Holistic Analysis of Mix Protocols

Giampaolo Bella
DMI, Universita di Catania, Italy
STRL, De Montfort University, UK
giamp @dmi.unict.it

Abstract

Security protocols are often analysed in isolation as
academic challenges. However, the real world can require
various combinations of them, such as a certified email
protocol executed over a resilient channel, or the key regis-
tration protocol to precede the purchase protocols of Secure
Electronic Transactions (SET).

We develop what appears to be the first scalable approach
to specifying and analysing mix protocols. It expands on the
Inductive Method by exploiting the simplicity with which
inductive definitions can refer to each other. This lets the
human analyst study each protocol separately first, and then
derive holistic properties about the mix.

The approach, which is demonstrated on the sequential
composition of a certification protocol with an authentica-
tion one, is not limited by the features of the protocols,
which can, for example, share message components such
as cryptographic keys and nonces. It bears potential for
the analysis of complex protocols constructed by general
composition of others.

Index Terms

Inductive Method; Theorem Proving; Isabelle; Security;

1. Introduction

The formal analysis of security protocols is currently
so mature that its conceptual challenges appear to have
lost much of their appeal with the international research
community. This augments the quest towards making the
analysis fully automatic, arguably a very worthy goal.

1.1. Motivations

The present manuscript demonstrates that the challenges
of protocol analysis are still significant at least upon those
protocols that are run with other protocols. In particular,
security protocols are typically sequenced, as is the case of

Research supported by the SFI grant 08/RFP/CMS1347.

Denis Butin
School of Computing
Dublin City University, Ireland
denis.butin@computing.dcu.ie

David Gray
School of Computing
Dublin City University, Ireland
david.gray@computing.dcu.ie

protocols for public-key registration, certification and actual
use. They are often executed on top of one another in a stack
fashion, as is the case of an SSL session taking place over an
IPSec channel. Protocols may also be interleaved, perhaps
with malicious aims, as is the case of a purchase transaction
that is entwined with a banking session. We advocate that
protocol analysis become more precise (hence more reliable)
upon these protocols, and hence make explicit a number of
preconditions whose validity is given for granted.

We term mix protocol each combination of protocols by
means of sequencing, stacking or interleaving. The analysis
of mix protocols still appears out of reach for the automatic
protocol analyser ProVerif [1] but not for Scyther [2], which
can handle some. However protocols are composed, their
interactions make isolated security analysis hazardous. Intu-
itively, protocols sharing components may influence security
guarantees in unforeseen ways. In practice, the risk of ma-
liciously interleaving the sessions of two different protocols
was demonstrated by Cremers, the author of Scyther [3],
who exposed a number of multi-protocol attacks. His tool
is however limited to “specific classes of protocols that can
be composed in certain ways” [4], namely classes whose
protocols are “strongly independent”. In fact, “ciphertexts,
signatures, and message authentication tags originating in
one protocol set will never be accepted by the other protocol
set and vice versa”. By contrast, our approach can tackle
protocols that interact a lot and in fact depend on each other,
such as a public-key authentication protocol depending on a
certification one by using its certificates — notably, the two
protocols can be specified and studied separately, but they
can use the same elements, such as keys and certificates.

Also, the technicalities of ad hoc protocol tools may
somewhat hide the operational features of mix protocols
and limit their understanding to non-practitioners of the
software. Hence the need to reason about these protocols
using a mathematically-rooted and well-understood language
such as induction, which is not constrained by completeness
issues.

1.2. Findings

The main finding of this paper is how to formally analyse
mix protocols using the Inductive Method [5], [6], an estab-

lished approach to protocol analysis based on mathematical
induction and the support of the interactive theorem prover
Isabelle. Although Isabelle requires user specialisation to
conduct the proofs, the findings are intuitive thanks to
the simplicity of induction. Therefore, they can be easily
understood, for example, by mathematicians approaching
protocol analysis without interest in learning specialised
tools, also because most proofs can be reproduced by pen
and paper, depending on their size.

In particular, it is found that mix protocols can be spec-
ified holistically by using more than one inductive protocol
definition, precisely one per protocol. In case of sequencing,
a protocol step can be premised with particular conditions
about a previous protocol. Typically, such conditions express
the achievement of the main goals of the previous protocol,
such as the distribution of a session key or the authentication
of a peer. In abstract, logical terms, the case of stacking is
the same, as the necessary premise conditions refer to the
underlying protocol. In case of interleaving, the two (n in
general) protocols refer to each other using the same mecha-
nism, a feature that enforces the advancement of a protocol
only upon condition that the other protocol advances too.
This approach bears the potential to scale up easily to the
specification of protocols obtained by composition.

This holistic approach is demonstrated in this paper upon
a mix protocol built by sequencing. First, a general certifica-
tion protocol whereby an agent receives from a certification
authority a certificate for herself and her peer is defined
and studied inductively. Then, an authentication protocol
is tackled. Notably, it is based on its peers’ knowledge of
the necessary certificates, hence on the successful comple-
tion of the underlying certification protocol. For the sake
of demonstration, we chose the best-known authentication
protocol, due to Needham and Schroeder, which has rarely
been analysed in its full version including certification.
While Meadows analysed it as a monolithic entity [7],
we will treat certification separately from the remaining
protocol but derive holistic guarantees about their sequential
combination.

The second finding is a general treatment of certification,
which can be reused for all public-key protocols tackled
so far. Agents that had to refer to each public key as if
their owner was magically known can now use a public
key accordingly to the corresponding certificate, which is
signed by the authority. By reflecting exactly what happens
in the real world, this reaches our aim of a more precise and
reliable analysis of the authentication protocol. The depth of
the certificate chain is kept to one level for simplicity, but
it can be naturally generalised to many levels.

1.3. Paper summary

This paper continues by presenting the certification and
authentication protocols featured in a running example (§2).

After a short reminder on the formal tools that are adopted,
Isabelle/HOL and the Inductive Method (§3), the main
guarantees for our case study are discussed (§4). More
details on the formal specifications and proofs follow (§5).
Some conclusion terminate the treatment, and outline the
potential for future applications arising from the scalability
of the approach (§6).

2. Running example

Our research begins with the analysis of the generic
certification protocol in Figure 1. The standard protocol
notation is adopted, and the reader’s familiarity with it is
assumed. An agent A contacts a certification authority CA
to obtain public-key certificates for her and her intended
peer B. In a subsequent protocol, A may use her certificate
to forward it to her peer, and needs her peer’s to meet a
very basic requirement: knowing what public key to use
with her peer to ensure that only he can decrypt her traffic.
Public knowledge of the CA’s public key is assumed, but
could be treated as the outcome of a previous protocol in
the sequence.

1. A—CA
2. CA— A

AB
{IKaaAI}KEXa {[KMBI}KEAI

Figure 1. A generic certification protocol

The most published protocol ever is (yet again) quoted
in Figure 2 for the reader’s convenience. It is the public-
key Needham-Schroeder protocol [8] with Lowe’s fix [9] of
repeating B’s identity next to the nonce pair in a message.
This is the full version that includes the certification steps,
which are, irrespectively of their importance, usually sim-
plified away. We present the protocol with appropriate line
spacing in order to emphasise that the first two steps provide
the initiator with her peer’s certificate, as the trusted server
S is offering the certification service. Then, steps 4 and 5
are the homologous for B.

1. A— S A, B

2. S— A {[Kb7B|}K§]
3. A— B : {Nu A}y,

4 B—S : BA

5. S—B : {Ku A}y

6. B—+A : {Nu Ny Bl
7. A— B {]Nbl}Kb

Figure 2. The full public-key Needham-Schroeder pro-
tocol with Lowe’s fix

The four steps described above signify the peers’ respec-
tive execution of a specific certification protocol, following

a registration protocol whereby the public key is securely
stored with the authority. The full protocol is thus obtained
by sequencing a certification protocol with an authentication
protocol consisting of the remaining three steps, 3, 6 and
7, those that are commonly though simplistically addressed
as Needham-Schroeder protocol. Without loss of generality,
that certification protocol could be our generic one (Figure
1). In consequence, a reliable formal analysis of the full
protocol demands a formal approach that can deal with mix
protocols constructed by sequencing. This is what the sequel
of this manuscript shall demonstrate.

3. Method

The method that our work adopts is the Inductive Method.
This Section only provides a glimpse at it to serve as a
reminder to those who already are familiar with it.

Isabelle [10] is the latest descendant of a long line of
theorem provers. It is a generic theorem prover, based on
ML, with a wide field of applications. Many logics are
supported, since Isabelle is general-purpose; the most widely
used one is Isabelle/HOL, allowing predicates to be formal-
ized and proved in higher-order logic. Proofs are interactive:
even though simplification and classical reasoning tools are
available, the user must still guide the chain of proofs and
sometimes prove subgoals manually. A file-based theory
hierarchy provides a flexible starting point for proofs. Every
theory file inherits all theorems and proofs from parent
theories.

Isabelle/HOL’s application to security protocol verifica-
tion, called the Inductive Method, was introduced by Paulson
[11] and refined by Bella [6]. Mathematical induction is used
to model protocol steps, define security goals and prove
them. It was applied to a variety of protocols, even large
ones such as the SET suite [12]. Protocol steps, a Dolev-
Yao type threat model and security guarantees are modelled
inductively. Security protocols formalised in Isabelle typi-
cally import the theory file Public, specifying cryptographic
keys and initial states. Its parent file is Event, which mainly
describes network event datatypes. The third theory specific
to protocol analysis is Message ; it describes the structure
of messages and agents and is imported by Event.

In the Inductive Method, the number of agents and concur-
rent protocol sessions are unbounded, which allows replay
and interleaving attacks to be detected. Normal agents are
honest, and merely follow the protocol. Their number is not
bounded. A trusted server and a dishonest agent, the Spy,
are also present.

The Spy is a peer that can act legally, like a friendly
agent, but that has additional powers too. Like in the Dolev-
Yao model, which she embodies, the Spy in the Inductive
Method can forge and send new messages combining any
parts of messages previously sent over the network. She can
transmit existing ciphertext, but cannot create new ciphertext

without possessing the corresponding encryption key. This
set of abilities is modelled by the following inductive rule:

| Fake: [evsf € ns_public; X € synth (analz (knows Spy evsf))]
= Says Spy B X # evsf € ns_public

Security properties are established by inductive reasoning
over lists of network events called traces. Every protocol step
is modelled as an inductive rule with pre- and postconditions.
The protocol model is the set of all admissible traces under
those rules. A security property is considered proven if it
holds for all those possible traces. The agents’ knowledge
is derived from the traces.

Network events resulting from the protocol are repre-
sented by Says, Gets and Notes. Says A B X means that
agent A sends the message X to agent B. Since delivery is not
guaranteed, this does not automatically imply B receiving X.
Gets B X models this very fact. The event Notes A X models
internal storage of the message X by agent A.

Asymmetric cryptographic key-pairs are declared as priSK
and pubSK for signature and priEK and pubEK for encryp-
tion. When the distinction is not used, one can simply write
priK and pubK. The function invKey maps an asymmetric
key to its inverse. Before a protocol begins, agents often
already know some keys or other elements; this is formalized
by the initState function, which maps an agent to a set of
messages.

The operator analz formalises breaking up messages into
their elements. This includes decoding ciphertexts when the
key is available, but not cryptanalysis. Cryptography is seen
as a black-box, and considered perfect as long as the key
doesnt leak. On the other hand, the parts operator applied
to a set of messages returns all building blocks from those
messages, even ciphertext for which the key is not known
to the agent. synth formalises the creation of new messages
from available components. Encryption, which is formalised
by the function Crypt, is considered unbreakable unless the
adequate key is leaked.

The function knows Spy maps a list of network events to
a set of messages. Those message are the knowledge that
the Spy acquired from that particular set of events. Since
the Spy intercepts all exchanged messages, this set contains
the network traffic for the given trace. A generalization of
knows Spy is the function knows, taking as parameters an
agent and a trace and outputting a set of messages: the agents
knowledge. Agents know what they send, note, or receive.

Compromised agents reveal their private keys and what
they Note to the Spy, and are denoted by the set bad. The
Spy is herself part of bad.

The function used maps a list of events to a set of mes-
sages, and allows us to reason about freshness. A message
component is defined as fresh if it is present in no initial
state and if it has never been part of a Says or Notes event.

When proving a security property result about a protocol,
we first give it a name, preceded by the command theorem

or lemma. The result proper is then stated between double
quotes, followed by the proof. Arguments such as auto,
simp_all or blast make some proof steps automatic, but user
guidance is needed for intricate parts.

4. Summary of the findings

The generic certification protocol (Figure 1) has been
analysed using the standard techniques available in the
Inductive Method. Despite the presence of an active attacker,
the standard Dolev-Yao [13], the protocol succeeds in estab-
lishing its intended security properties. The corresponding
guarantees are summarised and discussed here, while their
proofs are deferred (§5).

Theorem 1 (Says_CA_cert). The certification protocol es-
tablishes the following security properties.
o A message that the certification authority sends con-
tains two different well-formed certificates.
o Each certificate contains the key that is addressed as
public key of the agent that the certificate mentions.

This Theorem holds because the authority cannot mis-
behave. Its structure is not new because other protocols
analysed so far rest on similar assumptions. However, its
significance is innovative. It formalises for the first time
that a bitstring contained in a certificate can be addressed
as public key of the agent mentioned beside it. Formally, a
generic key K found inside a certificate next to a generic
agent name A implies that K = pubEK A. To enable the
protocol participants to appeal to this theorem, another
guarantee is needed.

Theorem 2 (cert_authentic_agent). The certification proto-
col establishes the following security properties.
o A well-formed certificate that a generic agent obtains
originated with the certification authority.
o The authority may have sent it as either first or second
component of its message.

By combining this Theorem with the previous, a generic
agent can conclude that the mentioned key is the public
key of the agent mentioned next to it. Despite the brevity
of the statement, theorems of this form have never been
proved before. It generalises to a generic agent the existing
authenticity guarantees [6] confirming the originator of
messages available to the attacker. This generalisation has
required novel proof strategies involving a number of case
splits, which are detailed later.

The main findings about the authentication protocol stem
from each agent’s check of their peer’s certificate prior to
sending the relevant protocol message, as we shall see (§5).
The main confidentiality guarantees about the exchanged
nonces can thus be expanded by stating the form of the
encrypting key via an appeal to Theorem 1.

Theorem 3 (Spy_not_see_NA). The authentication proto-
col, if executed after the certification protocol, establishes
the following security properties.

o The first message that an initiator agent sends to a
responder agent while both conform to the protocol is
such that:

— it contains a confidential initiator’s nonce;
— it is encrypted by the responder’s public key.

Theorem 4 (Spy_not_see_NB). The authentication proto-
col, if executed after the certification protocol, establishes
the following security properties.

o The reply that a responder agent sends to an initiator
agent while both conform to the protocol is such that:

— it contains a confidential responder’s nonce;
— it is encrypted by the initiator’s public key.

These guarantees confirm what happens in the real world.
When honest agents engage in the authentication protocol,
each of them does not have to blindly assume that they are
using the right key. By contrast, each inherits a guarantee
from the preceding certification protocol that they precisely
are using the public key belonging to the intended peer. This
level of detail was not available before our work.

5. Details of the findings

5.1. Specifications

The certification protocol can be studied using traditional
techniques. The inductive specification of its main event is
quoted here.

| Cert2: [evsc2 € cert; Gets CA {Agent A, Agent BJ} € set evsc2;
A # B]
= Says CA A
{Crypt (priSK CA) {Key (pubEK A), Agent A},
Crypt (priSK CA) {Key (pubEK B), Agent B}
evsc2 € cert

It can be seen that upon receiving a valid certificate
request, CA replies to the agent first quoted in the message
by sending two certificates: one for each agent quoted. The
authority only checks that it is issuing certificates for two
different agents. A signature by CA is indicated by Crypt
(priSK CA).

The specification phase can now tackle the authentication
protocol, and can refer to the certification one. Let NA be a
fresh nonce and assume a certificate mentioning agent B is
part of A’s knowledge derived from the certification protocol.
Assume also that A obtained B’s certificate on some trace
of the certification protocol. Then the first message of the
authentication protocol is sent by A to B: the concatenation
of NA and of the sender’s name, all encrypted with the key
found in the certificate for B.

| NSI: [evsl € ns_public; Nonce NA ¢ used evsl; evsca € cert,
Crypt (priSK CA) {Key K, Agent B}
€ parts(knows A evsca)]
= Says A B (Crypt K {Nonce NA, Agent A})
evsl € ns_public

Notably, it is the first time that the specification of a protocol
with the Inductive Method needs to make assumptions
on traces of two different protocols, here evsca from the
protocol specified by cert, and evsl from the protocol being
specified by ns_public. Precisely, the assumption on evsca
serves to bind the key that A uses to build the new message.

Similarly, if B has received a message of format NS/ and
knows a certificate for A, then he picks another fresh nonce
NB and sends it, encrypted, to A, along with the previously
received nonce and B’s identity.

| NS2: [evs2 € ns_public; Nonce NB ¢ used evs2; evsch € cert,
Gets B (Crypt (pubEK B) {Nonce NA, Agent Al})
€ set evs2;
Crypt (priSK CA) {Key K, Agent A}
€ parts(knows B evsch)]
= Says B A (Crypt K {Nonce NA, Nonce NB,
Agent Bl}) # evs2 € ns_public

The explicit reference to traces belonging to the two pro-
tocols is visible also in this case. In line with the previous
step, the assumption on evscb serves to bind the key that B
uses to build the new message.

Finally, if A has sent the first message and received the
the second message, he sends a new message to B, quoting
the nonce B provided, and using the same encryption key as
in the first message.

| NS3: [evs3 € ns_public;
Says A B (Crypt K {Nonce NA, Agent A}) € set evs3;
Gets A (Crypt (pubEK A) {Nonce NA,
Nonce NB, Agent BJ}) € set evs3]
= Says A B (Crypt K (Nonce NB)) # evs3 € ns_public

According to the principle of guarantee availability [14],
only one of the encrypting keys can be specified. Because
this rule defines an action of A’s, she can check that the
message she gets is sealed under her public key. By contrast,
she cannot check that the message she sent her peer was
encrypted with his public key: this must be proved in the
model. In fact, such result holds because the event is traced
back to when it was issued in the first protocol step, when
access to the right certificate was assumed.

5.2. Proofs

This Section outlines the actual theorems proved in Is-
abelle to support less formal version discussed above (§4).

Theorem 1 derives from the combination of the two
following theorems.

theorem Says_CA_certl:
[Says CA A {Crypt (priSK CA) {Key K, Agent A[},
certBl € set evs; evs € cert]

— K = pubEK A

The statement can be read as follows. For any sequence
of events following the certification protocol, if CA sends
a message containing a specific certificate and another
component, then the mentioned key is the public encryption
key of the agent mentioned beside the key. A version for the
other certificate can be proved too.

theorem Says_CA_cert2:

[Says CA A {certA, Crypt (priSK CA) {Key K, Agent B|}|}
€ set evs; evs € cert]
— K = pubEK BAA # B

It can be observed that this Theorem, contrarily to the
previous, specifies the agent pair, hence it can conclude that
they are different by leveraging on the assumption stated by
rule Cert2 seen above (§5.1).

Theorem 2 rests on the following innovative statement.

theorem cert_authentic_agent:
[Crypt (priSK CA) {Key K, Agent B} € parts(knows A evs);
evs € cert]
= (3 D certB.
Says CA D {certB, Crypt (priSK CA) {Key K, Agent B[}
€ set evs)
V
(3 cerB.
Says CA B {Crypt (priSK CA) {Key K, Agent B[}, certB}
€ set evs)

This result requires particular attention because it is the first
significant fact proved upon assuming something about the
knowledge of a generic agent. By contrast, existing proofs
only consider the knowledge of the Spy. Here, A can be
either the Spy or a regular agent. As a consequence, the
proof features two successive inductions on the certification
protocol model. First, assume A is the Spy. In this case,
induction and simplification leave us with two remaining
subgoals: the Fake case, which embeds the threat model,
and the subgoal arising from the second protocol step. Those
two cases are treated by classical methods, spy_analz and
blast.

If A is an honest agent, that is different from the Spy,
the proof is more intricate and was unexplored before the
present effort. We must perform a number of case splits and
reason about how protocol events modify agent knowledge.
In existing Inductive Method theories, simplification lemmas
are provided to deal with changes to the Spy’s knowledge
upon occurrence of protocol events, but the case of regular
agents is not spelled out fully. The reasoning is therefore
performed along the proof by expanding the definition of
knows as appropriate.

The case of the Reception case is particularly interesting.
We first perform a case split on whether a certificate for
B appeared in the traffic — that is, it exists in the Spy’s
knowledge. If such is the case, a traditional authenticity
result about the certificate (cert_authentic, here omitted for
brevity) can be applied and allows us to conclude. Otherwise

our subgoal still features the premise Crypt (priSK CA)
{Key K, Agent B} € parts (knows A (Gets Ba X # evsr))
and we must differentiate between the scenarios A#Ba and
A=Ba. In the former case, the Gets event cannot influence
A’s knowledge because honest agent do not see all traffic,
hence we obtain a contradiction. Else, Crypt (priSK CA) Key
K, Agent B must be in parts (insert X (knows A evsr)). Since
it is not in parts (knows A evsr), it must be in parts{X}, but
X appears in a Says event — hence it must be known to the
Spy, a contradiction.
Theorem 3 can now be explained.

theorem Spy_not_see_NA:
[Says A B (Crypt K {Nonce NA, Agent A}}) € set evs;
A ¢ bad; B ¢ bad; evs € ns_public]
= Nonce NA ¢ analz (knows Spy evs) A K = pubEK B

This establishes the confidentiality of the initiator’s nonce
in the authentication protocol. It resembles the guarantee
that can be found in the Isabelle repository [15]: if the
protocol step NS/ takes place and A and B are honest,
then the nonce from NS/ remains secret. In addition, it
specifies K to be B’s public key. Notably, this requires
appeals to the guarantees about the other protocol, the
certification one. Thanks to the premise about trace evsca
in rule NS1 seen above (§5.1), theorem cert_authentic_agent
can be applied. Then, the combination of Says_CA_certl and
Says_CA_cert2 pinpoints the contents of the certificates.
Similarly, Theorem 4 derives from the following result.

theorem Spy_not_see_NB :

[Says B A (Crypt K {Nonce NA, Nonce NB, Agent B|}) € set evs;
A ¢ bad; B ¢ bad; evs € ns_public]
= Nonce NB ¢ analz (knows Spy evs) N K = pubEK A

This result can be commented similarly to the previous.
However, the results about the certification protocol, starting
with cert_authentic_agent, can be applied thanks to the
premise about trace evscb in rule NS2 seen above (§5.1).

6. Conclusions

We have described the formal modelling of mix protocols
and their holistic analysis in the interactive theorem prover
Isabelle/HOL. Sequenced, stacked and interleaved protocols
can be specified and verified in a framework with rigorous
foundations using inductive mathematical reasoning. In our
running example, we have analysed a sequence featuring
a generic key certification protocol and a simple authenti-
cation protocol. For the specific case of key certification,
our approach is scalable to a full PKI model featuring
multiple levels of trust. The adopted strategy for mix proto-
col specification translates into a proving process featuring
novel situations. Those could be tackled effectively with the
mechanical support of the interactive theorem prover. While
automatic protocol analysers are making progress, more
general tools like Isabelle/HOL and the Inductive Method

provide invaluable flexibility for reasoning in detail about
common and uncommon protocol combinations. Intricate
protocol interactions and mixes of more than two protocols
are our natural next objects of study.

References

[1] B. Blanchet, “An efficient cryptographic protocol verifier
based on Prolog rules,” 1998, pp. 82-96.

[2] C. Cremers, “The Scyther Tool: Verification, falsification,
and analysis of security protocols,” in Proc. of the 20th
International Conference on Computer Aided Verification
(CAV 2008), ser. LNCS 5123. Springer, 2008, pp. 414-418.

(3]

, “Feasibility of multi-protocol attacks,” in Proc. of The
First International Conference on Availability, Reliability and
Security (ARES). Vienna, Austria: IEEE Computer Society,
2006, pp. 287-294.

[4] S. Andova, C. Cremers, K. Gjgsteen, S. Mauw, S. Mjglsnes,
and S. Radomirovié, “A framework for compositional verifi-
cation of security protocols,” Information and Computation,
vol. 206, pp. 425-459, February 2008.

[5] L. C. Paulson, “The inductive approach to verifying crypto-
graphic protocols,” vol. 6, pp. 85-128, 1998.

[6] G. Bella, Formal Correctness of Security Protocols, ser.
Information Security and Cryptography. Springer, 2007.

[7] C. Meadows, “Analyzing the needham-schroeder public-key
protocol: A comparison of two approaches,” in ESORICS,
1996, pp. 351-364.

[8] R. M. Needham and M. D. Schroeder, “Using encryption
for authentication in large networks of computers,” vol. 21,
no. 12, pp. 993-999, 1978.

[9] G. Lowe, “Breaking and fixing the Needham-Schroeder
public-key protocol using CSP and FDR,” ser. LNCS 1055,
T. Margaria and B. Steffen, Eds., 1996, pp. 147-166.

[10] L. C. Paulson, Isabelle: A Generic Theorem Prover, ser.
LNCS 828, 1994.

[11] ——, “Proving properties of security protocols by induction,”
1997, pp. 70-83.

[12] G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano,
“Formal verification of cardholder registration in set,” ser.
LNCS 1895, F. Cuppens, Y. Deswarte, D. Gollmann, and
M. Waidner, Eds., 2000, pp. 159-174.

[13] D. Dolev and A. Yao, “On the security of public-key pro-
tocols,” IEEE Transactions on Information Theory, vol. 2,
no. 29, pp. 198-208, 1983.

[14] G. Bella, “The principle of guarantee availability for security
protocol analysis,” Int. J. Inf. Secur., vol. 9, pp. 83-97, April
2010.

[15] G. Bella, F. Blanqui, and L. C. Paulson, On-line Repository
of Protocol Proofs, As from Isabelle 2006,
http://isabelle.in.tum.de/library/HOL/Auth.

