds de-
termined by Link Aggregate. The specifics of the algorithm are
described in [5]. The algorithm works by taking a set of seed
communities and adding or removing vertices until each group
is conditionally optimal with respect to some defined density
function. For this application, the density function used was

density =
ein

ein + eout

+ λep (3.1)

whereein is the number of edges within the community,eout is
the number of edges connecting vertices within the community
to vertices outside,λ is a weighting parameter, andep is the
edge probability within the cluster. The term involving edge
probability was introduced to restrict community size in sparse
graphs. The term discourages vertices from being added which
are not significantly connected to the rest of the community being
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the comment to the author of the post (the blog owner). Paralleledges and loops are not allowed.

λ Clusters Avg Size AvgDensity
1 102124 2.0 1.12408

0.5 102121 2.00314 0.625279
0.25 101899 2.05851 0.383007
0.125 101309 2.65638 0.293328
0.0625 99838 5.80228 0.30531
0.03125 98086 10.1978 0.339646

0 95603 33.3089 0.379738

Fig. 4. Table showing cluster and area statistics asλ changes.

optimized. This value can have a significant effect on the results
of the algorithm. The average community sizes and densities are
shown in Figure 4 for a week of the observed data for various
values ofλ.

Now, we consider two area definitions on the same graph.
Figure 5 shows the distribution of area sizes for the areas defined
by the 1-neighborhood and by the union of communities with
various values ofλ. The difference in the size distributions for
different area definitions show that as the value ofλ increases,
areas get smaller. This is a consequence of favoring groups
with high edge probability. Asλ grows, the edge probability
is weighted so heavily in the density function, that adding
aditional vertices to a community of size 2 becomes incredibly
difficult since a community of size two with an edge between
the two vertices has a high edge probability. Figure 5 shows
the distribution in detail. However, in the true distribution for 1
neighborhood, there is a huge tail extending out to an area size
of 2500, while no group based areas approach that size. This is
because when optimizing groups, the algorithm shies away from
placing a vertex of degree 2500 in a group. Since the density
function described penalizes for edges cut by the community
boundary, adding a user with a high degree to a group requires
that a large portion of vertices adjacent to the user already be
in the group, which is unlikely barring the presence of intense
community structure between the high degree vertex and all of
his neighbors.

Defining an individual’s area to be the union of his or her
social groups does have a slight wrinkle to it in that occasionally,
indidividuals do not belong to any social groups as found by
the algorithm. In this case, this analysis cannot define an area
for the person. Therefore, he or she is simply considered to be
inactive in the graph. Figure 6 shows the number of vertices that
have defined areas and the average area size for various area
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Fig. 5. Area size distribution for various areas. Note that if the
1neighborhood is used as a baseline, at some point, increasing λ causes
the social group area definition’s distribution of sizes to fall below that of
the 1neighborhood.

definitions. Notice again, that reducing the size ofλ increases
area size due to increased cluster size. Also, when many large
clusters are discovered, the number of vertices with defined area
in the analysis approaches the number of vertices when defining
areas using 1-neighborhood. This value is the maximum possible,
as every vertex which is observe must, at some point, be connected
to some other vertex.

IV. Stability

Stability can be measured in a variety of ways. Since stability
is, at its heart, the similarity between two sets, it makes sense to
use the Jaccard index between vectors representing an individual’s
area in two time periods. Formally, the Jaccard index is given as

J(A, B) =
|A ∩ B|

|A ∪ B|

where in this case,A andB are sets containing the vertices in an
individual’s area. This value will be 1 when the setsA andB are
equal and is 0 if they do not overlap. This index can be utilized
in different ways to capture some of the subtleties of stability.

The simplest notion of stability is that ofuniversal stability.
In this case, the stability is measured with respect to the rest of



Area Type All Appearances 30 Appearances 40 Appearances
1-neighborhood 555853 (6.691) 89539 (8.684) 47851 (9.654)
Groupsλ = 1 470326 (2.319) 89498 (2.300) 47840 (2.290)
Groupsλ = 0.5 469972 (2.323) 89498 (2.298) 47840 (2.288)
Groupsλ = 0.25 471074 (2.452) 89499 (2.307) 47839 (2.287)
Groupsλ = 0.125 478218 (4.382) 89497 (2.232) 47839 (2.816)
Groupsλ = 0.0625 505289 (25.83) 89506 (28.52) 47844 (26.35)
Groupsλ = 0.03125 529049 (156.0) 89510 (206.3) 47843 (217.4)

Fig. 6. Table showing the number of vertices with defined areasin the observed 46 weeks of data. The average area size for alldiscovered areas is
also shown in parentheses and bold.

the graph. That is to say, that if an individual does not appear
in the graph in a given week, the network continues its normal
behavior. From the network’s perspective, the individual should
be penalized for being unstable, even though the individual’s area
might be the same in all weeks in which he or she appears in
the graph. Using the Jaccard index, we formalize the described
situation as

SU (t0, tn) =
Σn−1

i=0
J(Ati

, Ati+1
)

n − 1

From a practical standpoint, this value is perhaps the most
indicative of stability. Given an arbitrary graph, it shows how
stable one would expect an individual to be in the next graph.
However, based on the appearance histogram shown in Figure 2,
vertices in the blogoraph enter and leave the network regularly.
Using this measure, a vertex with the same area over 10 weeks
would be classified as unstable even though he or she embodies
some notion of stability.

As a complement to universal stability,conditional stability
can be used. In this measure, stability is measured from the user’s
perspective. Here, if the user does not appear in the network,
the metric delays its similarity computation until the individual
appears again. It then takes the average of the Jaccard index of
these adjacent appearances. Consider the chronologically ordered
set T = {t0, t1, t2, ..., tn−1, tn} of time steps in which a given
vertex appeared in the network.

SC(T ) =
Σt−1

i=0
J(ti, ti+1)

|T | − 1

These two stability metrics can be used together to help gain
an understanding of the stability of an individual. A person with a
high conditional stability value has a stable area when he appears
in the network. A person with a high universal stability has a
stable area as well a stable activity profile; he or she regularly is
a part of the network. It would also be useful to identify stable sets
of individuals with respect to certain parameters and to observe
the size of the stable sets increase or decrease as the parameters
change. This is the third notion of stability we will present. We
identify a vertex as being stable if he or she has some number
Tstable ≥ Tthresh of adjacent appearances with Jaccard index
J(tj , tj+1) ≥ t, wheresthresh andt are user defined parameters.

V. Results

The universal stability results for each of the three graph formu-
lations are shown below in Figure 7. As would be expected using
such a strict measure, all of the stability values are fairly low

for each of the different area definitions. For the 30 appearance
and 40 appearance graphs, an increase in stability across all area
definitions is seen. Again, this is expected, as universal stability
will penalize vertices for not periods of inactivity. These graphs
have had inactive vertices, to a certain extent, removed. The
general trend using this metric is that 1-neighborhood appears to
provide the most stability followed by the areas which are defined
by taking the union of social groups with the smallest size.

Figure 8 shows the distribution of conditional stabilities.
Here, a much different distribution is observed, as individuals
many more individuals have higher stability due to the relaxation
of metric. Using the union of social groups to define areas
with this measure provides more stability forλ values producing
smaller areas than the 1-neighborhood. Looking at the 30 and 40
appearance graphs, the difference in conditional stability defined
by low λ group areas, highλ group areas, and 1-neighborhoods
becomes even more significant.

Figures 9, 10, and 11 examine parameterized stability. They
show, for each of the graphs, the number of vertices that are
”stable” for a given number of weeks along the x-axis given one of
three stability thresholds: 0.1, 0.3, 0.7. These values are meant to
examine a low, medium, and high threshold requirement. Looking
at Figure 9, using an area defined by the 1-neighborhood of an
individual results in more stability across all thresholds, though
using groups with a high value ofλ as the area shows significant
stability with a threshold of 0.3 for 5-15 weeks. In Figures 10 and
11 showing the 30 appearance graph and 40 appearance graph,
this continues to be the case, except when the stability threshold
reaches 0.7. Here, the union of groups with a high value ofλ

results in an a similar amount of stability in the 30 appearance
graph and more stability in the 40 appearance graph than using
the 1-neighborhood.

Based on all of this data, it is apparent that, with few
exceptions, using areas as defined by the 1-neighborhood of an
individual result in more stability. Given this, one can ask how
the sets that are considered stable compare. Specifically, how well
does the set of stable individuals found using 1-neighborhood
cover the, generally smaller, set of stable individuals found using
the union of social groups. Across all combinations of stable
parameters, approximately 50% of stable individuals found in
group based areas are also stable when using their 1-neighborhood
as an area. This indicates that the 2 definitions find different sets
of stable individuals.

Using parameterized stablility, the result of each analysis
is a partitioning of the vertex set into “stable” and “unstable”
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(b) ≥30 Appearance Graph
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(c) ≥40 Appearance Graph

Fig. 7. Three plots detailing the universal stability distribution across different area definitions on the 3 formulatedgraphs.
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(c) ≥40 Appearance Graph

Fig. 8. Three plots detailing the average conditional stability of 4 area definitions on the 3 formulated graphs. Subfigure(a) uses a logscale along
its y-axis. For all graphs, using areas composed of the union of social groups which on average are smaller than the areas defined by 1neighborhood
locate more stable vertices. The elimination of infrequent users in the 30 and 40 appearance graphs also results in a changein distribution shape,
indicating an increase in the proportion of vertices with higher stability values.
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(a) Stability Threshold 0.1
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(b) Stability Threshold 0.3
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(c) Stability Threshold 0.7

Fig. 9. Plot showing the portion of vertices that appear stable for exactly the number of weeks listed along the x-axis for various stability thresholds.
The underlying graphs used in this evaluation consist of allcommunication data.
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(a) Stability Threshold 0.1
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(b) Stability Threshold 0.3
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(c) Stability Threshold 0.7

Fig. 10. Plot showing the number of vertices that appear stable for exactly the number of weeks listed along the x-axis for various stability threshold.
The underlying graphs used in this evalution consist only ofindividuals appearing at least 30 times in the observed data.
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(a) Stability Threshold 0.1
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(b) Stability Threshold 0.3
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(c) Stability Threshold 0.7

Fig. 11. Plot showing the number of vertices that appear stable for exactly the number of weeks listed along the x-axis for various stability threshold.
The underlying graphs used in this evalution consist only ofindividuals appearing at least 40 times in the observed data.
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Fig. 12. A plot showing the average portion of vertices in a stable vertex’s
area which are also stable.

vertices with respect to the specified parameters. How these two
sets of vertices relate gives additional insight into the stability
and character of the networks. Looking at each stable individual,
the portion of his or her areas composed of stable vertices can be
computed. A high portion of stable vertices in a stable individual’s
area indicates the existence of a pocket of stablility within the
graph. As this number becomes larger relative to the same portion
computed over unstable vertices, the degree to which the stable
area of the graph is isolated increases. Figure 12 shows a set
of distributions of this portion for different area definitions. As
shown in the previous plots, as the value ofλ decreases the
number of stable vertices decreases, but the size of their area
increases. However, in this figure, we see an increase in the portion
of stable vertices in a stable individual’s area asλ decreases for
large numbers of stable weeks.

VI. Conclusion

In highly dynamic networks such as the blogograph, understand-
ing the nuances of behavioral stability is a difficult task. Using
the concept of an individual’s area, we are able to observe how
stability distributions change under different stability metrics.
Once these metrics have been applied to each data set, we can
then consider how individual stability compares under definitions
and how stable individuals interact with unstable individuals.
In addition to analyzing the full observed data, we have also
examined the graphs composed of only active and ultra-active

individuals in an attempt to study the active ”core” of the graph.
Such analyses are important as they provide a set of observations
which can be used to enhance current models of dynamic network
behavior used in link prediction, diffusion, etc.
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