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Abstract—With the rampaging of Coronavirus disease 2019 

(COVID-19) across the world, analyzing the dynamic 

characteristics and understanding the evolutionary patterns of 

clusters are becoming even more crucial for people and 

policymakers to make timely responses for avoiding injury caused 

by COVID-19. To solve the scarcity of the fine-grained spatio-

temporal data, we construct a novel dataset about the spread of 

patients during the resurgent period of the COVID-19 epidemic at 

the Xinfadi Market in Beijing. Leveraging our self-build dataset, 

we analyze the evolutionary characteristics of the cluster of 

COVID-19 under anti-contagion policies and obtained some 

remarkable evolution patterns. These findings can provide 

significant insights for policymakers and researchers to 

understand the evolutionary characteristics regarding the cluster 

of COVID-19 and deploy effective anti-contagion policies. 
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I. INTRODUCTION 

Governments around the world are responding to the 
coronavirus disease 2019 (COVID-19) pandemic, caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1]. Due to the neglect of early intervention, the 
cluster of COVID-19 often causes a wide range of 
diffusion[2]. A convincing example is the different spread 
results between the Huanan seafood market in Wuhan and 
the Xinfadi market in Beijing. The former cluster of 
coronaviruses led to a pandemic in the Chinese mainland due 
to without early intervention, while the latter only spread in a 
small region. Because the modern world has never 
confronted this pathogen, nor deployed anti-contagion 
policies for the cluster of COVID-19 patients, it is crucial 
that study the dynamic characteristics and understand the 
evolutionary patterns of the cluster of COVID-19.

However, it is non-trivial to model the dynamic evolution 
of the cluster of COVID-19. Essentially, the evolution of 
the cluster of COVID-19 is a dynamic interaction process 
between people and locations. The difficulties are three-fold: 
(1) The fine-grained location data (e.g. street, community, and 
working place) is scarce. The geo-visualization project 
developed by the team of researchers of Johns Hopkins 
University can visualize the report cases on the level of 
countries, states, provinces, cities, or regions, but always based 
on a coarse-grained territorial logic. 
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(2) The spread of COVID-19 involves the heterogeneous–
homogeneous interaction between infected people and locations,
which needs an appropriate modeling method. (3) The spread of
COVID-19 contains a dynamic evolution process about the
interaction between people and locations.

To analyze the evolutionary characteristics of the cluster of 
COVID-19, we construct a new dataset about the spread of 
patients during the resurgent period of the COVID-19 epidemic 
at the Xinfadi Market in Beijing. Since a cluster of COVID-19 
has broken out in Beijing on June 11 and presented a certain 
trend of spread. The National Health Commission and Beijing 
Health Commission took some decisive anti-contagion policies 
such as closing restaurants or restricting travel, thereby slowing 
the spread of COVID-19 to a manageable rate. Based on the 
patient epidemiological investigation data published by the 
Beijing Health Commission, in this article, we extracted the 
confirmed COVID-19 patients and their historical location data. 

To model the dynamic interaction of the confirmed COVID-
19 patients and locations, we directly use the historical 
trajectories of confirmed COVID-19 patients to construct 
dynamic interaction networks. The dynamic interaction 
networks allow us to study the spread of COVID-19 and analyze 
its evolution patterns from both macro and micro perspectives. 
Complex network analysis [3], a powerful tool to model network 
data, plays an important role in many real-world applications 
and has shown promising results in various domains, including 
social network analysis [4, 5], security informatics[6], sociology 
[7, 8]. In public health, the complex network can also model the 
transmission of epidemics such the Dengue Fever [9, 10], 
influenza[11], SARS [12, 13]. 

Overall, the contributions of this paper are as follows: (1) 
We contribute a novel epidemiological dataset that describes the 
evolutionary process of the cluster of COVID-19 under the anti- 
contagion policies. (2) We propose a series of dynamic 
interaction network analysis methods to mine the evolutionary 
patterns of the cluster of COVID-19, which will provide useful 
information for governments making anti-contagion policies. 

The rest of this paper is organized as follows. Section 2 gives 
the detail information about the dataset. In Section 3, we 
introduce how to conduct dynamic analysis and related findings. 
Section 4 presents our experimental results for simulating the 



spread of the COVID-19 in the complex network. The paper 
summarizes the instructive conclusions in Section 5. 

II. DATASET INFORMATION

A. Data acquisition and processing

The Beijing COVID-19 resurgent data comes from the
notification issued by the Beijing Health Commission1 since 
June 11. We collected this data manually and organize it in a 
specific format. The address information is divided into three 
categories including district-street-community. The location 
related to the confirmed COVID-19 patients is divided into the 
place of residence, the place of work, and the place of close 
contact that can be traced from the epidemiological investigation. 

B. Statistical description

Initial COVID-19 cases in Beijing may be caused by an
imported source of infections.[14] There are together 368 cases 
of COVID-19 infection were reported in Beijing from June 11 
to July 12 at 24:00.  Among them, 335 people were confirmed 
cases and 33 were asymptomatic infections. Among the 368 
cases of infection, 73.9% (272) cases had a history of direct 
exposure (mainly including practitioners, staff and market 
visitors), and 25.6% (94 cases) were indirectly related cases. 

As of July 5, Beijing Health Commission has released 
epidemiological information about 284 cases. Based on the 
analysis of gender, age and occupational composition of 
reported cases, the ratio of male cases to female cases is not 
much different, 42%, and 58% respectively. The risk of 
infection is slightly higher in the female population; the average 
age of the cases was 40.88 and 43.2 years old respectively; the 
occupations of the cases are mostly concentrated in the relevant 
personnel in the Xinfadi Market, accounting for 51.05% (145 
people); the second reason for the infection of the cases is 
mainly concentrated in the catering personnel who may 
purchase goods from Xinfadi Market, and the people who had 
purchase behavior from the Xinfadi Market, accounting for 
24.29% (69 people). According to the characteristics of 
population flow and migrant workers, mainly young and 
middle-aged people, have become the main source of imported 
cases in Beijing. 

Fig. 1: Change of the number of daily confirmed infection cases and 

confirmed cases related to the Xinfadi Market. 

Fig. 2: Age distribution of confirmed cases 

Besides, we present the construction method and temporal 
changes of the dynamic interaction networks in Section 3. 

C. Cluster cases of COVID-19

A total of 29 clustered epidemic events related to Xinfadi
involved 127 confirmed patients and asymptomatic infections. 
In this subsection, we discuss three different types of case 
studies including family clustered epidemic events, workplace 
clustered epidemic events, hybrid clustered epidemic events. 

Fig. 3: Four family clustered epidemic events 

Fig. 4: Cases-1 of workplace clustered epidemic events 

Fig. 5: Cases-2 of workplace clustered epidemic events 

Fig. 6: Cases-3 of workplace clustered epidemic events 

1. http://wjw.beijing.gov.cn/wjwh/ztzl/xxgzbd/ 



 

Fig. 7: Typical case of Hybrid clustered epidemic events 

We can see that the structure of most family clustered 
epidemic cases is relatively simple. The spread path within the 
family is shorter. If quarantine measures are taken in time, large-
scale family clustered epidemic spread will not happen. 

Most of the workplace clustered epidemic events are related 
practitioners in the catering industry. The workplace which they 
work on is relatively closed and frequent contact. When the 
isolation measures are taken in time, the propagation path is 
relatively short. 

Hybrid clustered epidemic events have a longer spread path 
and are closest to the transmission path of a true world epidemic 
outbreak without control measures. It contains situations such as 
family gatherings, workplace gatherings, and public gatherings 
alternate. The probability of epidemic spread is significantly 
higher in the places where people are in close contact. 

III. DYNAMIC INTERACTION NETWORK 

CHARACTERISTICS ANALYSIS  

Simply, we treat people and places as nodes, their 
interactions as edges, and build a complex network of COVID-
19. We take personnel, personnel residence, work location, and 
close contact area as the nodes. The interaction between people 
and location, people and people, and the connection between 
location and location from the trajectory confirmed cases is the 
side to build an epidemic spreading network. The personnel are 
infected cases and asymptomatic infected persons. The address 
information is divided into three categories including district-
street-community. The location related to the confirmed 
COVID-19 patients is divided into the place of residence, the 
place of work, and the place of close contact that can be traced 
from the epidemiological investigation. 

Close contact areas are important locations announced in the 
epidemiological investigation of patients or contact cases. The 
edge between a place and a place indicates that the patient has a 
flow trajectory between the two places. And an edge is 
established at two levels between the patient and the street node 
of the work or between life place and the specific address of the 
work and living place. In this way, an epidemic spreading 
network is formed. With the development of the COVID-19, the 
network evolves. At time t, we denote Vt as the set of nodes in 
the network, and 𝐸𝑡 as is the set of edges in the network. 𝐺t =
(V𝑡 , E𝑡) denote the interaction network at time t. 

We according to data collected from June 11th to July 4th. 
starting from June 12th, at the interval of each publication of the 
survey results, use python's NetworkX related packages to 
construct network diagrams, and analyze network changes. 

In order to explore the dynamic changes of the epidemic 
spreading network, we calculated the changes of different 
network characteristics in the spreading network of the epidemic. 

 

Fig. 8: The number of nodes, edges, the average degree, and the change curve 

of the correlation coefficient of the network at different time  

The following figure shows some basic network changes, 
which are the number of nodes, the number of edges, the degree, 
and the classification coefficient. Fig. 8 shows how network 
characteristics have changed. The growth of the number of 
nodes and edges gradually slow down until its stop. The degree 
has a volatile growth in the middle period. The correlation 
coefficient quickly decays and then rises. But it is always at the 
level of negative correlation.  

A. Network density 

The density for undirected graphs is 

d𝑡 =
2𝑚𝑡

𝑛𝑡(𝑛𝑡−1)

(1) 

Where 𝑛  is the number of nodes and 𝑚  is the number of 
edges in G. According to the definition, the network density 
ranges from [0,1]. The greater the network density, the more 
connections exist in the network, the higher the accessibility.  

 

Fig. 9: daily changes in network density. 

The network density is gradually decreasing, indicating that 
the spread of the epidemic is gradually decreasing, and the 
network connectivity of the epidemic is getting worse. 

B. Betweenness centralization in network 

Betweenness centrality of a node v is the sum of the fraction 
of all-pairs shortest paths that pass through v .Referred to as 
Cbtw, Calculated as follows: 

𝐶𝑏𝑡𝑤(𝑣) = ∑
σ(𝑠,𝑝)(𝑣)

𝜎(𝑠,𝑝)
(𝑠,𝑝∈𝑁𝑡) (2))  



σ(𝑠,𝑝) is the number of shortest paths between node 𝑠𝑡 and 

node  𝑝𝑡 . σ(𝑠,𝑝)(𝑣𝑡)   is the number of shortest paths between 

node s and node 𝑝𝑡  through node 𝑣. 

Betweenness centralization is the gap between the centrality 
of the node with the highest centrality in the network and the 
centrality of other nodes. The greater the gap between this node 
and other nodes, the higher the betweenness centralization of the 
network. Betweenness centralization CB𝑡

: 

𝐶𝐵 =
∑ 𝑚𝑎𝑥(𝐶𝑏𝑡𝑤) − 𝐶𝑏𝑡𝑤(𝑣)𝑣∈𝑁𝑡

|𝑁𝑡| − 1
(3) 

Intermediary centrality reflects the ability of nodes to occupy 
key positions in the network and their control over the network. 
The betweenness centrality of the overall network is related to 
the betweenness centrality of nodes.  When the gap between the 
centrality of nodes is larger, the centrality of the network is 
greater. 

We can see from Fig. 10 that after the outbreak of the 
epidemic began to detect, the intermediary centrality fluctuated 
first and then increased, maintaining a relatively high level and 
finally decreasing slightly. This shows that the epidemic has 
always revolved around certain key nodes, such as Xinfadi, with 
a high degree of aggregation. 

In order to explore the key nodes, we calculate the daily top 
5 of the intermediary centrality values of the following locations 
nodes. It shows in Fig. 11. 

 

Fig. 10: Epidemic network intermediary centrality change over time 

Most of the cases are closely related to the Xinfadi Market, 
Fengtai District, and Huaxiang. The intermediary center 
potential of these nodes is larger, which indicate that they have 
greater network control. 

 

Fig.11: daily top 5 of the intermediary centrality values of Location node 

C. Compare with other networks 

Small-world network makes information spread quickly in 
nodes. It shows high aggregation and good accessibility. 
Network performance can be rapidly changed by changing the 
relationship between a few nodes in the small-world network. It 
is mainly measured by the average path length and clustering 
coefficient. 

The average path length is the average of the shortest paths 
between all pairs of nodes in the network. Some literature such 
as [15] shows that for an infectious disease network with the 
same number of nodes, the longer the average path length, the 
slower the spread of the epidemic. The clustering coefficient 
characterizes the probability of interconnection between nodes 
the higher the aggregation coefficient is, the closer the network 
connection is. 

Here we generate an ER network with the same number of 
nodes and the probability for edge creation is 0.3.ER network is 
the Erdős–Rényi random graph model. WS network is the small-
world graph Contains the same number nodes, each node has the 
same number of neighbors as the original network average 
neighbors, randomizes the reconnect edge with probability 0.3. 
BA network is a random scale-free network generated by the 
Barabási–Albert model. ER network, WS network, and BA 
network are compared with the real epidemic transmission 
network. To observe its small-world characteristics. 

 

Fig. 12: Clustering coefficient of different networks changes at different times 

The COVID-19 Beijing spread network of epidemic 
situations presents certain characteristics of the small-world. 

 

Fig. 13: Shortest path length of different networks changes at different times 

Xinfadi Market 0.707895 Huaxiang 0.147368   Yuetan Jiedao 0.1 Changyang town 0.1 Xiluoyuan Street 0.1
Xinfadi Market 0.622989 Huaxiang 0.328795 Fengtai District 0.184177 Lugouqiao Street 0.130001   Yuetan Jiedao 0.109596
Xinfadi Market 0.648389 Huaxiang 0.309282 Fengtai District 0.227516 Lugouqiao Street 0.086794   Yuetan Jiedao 0.06796
Xinfadi Market 0.675313 Huaxiang 0.291085 Fengtai District 0.191751 Lugouqiao Street 0.070985   Yuetan Jiedao 0.05491
Xinfadi Market 0.663888 Huaxiang 0.306307 Fengtai District 0.176296 Lugouqiao Street 0.067461 Lugouqiao 0.051885
Xinfadi Market 0.648743 Huaxiang 0.316632 Fengtai District 0.189616 Lugouqiao Street 0.083972 Lugouqiao 0.0515
Xinfadi Market 0.628905 Huaxiang 0.337507 Fengtai District 0.18004 Lugouqiao Street 0.070897 Huangcun town 0.061261
Xinfadi Market 0.602204 Huaxiang 0.336058 Fengtai District 0.183756 Lugouqiao 0.07343 Lugouqiao Street 0.07138
Xinfadi Market 0.647009 Huaxiang 0.275302 Lugouqiao 0.114651 Fengtai District 0.08589 Huangcun town 0.075172
Xinfadi Market 0.647116 Huaxiang 0.269979 Lugouqiao 0.108727 Huangcun town 0.079231 Fengtai District 0.076933
Xinfadi Market 0.645214 Huaxiang 0.27749 Lugouqiao 0.111937 Huangcun town 0.071314 Fengtai District 0.067836
Xinfadi Market 0.657161 Huaxiang 0.242953 Haidian District 0.086956 Lugouqiao 0.072718 Huangcun town 0.063759
Xinfadi Market 0.654003 Huaxiang 0.253046 Haidian District 0.082499 Lugouqiao 0.068761 Huangcun town 0.060528
Xinfadi Market 0.671264 Huaxiang 0.244226 Haidian District 0.078196 Daxing District 0.054592 Xihongmen Town 0.053486
Xinfadi Market 0.672544 Huaxiang 0.2412 Haidian District 0.075582 Daxing District 0.058567 Huangcun town 0.057037
Xinfadi Market 0.666357 Huaxiang 0.250804 Haidian District 0.07378 Daxing District 0.05721 Huangcun town 0.055663
Xinfadi Market 0.667605 Huaxiang 0.245786 Haidian District 0.072696 Daxing District 0.062857 Xihongmen Town 0.05882
Xinfadi Market 0.66524 Huaxiang 0.248211 Haidian District 0.072458 Daxing District 0.062533 Xihongmen Town 0.058553
Xinfadi Market 0.681881 Huaxiang 0.240074 Daxing District 0.061661 Xihongmen Town 0.057269 Huangcun town 0.05327
Xinfadi Market 0.679781 Huaxiang 0.239438 Daxing District 0.060839 Xihongmen Town 0.056646 Huangcun town 0.052588
Xinfadi Market 0.678088 Huaxiang 0.242728 Daxing District 0.060109 Xihongmen Town 0.056087 Huangcun town 0.052108
Xinfadi Market 0.676549 Huaxiang 0.245868 Daxing District 0.059945 Xihongmen Town 0.055974 Huangcun town 0.051967



IV. SIMULATION ANALYSIS  

Wei et al. [16] used the SEIR dynamics model to fit COVID-
19 epidemic in Beijing's daily onset infections. To further 
explore the influence of different network structures on the 
transmission speed and mode of such sudden cluster epidemics. 
We use the SIR model in two different types of networks to 
simulate the spread of infectious diseases.  

It can be observed from the spread of cases that if isolation 
measures are taken promptly, family-type, or workplace-type 
gathering cases. The network structure is closer to the BA scale-
free network with fewer edges. Fig. 14 is an example of the BA 
scale-free network with fewer edges. 

 

Fig. 14: BA scale-free network with fewer edges 

We use a BA scale-free network with 300 nodes and 300 
edges to simulate home and workplace aggregation. The blue 
node is the uninfected node, and the green node is the recovered 
node.  The red node is the infected node. Randomly select 10 
nodes to initialize as infected persons. Take thirty days as the 
propagation time. Observe the network changes after that. Thirty 
days later, only some nodes have been infected with COVID-19. 

Max_deg_I record max number of neighbors within infected. 
tot_deg_I records the total number of neighbors within infected. 
Figure 10 shows the sir model change in the number of 
infections. 

 

Fig. 15: Infection status of BA scale-free network after 30 days 

 

Fig. 16: Changes  of SIR infections on the BA scale-free network 

Figure 16 depicts that SIR model changes in where the 
spread structure is closer to family clustered epidemic events 
which under timely control measures. However, if control 
measures are not taken in time to prevent a mixed type of 
aggregation that develops into a diffusion state. The network 
structure is closer to a random network or a small world network 
as Fig. 17.  

 

Fig. 17 A small world network example 

A small-world network with 300 nodes, 4 neighbors per 
node, and a randomized reconnection probability of 0.5 is used 
as a simulation network to modeling the COVID-19 spread. We 
still select 10 nodes to initialize as infected persons and observe 
the changes after 30 days. Most nodes have been infected or 
infected with COVID-19. 

 

Fig. 8: Infection status of a small world network after 30 days 

Fig. 19 shows the change in the number of infections in the 
SIR model under this network structure. Compared to Fig. 16. 
The number of people infected has increased by more than 150 
percent. Limiting contact can reduce the rate of spread, it is 
consistent with some previous studies[2, 16]. 

 

Fig. 19: Changes in the number of SIR infections on the small world network 



V. CONCLUSION 

Leveraging the self-build dataset about the spread of 
COVID-19 at the Xinfadi Market in Beijing, we analyzed the 
evolutionary characteristics of the cluster of COVID-19 under 
anti-contagion policies. Excluding the volatilities of some 
evolutionary characteristics in the early stage of the outbreak 
due to incomplete information from epidemiological 
investigations, we make the following remarkable conclusions:  

(1) The overall connection density of the network is low, and 
its topological characteristics are in a trend of rapid changes in 
the early stage, and gradually fall back to a stable trend after a 
certain period of time. In the epidemic network, the number of 
edges is increasing and the shortest path is not increasing 
simultaneously. These results shows that the COVID-19 
epidemic networks have a small spread area and the control 
measures for the epidemic situation are effective.  

(2) The dynamic epidemic networks present certain small-
world and scale-free characteristics. Most of the nodes are 
related to Xinfadi Market or Huaxiang Street. And the COVID-
19 spread network has an obvious aggregation, forming two 
central spread areas around Xinfadi Market and Huaxiang Street. 
Daxing District and its subordinate streets are several region 
with relatively high degree values, indicating that during the 
incubation period of COVID-19, it is necessary to take priority 
interventions policy in the areas with large population mobility. 

(3) The simulation results indicate that the propagation speed 
and scale of the family clustered epidemic, and the epidemic 
network will reduce to nearly one-fifth of the propagation scale 
of the mixed aggregation under the condition of timely isolation. 
This provides a remarkable insight that reducing the contact and 
early control significantly and substantially slow the spread. 

We argue that these findings can provide significant insights 
for policymakers and researchers to understand the evolutionary 
characteristics regarding the cluster COVID-19 and deploy 
effective anti-contagion policies. 
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