
A Multi-agent System for Integrated Control and Asset
Management of Petroleum Production Facilities - Part 2: Prototype

Design Verification

Atalla F. Sayda and James H. Taylor

Abstract— This three-part paper thoroughly addresses the
design and development of multi-agent system for asset man-
agement for the petroleum industry, which is crucial for
profitable oil and gas facilities operations and maintenance.
A research project was initiated to study the feasibility of
an intelligent asset management system. Having proposed
a conceptual model, architecture, and implementation plan
for such a system in previous work [1], [2], [3], defined
its autonomy, communications, and artificial intelligence (AI)
requirements [4], [5], and initiated the preliminary design of
a simple system prototype [?], we are extending the build of
a system prototype and simulate it in real-time to validate its
logical behavior in normal and abnormal process situations
and analyze its performance. The second-part paper addresses
the ICAM system prototype design verification and its logical
behavior during sensor faults in the plant.

I. INTRODUCTION

As part of the ICAM system prototype development, the
second-part paper addresses the prototype verification aspect
in real time. This validates the design decisions and the
system requirements upon which the system was designed
[1], [9], [2], [10], [11], [3], [12], [13], [14], [15], [4], [16],
[5], [17], [?]. Real-time simulation experiment was designed
to analyze the performance of the ICAM system prototype
in terms of its logical behavior and its response to the
external environment dynamics. The ICAM system prototype
is deployed in a Windows 2003 network, which has two
nodes (i.e., workstations). The first node has three running
agents, namely the pilot plant agent, the model ID agent, and
the supervisory agent. The second node has the remaining
agents, namely the statistical preprocessing agent and the
FDIA agent. The pilot plant simulation model corresponds
to figure 1; it consists of 10 states, 5 manipulated variables,
5 controlled variables, and 17 auxiliary measured inputs and
outputs (e.g., disturbances, product quality variables, etc.).
Ten sensor/actuator faults are embedded in the pilot plant
simulation agent to emulate faulty instrumentation in real-
world oil production plants, as indicated in table I.

In the simulation scenario (i.e., indicated by 1 in fig-
ure 1), we will apply a bias fault in the three-phase separator
water volume sensor, as described in section 2. We will
discuss the behavior of each agent of the system in terms of
its results and decisions in sections 3, 4 and 5. Furthermore,

James H. Taylor is with the Department of Electrical & Computer
Engineering, University of New Brunswick, PO Box 4400, Fredericton, NB
CANADA E3B 5A3 jtaylor@unb.ca

Atalla F. Sayda is a PhD candidate with the Department of Electrical
& Computer Engineering, University of New Brunswick, PO Box 4400,
Fredericton, NB CANADA E3B 5A3 atalla.sayda@unb.ca

Fault number Instrumentation name
F1 Faulty two-phase liquid volume sensor
F2 Faulty two-phase pressure sensor
F3 Faulty three-phase water volume sensor
F4 Faulty three-phase oil volume sensor
F5 Faulty three-phase pressure sensor
F6 Faulty two-phase separator liquid outflow valve
F7 Faulty two-phase separator gas outflow valve
F8 Faulty three-phase separator water outflow valve
F9 Faulty three-phase separator oil outflow valve
F10 Faulty three-phase separator gas outflow valve

TABLE I
OIL PRODUCTION FACILITY INSTRUMENTATION FAULTS

we will discuss the decisions made by the supervisory agent
in section 6. The network activity will be also discussed in
section 7 to see if it is consistent with the decisions made
by the supervisory and the reactive agents of the system.
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II. SIMULATION SCENARIO: FAULTY WATER VOLUME
SENSOR IN THE THREE-PHASE SEPARATOR

SUB-PROCESS

The simulation scenario is done by applying a +15%
bias fault in the water volume sensor of the three-phase
separator (F3; refer to control loop LCL2 in figure 1). After
the ICAM system supervisory agent starts up executing its
rule-base, other reactive agents are started and initialized.
The pilot plant agent starts its simulation at a nominal value
of V = 146 ft3, P = 625 PSI for the two-phase separation
sub-process and Vwat = 77.5 ft3, Voil = 46.5 ft3, P =
200 PSI for the three-phase separation sub-process. Outliers
and missing data are applied to the two-phase separator
measurements to emulate real-world data. Since the ICAM



system has no knowledge about the pilot plant agent (i.e.,
no dynamic model), it sends a message to the statistical pre-
processor to check if the pilot plant is in steady state.

Once it is in steady state, the supervisor then commands
the control system of the pilot plant to apply a sufficiently
exciting pseudo random binary (PRBS) signal with an ampli-
tude of 2% about the nominal operating point. This allows
the model ID agent to collect enough data to identify the
pilot plant model, after which the FDIA agent designs its
FDI filter. Having gained new knowledge about the current
dynamic behavior of the pilot plant, the ICAM system now
can start monitoring the pilot plant for any instrumentation
failure. If a sensor/actuator fault occurs the FDIA agent
reports its decision to the supervisory agent. The supervisory
agent in turn commands the FDIA agent to start the fault
accommodation task, if applicable. The fault accommodation
task is stopped if the sensor is fixed. The behavior of each
agent during this scenario is discussed in the following
sections.

III. THE PILOT PLANT AGENT BEHAVIOR

The process variables are logged at the pilot plant agent
during the first simulation scenario as indicated by figures 2,
3, 4, 5, and 6. Positive fixed-size outliers and missing data
are applied to the two-phase separator measurements at
random time instants (i.e., the liquid volume and the pressure
measurement as shown by the top plots of figures 2, and 3).
The pilot plant at first runs at its nominal operating point.
Independent PRBS signals are applied to all the plant inputs
to identify its model. Subsequently, a +15% bias fault is
applied to the three-phase separator water volume sensor at
time Tfault = 9:47:32, and the accommodation task starts
at time Taccom = 9:48:44, as shown in figure 4. The PI
controller in loop LCL2 (refer to figure 1) rejects the fault, as
it is considered as a constant disturbance applied to the water
volume sensor. However, the sensor measurement does not
reflect the actual state of the water volume, as shown in the
FDIA agent results. The effect of the faulty volume sensor
on the oil volume and the gas pressure in the three-phase
separator is also shown in figures 5, and 6.

IV. BEHAVIORS OF THE STATISTICAL PREPROCESSING
AND MODEL ID AGENTS

Raw data is received by the statistical pre-processing
agent, which removes any outliers and corrects missing data
by replacing it with the previous data value, as demonstrated
by the clean two-phase separator liquid volume and pressure
data record in figures 7 and 8. The statistical agent first
checks if the pilot plant is in steady state to prevent applying
the PRBS signal in a transient state. Apparently the pilot
plant takes a time period of TSS = 37.204 s to reach steady
state due to the plant small initial conditions, as shown in
figures 7 and 8. Processed data is sent to the model ID
agent during the PRBS signal application, after which a new
process model can be estimated.

Figure 9 shows measured plant outputs along with their
simulated counterparts using the newly identified plant
model. Each process variable data record has a length of 300
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Fig. 2. Scenario 1: Two-phase separator liquid volume logged by the pilot
plant agent
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Fig. 3. Scenario 1: Two-phase separator pressure logged by the pilot plant
agent

seconds, which was the pre-specified PRBS signal applica-
tion time. It is interesting to notice that although missing data
has been corrected, yet they still affect the identified model
quality, as indicated by the two-phase separator pressure data
record (refer to the second plot in figure 9 with a model fit
of 66%). Figure 10 shows the plant inputs during the PRBS
signal application task.

V. THE FDIA AGENT BEHAVIOR

Once the new process model is received by the FDIA
agent, then it can design its FDI filter and deploy it to
diagnose faulty plant instrumentation. Figure 11 shows the
three-phase water volume data record collected after the
FDI filter is deployed. When the water volume sensor fault
occurs, its effect can be noticed not only in the local control
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Fig. 4. Scenario 1: Three-phase separator water volume logged by the
pilot plant agent
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Fig. 5. Scenario 1: Three-phase separator oil volume logged by the pilot
plant agent

loop of the faulty instrumentation but also downstream,
which is seen as disturbance in the three-phase oil volume
control loop, as shown in figure 5. Figure 11 shows that
the actual process variable has a different response from its
corresponding measurement, i.e., the +15% error starts to
drive the actual water volume to a lower setpoint in an effort
to make the sensed setpoint approach the desired value; once
the fault is accommodated the actual water volume returns
to the correct setpoint.

The FDIA agent generates a general parity vector whose
abnormal magnitude can detect faulty instrumentation, and
generates the angles between the parity vector and the
reference directions of the process variables. When there is
a fault, then the smallest angle indicates the approximate
alignment of the parity vector with the reference direction
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Fig. 6. Scenario 1: Three-phase separator pressure logged by the pilot
plant agent
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Fig. 7. Scenario 1: Two-phase separator liquid volume logged by the
statistical pre-processing agent

of a specific instrumentation fault. Hence the fault can be
isolated based on the smallest angle after the fault detection.
It is clear from the top plot in figure 12 (produced by FDI
routines documented in [18], [9], [13], [19], [16], [17]) that
the general parity vector (GPV) magnitude increased signif-
icantly, which indicates that a fault occurred. Furthermore,
the smallest angle after the fault detection instant is the one
that corresponds to the water volume sensor in the three-
phase separator, as indicated by the dash-dotted trace in the
middle plot of figure 12. The other GPV angles are higher
than the faulty volume sensor GPV angles, as indicated by
the other traces in the middle and bottom plots of figure 12.

The parity vector-based FDI angles are highly sensitive
to process variable changes when there is no fault. This is
because of the small size of the GPV vector in no-fault
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Fig. 8. Scenario 1: Two-phase separator pressure logged by the statistical
pre-processing agent
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Fig. 9. Scenario 1: Measured plant outputs and simulated model outputs
logged by the model ID agent

situation, which can change its angle widely even in case
of very small process variable changes, as indicated by the
large variation of the GPV angles before fault occurrence in
figure 12. The local decision making logic of the FDIA agent
ignores the angles until a large GPV magnitude signals fault
detection, then it isolates the fault after its occurrence as
demonstrated in the FDI GUI [17], as shown in figure 13
. It interesting to notice a fault # of -1 occurred at the
beginning of fault isolation task (-1 indicates an unknown
fault). The FDIA agent isolates faults when the process
variables have reached an acceptable steady state level, so
isolation is ineffective during the transient part of the fault
dynamics. As soon as the supervisory agent receives the fault
information from the FDIA agent, including the fact that it
is a sensor fault, it alerts the FDIA agent to start the fault
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Fig. 10. Scenario 1: Plant inputs logged at the model ID agent
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Fig. 11. Scenario 1: Three-phase separator water volume logged by the
FDIA agent

accommodation task. The FDIA agent then estimates the
fault size, which is used to accommodate the fault (correct
the sensor reading).

Once the fault has been accommodated the actual water
volume process variable returns to its nominal setpoint,
which matches its corresponding corrected measurement, as
indicated by figures 11 and 12. The FDIA agent logic then
indicates a no-fault situation during the fault accommoda-
tion task, as indicated by figure 13. Figure 14 shows the
accommodation parameters in terms of the estimated fault
size and the recursive fault size estimation error, which is
only effective during faults of ramp type. The estimated fault
size is +15%, which matches the original fault size value.
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Fig. 12. Scenario 1: FDIA agent diagnostic signals

09:38:52 09:41:45 09:44:38 09:47:31 09:50:24 09:53:16 09:56:09 09:59:02
−1

0

1

2

3

4

5

6

7

8

Time (hh:mm:ss)

 F
a

u
lt 

#

 FDI Results:  Fault # F3 BIAS fault detected at t=08−Nov−2007 09:47:32

Fig. 13. Scenario 1: FDIA agent fault display

VI. THE SUPERVISORY AGENT BEHAVIOR

The supervisory agent monitors the state of the reactive
agents and reasons about their current state according to
its knowledge base. Each reactive agent is represented by
an object with a set of attributes that represents its own
state. Table II demonstrates the pilot plant supervisory frame
during the fault accommodation task. The pilot plant agent
frame shares some common attributes with the other reactive
agents, which represent the agent’s internal state, MPI, and
G2 communication channels’ states. For example, the pilot
plant frame is in the simulation state and executing its
functionality as indicated by the simulation status attribute.
Its MPI and G2 links are connected, and the pilot plant agent
has a rank (i.e., the software process number) of 0 in the MPI
environment defined by the MPI communicator attribute. The
agent’s decision attribute indicates that a fault simulation
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Fig. 14. Scenario 1: FDIA agent fault accommodation parameters

scenario is applied. The decision attribute is the decision
made by the supervisory agent depending on the current state
of the agent. The MPI channel decision attribute indicates
that the accommodated data MPI channel is opened, through
which the pilot plant agent receives the accommodation
parameters from the FDIA agent.

9 Wed Nov 07 09:07:32 2007

TABLE II
SCENARIO 1: PILOT PLANT AGENT SUPERVISORY FRAME

Tables III and IV show the statistical preprocessing and
model ID supervisory frames, which have the same ICAM
system common attributes (i.e., rank, G2 link, MPI link
status, decision etc.). Both agents have a common model
status attribute, which indicate that the two agents have
updated their knowledge about the current dynamics of the
pilot plant. The statistical preprocessing agent has a steady
state detection attribute to indicate if the pilot plant is in
a steady or transient state. The decision attributes in these
agents’ supervisory frames have the value no-decision, which
indicates that the supervisory agent does not require these



agents to do any task. Likewise, the MPI channel decision
attributes of the statistical preprocessing and model ID
supervisory frames have a no-decision value, which indicates
that the supervisory agent does not require these agents to
close any of their MPI data channels.

0 Wed Nov 07 09:07:45 2007

TABLE III
SCENARIO 1: STATISTICAL PREPROCESSING AGENT SUPERVISORY

FRAME

1 Wed Nov 07 09:08:00 2007

TABLE IV
SCENARIO 1: MODEL ID AGENT SUPERVISORY FRAME

The FDIA agent supervisory frame has the same common
attributes, which indicate that the agent is in the simulation
state and is executing the fault diagnosis task, as shown in
table V. It also has attributes about the fault information such
as the fault size, sign, type, time, and location. The model
status and the FDI design status attributes indicate that the
FDIA agent has received the process model and has deployed
the designed FDI filter. The FDIA agent supervisory frame
has also attributes to represent the accommodation task status
and the recursive fault estimation in case of ramp faults. For

example, the FDIA agent has reported the fault information
back to the supervisor for further processing and actions. In
this case the FDIA agent successfully detected, isolated, and
identified the faulty instrumentation, which is the three-phase
separator water volume sensor (F3; refer to table I). The fault
has occurred at time Tfault = 9:47:32, which is nearly the
exact fault application time. The fault has a type bias with
an estimated size of +15%. The fault accommodation task
is in progress and the accommodation parameters are sent
to the pilot plant agent, as indicated by the MPI channel
decision attribute. Since the fault type is bias and not of a
ramp type, then recursive fault size estimation is not required
as indicated by the corresponding attribute of the table.

5 Thu Nov 08 09:50:39 2007

TABLE V
SCENARIO 1: FDIA AGENT SUPERVISORY FRAME

VII. NETWORK ACTIVITY

The ICAM system prototype is deployed in a Windows
2003 network, which has two nodes (i.e., workstations). The
first node has the statistical preprocessing agent and the
FDIA agent running. The second node has three running
agents, namely, the pilot plant agent, the model ID agent,
and the supervisory agent, as shown in figure 15. The total
communication throughput between the two nodes (indicated
by green solid arrows in figure 15) is composed of five
channels; one asynchronous supervisory channel (indicated
by black dashed arrows in figure 15), and four synchronous
MPI data channels. The first MPI data channel is the raw
data channel which connects the pilot plant agent with
the statistical preprocessing agent (indicated by a green
solid arrow). The statistical preprocessing agent transfers the
processed data on the second MPI data channel (indicated
by dark-blue solid arrows) to the model ID and FDIA



agents. Once the plant model is identified, it is transferred
to the statistical preprocessing and FDIA agents through
the model MPI channel (indicated by magenta dash-double-
dotted arrows). Finally the accommodation parameters are
transferred from the FDIA agent to the pilot plant agent
through the accommodated data MPI channel (indicated by
a purple dash-dotted arrow).

Node # 2Node # 1

Stat agent Pilot plant agent

Model ID agent

G2 supervisory

agent

FDIA agent

G2 supervisor channel

Raw data MPI channel

Processed data MPI channel

Model MPI channel

Accomm. data MPI channel

Total network throughput

Fig. 15. ICAM system prototype network architecture

Figure 16 depicts the ICAM system prototype network
activity during the first simulation scenario. After the ICAM
system prototype starts up (event 1 ), the raw data and
processed data MPI channels start to transfer data at a rate
of 330 Kbps (i.e., 0.33% of the 100 Mbps network transfer
rate) for each channel, as indicated by the event 1 ; note that
the green and dark-blue traces have nearly the same rate.
The total network throughput is represented by the purple
trace. The transfer rates of the MPI channels dip prior to
event 2 because of increasing memory consumption and
computations resulted from increasing data storage in some
agents (refer to the third part of this paper for more details).
The processed data channel (i.e., the dark-blue trace) is
closed during the plant model identification task, as indicated
by event 2 . Once the plant model is transferred to the
corresponding agents, the processed data channel is opened
again and the fault diagnosis task is started, as indicated
by event 3 . When the three-phase water volume sensor
fault is detected and the fault accommodation task is started,
the accommodated data channel is opened, as indicated by
event 4 ; the dark-blue trace is stepped up to its twice rate
(i.e., 580 kbps), and the total network transfer rate is at 870
kbps. When the system shuts down at the end of the first
scenario, the MPI channels are closed sequentially starting
with accommodated data channel, followed by the processed
data channel, and finally the raw data channel, as indicated
by event 5 .
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Fig. 16. Scenario 1: ICAM system prototype network activity

VIII. CONCLUSIONS

A real-time simulation experiment was conducted to verify
the ICAM system prototype design decisions, which were
discussed in the first part of this paper. The plant data
were collected at each reactive agent, and were examined
to analyze the behavior of each reactive agent during the
simulation experiment. Furthermore, the decisions taken by
the supervisory agent were consistent with system design
requirements. A network analysis was also conducted to
verify the logical behavior of the middleware of the system.
Simulation results revealed that the ICAM system prototype
behaved according to the design requirements specified in the
first part of this paper. However, a more detailed performance
analysis must be conducted to detect the limitations of the
designed prototype, which will be discussed in the third part
of this paper.
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