
HAL Id: hal-01369578
https://hal.science/hal-01369578

Submitted on 22 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a novel rule-based attack description and
response language

Samih Souissi

To cite this version:
Samih Souissi. Toward a novel rule-based attack description and response language. Information
Assurance and Security 2015, Dec 2015, Marrakech, Morocco. �10.1109/ISIAS.2015.7492743�. �hal-
01369578�

https://hal.science/hal-01369578
https://hal.archives-ouvertes.fr

Toward a Novel Rule-based Attack Description and

Response Language

Samih Souissi

INFRES Department

Telecom ParisTech

Paris, France

samih.souissi@telecom-paristech.fr

Abstract—In recent years, attacks have become more diverse

and complex, their detection has emerged as a major issue and a

primary security challenge. There is a need to represent and

share information about these attacks. This paper presents a new

language for attack detection and response. The objective is to

simplify complex rules’ expression, thanks to a modular and

intuitive syntax that gives a high power of expression. The

originality of our approach is that rules’ syntax can be deduced

from a certain behavior or automatically generated from a valid

behavioral scenario. The paper presents the main concepts

behind the proposed approach that deals with the growing

complexity of information systems, applications and attacks.

Index Terms—attack description, detection rules, attack

language, composition, security event

I. INTRODUCTION

Nowadays, computer and network attacks are becoming

more complex, diverse and sophisticated. The main concern of

a security officer, facing a security issue, is to respond rapidly

and efficiently to these attacks. Thus, many solutions have

been proposed to deal with threats and avoid devastating

outcomes. We can find, for example, intrusion detection and

prevention systems (IDS/IPS) or web application firewalls

(WAF). They play an important role in countering security

threats. Ideally, the security officer is seeking to have a simple

language allowing him to write security rules and deploy them

quickly. The language must be expressive enough to detect

sophisticated attacks and complex attacks.

However, existing solutions do not offer a compromise

between language simplicity and good detection performance.

In fact, detection languages should be complex enough to

adapt to complexity of attacks. For a matter of formalism

simplicity and better performances, some approaches offer

adapted solutions for a kind or two of attacks or a certain type

of flow. However, unlike attacks that evolve very quickly,

they are neither extensible nor scalable and they are far from

satisfactory [1]. Moreover, actually, many security devices are

from different constructors, open source or not, offering

different formalisms. Thus, security officer should be

proficient in the different languages of the devices deployed in

order to modify security rules or at least understand raised

alert. Besides, among the different existing languages, few

take into consideration the response aspect proposing only

simple mitigation scenarios. How can a language guarantee

high expression power, modularity and ease of use while

being response oriented?

In our context, our proposal is based on an attack

classification from the defender point of view [2] that helps

describe the manifestation of the attack in a high level manner.

Our proposed language describes an attack and associates the

appropriate response according to the context and the defined

security policy. Thanks to the classification, aggregating

defense mechanism is possible. We define a rule-based attack

description language that can be used to model various alerts

and events raised by one or several probes (IDS/WAF…) in

order to provide suitable response. The language allows to

define a generic description of an attack operation

independently of detection systems used within the protected

perimeter. This generic description is completed by the

possibility of verifying the feasibility of action in a certain

system and predefining not only detection scenarios for

complex attacks but also appropriate defense mechanisms.

The objective of our approach is to provide system

administrator with a simple language, easy-to-use by non-

security experts, modular and independent from the runtime

environment. In a heterogeneous environment, this approach

should allow to take into account specifications of detection

engines that raise events or alerts. Then, a relationship

between an abstract representation of a detection scenario

included in the attack process and the event/alert raised by a

security device is established. Our language is intended to be

used to control security within a defined perimeter, to deploy

security controls, or to investigate on specific attack scenarios

and provide the appropriate response.

The remainder of this paper is organized as follows.

Section II details the related work. In section III, we present

our language proposal showing its requirement and its syntax.

We expose in section IV a use case showing how our language

helps to define security rules to help detect attacks in an easy-

to-use manner. Finally, section V presents the conclusion and

perspectives for future work.

II. RELATED WORK

As attacks are becoming more common, there is a need to

represent and share information about them. Attack languages

are needed to recognize an attack given a manifestation, to

react to it and to analyze relationships between attacks in order

to identify scenarios and provide the appropriate response. In

[3], Vigna et al. classify attack languages into six different

classes: exploit, event, detection, correlation, reporting and

response. Exploit languages describe the steps of an intrusion.

Event languages, define the format of the event used. Detection

languages, express the manifestation of an attack. Correlation

languages, analyses alerts from different sources to find a

relationship between them. Reporting languages, describe the

format of alerts raised by security devices. Finally, response

languages, express defense mechanisms used to counter the

attack after its detection.

There exist numerous security tools providing a language to

write security attack description and in our case security rules.

Most of them are intrusion detection systems that allow to

write basic signatures. We studied several tools and languages

to find out how to combine simplicity of use with

expressiveness and better complex attack description.

Snort [4] offers a simple and easy to use language where a

rule is written in a single line and can be combined with other

ones. Referencing separated files and rules and using

substitution variables is permitted. The rule header is as

follows: “Alert tcp any any -> 192.168.1.0/24 any”. Action

done by the rule can be: Alert, Log, Pass, Activate and

Dynamics; and protocol can cover IP, TCP, UDP and ICMP.

The advantage of such language is that it provides large

amount of easy to use and simple to write rules and does not

generate traffic delays. However, it does not detect all attacks,

needs a constant rule database update, reporting is not efficient

and it does not allow vulnerabilities description. Unlike Snort,

Bro [5] implements a scripting environment. After reducing

incoming packet stream into high level events that reflect

underlying network activity, a Policy script interpreter

executes a set of event handlers to detect attacks. Bro provides

also a signature engine to match patterns in packet streams.

This IDS is highly customizable, with a powerful scripting

language simple configuration. However, it does not provide a

well-documented ruleset. Besides, these solutions are better in

detecting attack on a packet level.

For applicative level detection, ModSecurity [6] is a

widely used firewall thanks to its broad core rule set and its

relatively good performances. It offers a large signature

database and easily "pluggable" set of generic attack detection

rules that provide web application base level protection.

Modsecurity offers a high expressiveness defining several

variables (request, response, information, user, performance,

environment, etc.), operators (char, normalization,

transformation, validation, evaluation, behavior, specific, etc.)

and actions (altering and non-altering on data or stream). A

modSecurity rule has the following form: “SecRule

VARIABLES OPERATEURS [TRANSFORMATION,

ACTIONS]”. This allows to describe patterns and to cope with

the complexity of a protocol like HTTP. However rules’

defining is very complex and needs high expertise in HTTP

protocol and regular expressions. Naxsi [7] which uses a

heuristic approach offers an easier syntax. This WAF provides

a simple way to detect attacks using a whitelisting of accepted

queries (needing a learning process) and a scoring system

related to malicious characters. It offers an easy syntax but

rules are static and limited to injection attacks. These systems

do not offer a compromise between acceptable performance

and simplicity. Thus, defining good security rules that

guaranties a suitable overall security level is not obvious.

Other languages that describe attacks from different

perspectives are Lambda [8] and Adele [9]. Lambda intends to

describe all aspects of a cyber-attack. It is at the same time an

exploit, detection and alert correlation language. It takes into

account attack precondition, post-conditions, scenario,

detection and verification. This allows describing the attack

from a point of view of both attacker and defender and

deducing the alert sequence automatically from pre and post

conditions. It helps have better attack description and explicit

and implicit alert correlation. It share many elements with

language such as STATL [10] that focuses of state transition

and uses finite state machine graphs; or IDIOT [11] language

that detect attacks through pattern matching a signature

against audit log and which uses Colored Petri-Nets. However,

Lambda signatures are independent from detection algorithm;

it provides description of the attack, the detection process and

its verification. These components are separated which brings

more freedom and modularity to the language. Unlike

Lambda, which uses a declarative approach, Adele provides

similar functionalities with an imperative approach using

XML language. Adele provides also syntax to define events

and attack responses. Both can be viewed as a programming

language that offers developers a rich set of statement and

libraries. However, defining attack scenarios can be tedious

and need high security and language expertise.

Another language that is a user-oriented solution to write

security rules is Haka [12]. This network and security-oriented

language allows to check not only security policy, through

security rules defining, but also protocols’ conformity. It uses

Lua [13] as a framework language because of its expressivity,

readability and popularity. Lua is a relatively simple language,

compact and earns notoriety judging by many security tools

that use it (Suricata, Wireshark). In addition, it has a JIT

Version (luajit) that allows to improve performance. API has

been defined to allow easily manipulating the contents of

packets/flows, and responding actively or passively to an

eventual detected anomaly. However, it stays a prototype of a

language useful especially to validate protocol conformity.

Even though it offers the user the possibility to define

detection rules, these rules are more for the packet level and

the user needs a lot of expertise on attack patterns to define

good security rules which can turn out to be a tedious task.

Several works have been done to propose different

languages to describe attack from different points of view

(manifestation, impact, correlation…). They were able to

provide a good background to define an attack in order to

detect and describe it. Nevertheless, these languages are

supposed to be used by security experts and a random user

with no network, programming or security expertise is faced

with non-human-like languages and needs training before

mastering the language. As mentioned above, many

challenges need to be faced to have a complete, expressive,

easy-to-use language able to detect complex attacks.

III. CONTRIBUTION: COMPOSED LANGUAGE

In this section, we describe our proposed language. The

faced challenge is how to propose a language easy-to-use and

high level to describe attack scenario and help detect complex

attacks while having an intuitive syntax and guaranteeing

extendibility of the language. The language is rule based, as in

IDS Snort or WAF ModSecurity. Although rule-based systems

involve expert knowledge to operate, they are easier to

implement and maintain. Rules can be presented in a human

comprehensive text format, and therefore, operator can

understand and add new personalized rules to the system.

Writing rules in a human-like language is obviously easier than

writing scripts filled with regular expressions and details about

the events. Therefore, a rule-based approach is selected.

As our language is response oriented, its syntax allows

specifying defense mechanisms to prevent attack. This feature

is interesting when the protected area faces a complex attack,

our approach helps prevent the final strike of the attack. This

language creates a knowledge base that will be working using

inference engine and a memory to constitute an Expert System.

A. Requirements

The defined language should have the following

requirements:

• High power of expression: The language is able to

describe: action detection, scenario detection and attack

effects verification. The occurrence of attack actions is

deduced from detection actions.

• Modularity: In both Rule construction and scenario

definition. In Rule construction, a combined set of rulesis

used, thus the creation of a complex rule is just the matter

of combining rules allowing to hide the complexity from

the end user. On a higher level, a scenario description

should use action corresponding to low level attacks.

• Ease of use: The complexity of detection is hidden from

the administrator (pattern matching rules, signatures…).

Defined rules describe events that should be detected to

confirm the occurrence of an attack. Administrators just

combine atomic rules as bricks to define composition

rules which describe a certain security policy. This

approach follows Lego metaphor.

• Deduction: If several malicious activities are detected by

one or several probes, the language can take into account

that these actions are part of the same attack scenario.

Modeling scenarios appropriate to the protected area

context is primordial.

B. Conceptual model

Before defining the language, we model the different

entities that appear in our language. Fig.1. represent a high

level overview of the elements appearing in our language

framework and the way they interact with each other. A

security tool generates events detecting attacks. These attacks

need defense mechanisms that are either proposed to the

security officer which responds, or automated.

We define an attack as a combination of actions rising one

or many alerts from a source toward a target. The description

of attack is done by a set of component: Localization

(Source/target), Vector, Impact (Consequence of the attack)

and Scenario (from a detection point of view).

• Localization: Source which indicates the origin of the

attack and target which consists of final destination of the

attack.

• Attack Vector (technique): Is inspired by what have been

proposed by the previous attack taxonomies. Categories

and sub categories should be redefined to bring more

precision. We consider the “vulnerability” exploited to

execute the attack.

• Effect (Impact or Result): Contains High level

information of the impact of the attack.

• Scenario: Indicates the different combination of actions

done by the attacker to perform the described attack. The

actions are corresponding to attack steps.

We differentiate between an attack and a suspicious action.

In fact, as defined previously an attack is an action that violates

a security policy, whereas a suspicious action can be used in a

scenario of an attack. We focus on the events raised by

detection process and we take into account the fact that actions

performed by the attacker may be different form detected

actions. While predefining scenarios, instead of defining attack

scenarios we define detection scenarios corresponding to the

eventual attacks that may occur within a protected perimeter.

To verify attack impact, audit programs (System checks/audit

scripts) are used and event associated to these programs are

used as input to our language.

Fig. 1. Language conceptual model

All these parameters are described within our proposal, a

combined language that allow system administrator to define

easily his security policy.

C. Language Specification

The objective behind this work is to define a simpler

formalism, to give it a high power of expression, to bring

modularity to security controls and to be able to describe

scenarios to detect complex attacks. The original idea is to

define a two languages based formalism:

• Atomic Rule Language: contains single action rules. They

can be transformation/normalization rules, log, alert,

matching, control or active action rules.

• Composition Language: composes the atomic rules to

define the scheme of rules to follow at the detection

engine. They use logic, algebraic, correlation or

synchronization operators.

The proposed language is used to treated events and alerts

transformation/normalization, high level attack classification,

eventually correlation when dealing with attack scenarios and

defense mechanisms definition. It deals with events, event

Sequences (order, repetition, non-occurrence, time

constraints), constraints (contextual) and defense mechanisms.

Lua [13] will be used as a language framework to build to

build detection and description rules. The 2 different rules’

types are defined as following:

• Atomic Rules are functions: Atomic_Rule_Type

(Param1, Param2, Param3…).

• Composition Rules are lists: Composition_Rule {Hook1,

Rules_composition1, Hook2, Rules_composition2…

Option}.

The identified attack is resolved into “attack components”.

These attack components are parameters indicating some

aspect of the system, eventual malfunction or failure, affected

by the attack. They are composed of various anomalies which

are observed by sensors such as Firewalls, IDS.

Fig. 2. Atomic and Composition languages components

1) Atomic Rules

We specify below the different types of rules that we define

as atomic rules.

• Transformation Rules: Trans_Rule (Event, trans1). One

transformation per rule. Transformations are used to unify

the structure of an event or the pattern of an attack (alert)

• Normalization Rules: Norm_Rule (Event, Norm1),

normalization according to predefined templates.

• Control Rules: Control_Rule (Event, normal behaviour,

Score): controlling that the flow is anomalous.

Control_Rule (Parameter1, verification): for contextual

information

• Match Rules: Match_Rule (event, attack signature)

/Match_Rule (parameter1, parameter2) : match 2

parameters: IP address,

• Log Rules: Log_Rule(Event)

• Alert Rules: Alert_Rule (Event, Alert type)

• Action Rules: Action_Rule(Parameter, Action),

parameter variable is not mandatory, i.e: Action_Rule

(Reporting)/Action_Rule(IP,Filtering)

2) Composition rules

They define the way atomic rules are executed. For

example O_Rule (Hook, R1 & R2) where a hook is the area

where the control is done, it is a way to optimize rules memory

calls. Several operators may be used to combine atomic rules:

• R1 and R2

• R1 or R2

• R1|| R2 : 2 rules executed in parallel

• R1 oand R2 : ordered and

• If R1 then R2 else R3 : Condition

• While R1 do R2 : Loop

These operations are useful when defining scenarios and

can be used at the same time to create a more complete

composition rule.

D. Potential applications

This language is used in our AIDD (Attack Identification,

Description and Defense) architecture defined in [14]. This

language may have several applications. In fact, when an alert

occurs, it is not always possible to decide if the attack failed of

succeeded. Our language helps check the success of the attack

by observing the occurrence of the impact, as in IDS or WAF

impacts are not reliable or complete (attacker hiding effects, or

target not available). Besides, our language can be used to

create high level IDS/WAF signature. Given a suitable

correlation module various elements maybe used to check

potential intruders. In addition, it allows end user to customize

his own security with a defined perimeter with a set of intuitive

language rules. Our proposal may be used to automate

response within intrusion response systems.

In [10], it is said that by abstracting away from the details

of a particular attack, it is possible to detect previously

unknown variations of an attack or attacks that exploit similar

mechanisms. Thus creating rule abstracting attacks may help

detect new attacks. Fig. 3 shows the event format that we have

for each attack. It is an IDMEF-like data format with

appropriate fields related to our language.

Fig. 3. Normalized Event Format

IV. USE CASE

In this section, in order to prove the feasibility of our

proposition, we illustrate how our language helps to define

rules in order to identify and classify attacks and offer

responses. We highlight how it can bring a higher level of

abstraction in order to better classify attacks. We take into

consideration 2 types of attacks: a simple one with SQL

injection and complex attack scenario. We use in these cases

the AIDD system we defined in [14] for attack detection. This

system uses our Composed Language to define rules.

A. Simple use case

In this use case, we consider a SQL injection attack and

more specifically a tautology that leads to a user access and

data information leakage. It is an attack on a web application.

As the query is dynamically generated from user input, this

takes place when the attackers maliciously craft this user input

with SQL keywords and operator to execute a command on

the database server. The structure of such a query is different

from what is defined by the application code.

Let us consider in Fig.4 that the application contains two

parameters: login and password. It uses these parameters for

authentication. For example, if a malicious user enters the

following input: “Admin” as a login and “toto' or 'x'='x” as a

password. To make avoid eventual detection, as SQLi evasion

mechanism, the attacker encodes the login in hexadecimal

(0x41646d696e0d0a), and instead of putting “ ' ”, he uses

char(39) encoding. The query string will be evaluated as true

and admin access will be guaranteed for the attacker.

Fig. 4. Simple use case: SQL injection Attack scenario

This is a simple matching case. We use this case to show

the basic detection and handling of the attack by our

architecture and language. The steps followed by our system:

To describe the policy which is set up we use our

combined rule sets. The atomic rules used are the following:

• R1 = Match_Rules (password, SQLi_chars,3), where

SQLi_chars are regular expression for SQL injection

pattern matching and 3 is the score assigned for the query

• R2 = Action_Rule (Log, SQLi attempt)

• R3 = Action_Rule (drop)

• R4 = Control_Rule (Version, ueq, 1)

An example of composition rule used is: O_Rule {H_URI,

R1 AND R2, H_Version, R3 AND R4}, where H_URI is a

hook at the URI level and H_Version the Version hook. This

composition rule can be different as it expresses the policy

defined by the user. Besides, this is a simple rule where we

combine the different atomic rules to detect the attack. It does

not show necessarily the added value of our language but it

shows at least the mechanisms that simplify the user’s rule

definition process.

These rules are not that static, as patterns and “signatures”

can get updated through and online vulnerability database

such as CVE [15], OSVBD [16], etc.

B. Complex use case

Our systems is able to classify complex blended attacks

by subdividing each step, considering each step as an attack

on its own and providing for each step defense mechanisms.

This is done thanks to the AIDD model that helps define

detected attack classes and composition rule schemes that

helps define attack scenarios. Thus our system anticipates,

stopping the attack before the occurrence of the final impact.

In this attack scenario (Fig.5), the attacker compromises a

host to attack a target. From this host, he performs a scan to

gather information about the targets. Then he exploits a

misconfiguration to install a worm. This worm will help the

attacker launch a buffer overflow attack leading to a resource

misuse.

This use case is different from the previous one as the

attack is more complex and has more than one phase to reach

its final goal. Sensors can be in a network level or a host level.

In Table I, this attack is split into 3 different phases according

to our AIDD attack classification.

Fig. 5. Complex use case: Blended attack scenario

TABLE I. COMPLEX ATTACK USE CASE

Attack Attack classes

Phase 1

Source Target Vector Impact

Distant

network
Network Design flaw Probe

Phase 2

Source Target Vector Impact

Distant

network
Application Misconfiguration

Malware

installation

- Worm

Phase 3

Source Target Vector Impact

Local Application BoF
Resource

misuse

This scenario’s phases are treated separately and

sequentially by our system and the answer is provided in an

automatic intrusion response like manner. The different steps

are as follow:

TABLE II. DETECTION / RESPONSE MATCHING

Detected attack attempt result Response deployed

No Log

Probe (information disclosure) Log, warn, filter

Worm installation
Patch (fix bug), Reporting,

Referencing (CVE- 2002-0649)

Resources misuse Quarantine, Patch, Reporting

To detect the attack scenario we describe the set up policy

using our combined rule sets. The atomic rules that can be

used by the system administrator are the following:

• R1 = Norm_Rule (Events), normalizes the input flow,

where the flow can be IP packets or IDS output.

• R2 = Control_Rule (Events, Scan), controls if a scan

attempt is detected.

• R3 = Control_Rule (“Events”), detect if the flow

contains anomalous behaviors to anticipate attack.

• R4 = Match_Rule (Event, “Worm signature/Behaviour”),

detects a signature worm if signature or behaviours have

not been changed by the attacker.

• R5 = Control_Rule (Host_IP, Buffer overflow), controls

if a buffer overflow attack attempt has been launched

within the target.

• R6 = Action_Rule (IP_Source, Tolerance), tolerates the

actions done by the IP source.

• R7 = Action_Rule (IP-Source, Filtering), filters the flow

coming from the IP source.

• R8 = Action_Rule (IP_Log), logs events happening at a

defined host.

• R9 = Action_Rule (“Warning”), warns administrator (by

email for example) of attack attempt.

• R10 = Action_Rule (“Reporting”), report and reference

the vulnerability that was exploited to launch the attack

(CVE ID for example).

• R11 = Action_Rule (“Vul_Patch”), helps do a patch and

fix the bug at the origin of the attack.

• R12 = Action_Rule (“IP, Quarentine), puts the host with

the according IP in quarantine (disconnect from the

network).

We use these single simple rules to build the attack

detection policy. An example of composition rules that can be

used: O_Rule {H_Event1, R1 and R2 and R7 and R8 and R9,

H-Event2, R1 and (R3 or R4) and R8 and R9 and R10 AND

R11, H_Event3, R1 and R5 and R9 and R10 and R11 and

R12}.

In this policy, the attack was subdivided into three phases

with three different flows corresponding to each phase. We

applied a combination of rule to match the appropriate defense

mechanism with the detected attack. The advantage of our

work is that defense mechanisms are related to the class of the

detected attack which allows defense mechanisms

aggregation. Furthermore, the modular architecture can be

used in several contexts and use other detection device output

as an input. Finally, with its composed language, writing

security policies has become easier especially for non-security

experts.

V. CONCLUSION

Up to now, few attack languages have focused on attack

description from several angles (Adele, lambda), and according

to our researches on the related work, no rule based languages

provided a balance between easiness of use and high power of

expression. In this paper, we have proposed a novel rule based

language that combines these two criteria allowing

extensibility and deduction. Our language helps users (system

administrators) to combine several predefined blocks to build

security rules. The originality is that it allows also generating

rules from a certain behavior. The language is interesting to use

when facing complex attacks and Advanced Persistent Threats

as scenario predefinition has a great importance in deducing

final attack strikes.

We have shown that our language allows to define security

rules in a simple way allowing composition and complex attack

description while offering appropriate defense mechanism

pools. It is conceived in such a high level manner, it can be

adapted to different contexts and devices. Our language is

being implemented and can be ameliorated to handle encrypted

information and metrics should be defined to enhance the

attack-defense matching. The next step is to interface this

language with other tools actively and reactively and to study

its performances.

REFERENCES

[1] D. Vennila, .R.Nedunchezhian “Correlated Alerts and Non-

Intrusive Alerts”, International Journal of Soft Computing, 2012

[2] Samih Souissi, Ahmed Serhrouchni "AIDD: A novel generic

attack modeling approach”, HSPC conference, 2014

[3] G. Vigna, S. T. Eckmann, and R. A. Kemmerer “Attack

languages”, IEEE Information Survivability Workshop, 2000

[4] Snort IDS, http://www.snort.org

[5] Vern Paxson, “Bro: A System for Detecting Network Intruders

in Real-Time”, 7th USENIX Security Symposium, 1998

[6] Ivan Ristic: ModSecurity Handbook: The Complete Guide to the

Popular Open Source Web Application Firewall, 2010

[7] Naxsi (Nginx Anti Xss & Sql Injection)

https://www.owasp.org/index.php/OWASP_NAXSI_Project

[8] F. Cuppens et R. Ortalo, “Lambda: A language to model a

database for detection of attacks”, the Third International

Workshop on the Recent Advances in Intrusion Detection, 2000

[9] C. Michel, L. Mé, “Adele: an attack description language for

knowledge-based intrusion detection”, 16th International

Conference on Information Security (IFIP/SEC), 2001

[10] S.T. Eckmann, G. Vigna and R. Kemmerer, “Statl : An attack

language for state-based intrusion detection”, ACM Workshop

on Intrusion Detection, 2000

[11] S. Kumar et E. H. Spafford – A pattern-matching model for
misuse intrusion detection, Proceedings of the national computer
security conference, 1994

[12] HAKA security project, http://www.haka-security.org/

[13] The programming language Lua, http://www.lua.org

[14] Samih Souissi, “Toward a Novel Classification-based Attack

Detection and Response Architecture”, NoF conference 2015

[15] Common Vulnerabilities and Exposures CVE,

http://www.cve.mitre.org

[16] Open Source Vulnerability Database, http://www.osvdb.org

