
Energy-Efficient Computing with
Heterogeneous Multi-Cores

Tulika Mitra
School of Computing

National University of Singapore
Email: tulika@comp.nus.edu.sg

Abstract—Homogeneous multi-cores, while ubiquitous to-
day, cannot provide the desired performance and energy-
efficiency for various application domains. A promising alter-
native design is heterogeneous multi-core architecture where
cores with different functional characteristics (CPU, GPU, DSP
etc.) and/or performance-energy characteristics (simple versus
complex micro-architecture) co-exist on the same die. Given an
application, only the cores that best fit the application can be
exploited leading to faster and energy-efficient computing. This
paper describes heterogeneous multi-core architectures and the
runtime management strategies to leverage the potential of such
architectures for improved energy-efficiency.

I. INTRODUCTION

The past decade has witnessed an unprecedented and expo-
nential growth in the amount of data being produced, stored,
transported, processed, and displayed. The journey of zettabyte
of data from the myriad of end-user devices in the form of PCs,
tablets, smart phones through the ubiquitous wired/wireless
communication infrastructure to the enormous data centers
is fueled by electricity. The Information-Communication-
Technologies (ICT) ecosystem consumes an estimated 10%
of the world electricity and accounts for roughly 2% of the
global carbon emission. In an energy-constrained world, it is
imperative to develop energy-efficient computing techniques
that lead to responsible and sustainable energy consumption
with minimal impact on the environment. Thus power and en-
ergy have become first class design constraints in all computing
systems starting from smartphones to massive data centers.

Heterogeneous multi-cores offer a promising solution to-
wards energy-efficient computing. Computing systems made
an irreversible transition towards multi-core architectures in
early 2000. As of now, homogeneous multi-cores are preva-
lent in all computing systems starting from smartphones to
PCs to enterprise servers. Unfortunately, homogeneous multi-
cores cannot provide the desired performance and energy-
efficiency for diverse application domains. A promising alter-
native design is heterogeneous multi-core architecture where
cores with different functional characteristics (CPU, GPU, DSP
etc.) and/or performance-energy characteristics (simple versus
complex micro-architecture) co-exist on the same die. Given
an application, only the cores that best fit the application can
be exploited leading to faster and power-efficient computing.

Another reason behind the emergence of the heterogeneous
multi-cores is the thermal design power constraint. While the
number of cores on die continues to increase due to Moore’s

Fig. 1: Exynos 5 Octa SoC simplified block diagram
Law [1], the failure of Dennard scaling [2] has led to rising
power density that forces a significant fraction of the cores to
be kept powered down at any point in time. This phenomenon,
known as the Dark Silicon [3], provides opportunities for
heterogeneous computing as only the appropriate cores need
to switch on for efficient processing under thermal constraints.

Heterogeneous multi-cores, however, present a number
of unique challenges in terms of runtime management of
the underlying platform so as to provide the best power-
performance tradeoff. For heterogeneous multi-cores where
the cores have the same instruction-set architecture (ISA)
but different micro-architecture [4], the issue is to identify
at runtime the core that best matches the computation in
the current context. For heterogeneous multi-cores consisting
of cores with different functionality, for example CPU and
GPU, the runtime layer should perform coordinated power
management of the different cores through voltage-frequency
scaling and power-state management as opposed to the current
practice of managing each core type individually.

II. PERFORMANCE HETEROGENEOUS MULTI-CORE

Heterogeneous computing architectures can be broadly
classified into two categories: performance heterogeneity
and functional heterogeneity. Performance heterogeneous
multi-core architectures consist of cores with different
power-performance characteristics but all sharing the same
instruction-set architecture. The difference stems from distinct
micro-architectural features such as in-order core versus out-
of-order core. The complex cores can provide better perfor-
mance at the cost of higher power consumption, while the
simpler cores exhibit low-power behavior alongside lower
performance. This is also known as single-ISA heterogeneous
multi-core architecture [4] or asymmetric multi-core architec-
ture. The advantage of this approach is that the same binary
executable can run on all different core types depending on978-1-4799-4833-8/14/$31.00 2014 IEEE



the context and no additional programming effort is required.
However, either the system designer or the runtime manage-
ment layer has to identify the appropriate core type for each
application or even for different phases within the same appli-
cation. Examples of commercial performance heterogeneous
multi-cores include ARM big.LITTLE [5] integrating high-
performance out-of-order cores with low-power in-order cores,
nVidia Kal-El (brand name Tegra3) [6] consisting of four high-
performance cores with one low-power core, and more recently
Wearable Processing Unit (WPU) from Ineda consisting of
cores with varying power-performance characteristics [7]. An
instance of the ARM big.LITTLE architecture integrating
quad-core ARM Cortex-A15 (big core) and quad-core ARM
Cortex-A7 (small core), as shown in Figure 1, appears in
the Samsung Exynos 5 Octa SoC driving high-end Samsung
Galaxy S4 smart-phones.

Performance heterogeneous multi-core architectures are a
promising solution to two related but critical problems today:
performance limits due to Amdahl’s Law [8] and energy
efficiency of multi-core computing in the dark silicon era. As
Moore’s Law [1] continues to improve the transition density
and consequently the number of cores on a single chip,
we are firmly moving towards many-core architectures with
hundreds and perhaps thousands of simple homogeneous cores.
However, all the contemporary and emerging applications are
not perfectly parallelizable to take advantage of the abundant
thread-level parallelism (TLP) offered by homogeneous multi-
core architectures. Amdahl’s Law [8] reminds us that even
for an application with 99% parallel code, the remaining
1% sequential fraction limits the speedup to 100 even with
an infinite number of cores. Thus most applications will
have limited speedup with homogeneous multi-cores. Hill and
Marty in a seminal paper [9] argue that heterogeneous multi-
cores where the sequential code fragment can be mapped
to a complex core — capable of exploiting instruction-level
parallelism (ILP), for example, through out-of-order execution
and hence accelerate the execution of the sequential fraction —
improve the speedup of the application quite dramatically. This
is because the parallel portion of the code can be accelerated
through the array of simple cores offering TLP while the
sequential portion can be expedited by exploiting ILP through
the complex core.

The energy-efficiency advantage of heterogeneous comput-
ing is quite obvious. At any point, we simply need to turn
on the core(s) that is most power-efficient for the current
computing need without negatively impacting the performance.
For example, in a smartphone, the low-power small core can
take care of simple tasks such as email client, web browsing
etc. saving energy, while the complex core has to be switched
on for compute-intensive tasks such as 3D gaming, browsing
flash-based websites etc. sacrificing energy. This model of
computing fits in well in the dark silicon era where thermal
constraints anyway restrict the fraction of cores that can be
switched on at any point in time; so it is beneficial to switch
on the appropriate cores for better energy efficiency. Note that
apart from micro-architectural differences, these architectures
offer additional design points in the power-performance trade-
off curve through dynamic voltage-frequency scaling (DVFS)
of the cores.

Figure 2 shows the power-performance heterogeneity of

Fig. 2: Power-Performance characteristics of small, big cores

heterogeneous multi-core architecture for commercial ARM
big.LITTLE architecture. The evaluation platform we use is
the Versatile Express development platform comprising of a
prototype chip with two Cortex-A15 cores and three Cortex-
A7 cores at 45nm technology. All the cores implement ARM
v7A ISA. While each core has private L1 instruction and
data caches, the L2 cache is shared across all the cores
within a cluster. The L2 caches across clusters are kept
seamlessly coherent via the cache coherent interconnect so
that an application can be easily migrated from one cluster to
the other. The architecture provides DVFS feature per cluster.
But all the cores within a cluster should run at the same
frequency level. Moreover an idle cluster can be powered down
if necessary. The chip is equipped with sensors to measure
frequency, voltage, power, and energy consumption of each
cluster as well as performance counters.

Figure 2 plots the Instructions Per Cycle (IPC) and the
average power (Watt) for benchmark applications on Cortex-
A7 and Cortex-A15 cluster, respectively. In this experiment,
we set the the same voltage (1.05 Volt) and frequency (1
GHz) level for the two clusters and utilize only one core
at a time to run the benchmark. Note that we can only
measure the power at cluster level rather than individual core
level. So the power reported in this figure corresponds to the
power in a cluster even though only one core is running the
benchmark application, while other cores are idle. Clearly, A15
has significantly better IPC compared to A7 (average speedup
of 1.86) but far worse power behavior (1.7 times more power
than A7 on an average).

Sophisticated runtime management techniques are required
to leverage the unique opportunity offered by heterogeneous
multi-cores towards energy-efficient computing. This includes
(a) determining the core type that is most suitable for an
application or the phase of an application, (b) moving the
application to the appropriate core through task migration,
and (c) setting the proper voltage-frequency level for the cores
such that the performance requirements of the applications are
satisfied at minimal energy while not exceeding the thermal
design power (TDP) constraint.

The first step required in this process is an accurate
power-performance estimation mechanism. As an application
is running on one core type, we would like to predict its power,
performance behavior on the other core types and at different
voltage-frequency levels so as decide whether the application



Fig. 3: Accuracy of power-performance prediction model

should be migrated and to where. We develop such a power-
performance model for ARM big.LITTLE architecture [10].
This modeling is challenging for a real architecture for various
reasons. First, the big core and the small core are dramatically
different, not just in the pipeline organization, but also in terms
of cache hierarchy and the branch predictor — a reality that
is ignored in almost all works. Thus given the cache miss
rate or branch misprediction on one core type, we have to
estimate the same for the other core type. Second, we are
constrained by the performance counters available on the cores
and cannot assume additional profiling information that is
simply not available such as inter-instruction dependency. We
overcome these challenges through a combination of static
program analysis (to identify inter-instruction dependency),
mechanistic modeling that builds analytical model from an
understanding of the underlying architecture (such as impact of
pipeline stalls due to inter-instruction dependency and resource
constraints versus miss events on performance), and empirical
modeling that employs statistical inferencing techniques like
regression to create an analytical model (for inter-core miss
events estimation). This hybrid approach results in estimations
that are fairly close to the actual values. For example, Figure
3 shows the estimated power, performance on Cortex-A15
continuously predicted from executing the benchmark astar
on Cortex-A7 where both cores are assumed to run at 1GHz.
For references, we also show the measure power, performance
on Cortex-A15. It should be clear that the model can track the
trends quite accurately.

These prediction are then employed to choose the suitable
core type for an application or the phase of an application
and its DVFS. We initially developed a control-theory based
approach [11] that synergistically integrates multiple con-
trollers (handling different constraints or optimization goals)
to achieve energy-efficiency for multiple applications running
on heterogeneous multi-core system. However, this approach
suffers from scalability issues due to centralized decision
making regarding task migration and power allocation among
the cores under tight TDP constraint. Thus it is quite effective
for mobile platforms with limited number of cores/clusters but
is not quite practical in data center scenario with myriad of
cores. We surmount this scalability issue through a distributed
approach based on the solid foundations of price theory from
economics [12]. The resource allocation, DVFS, task mapping,
and migration are all controlled through the virtual market
place, where the commodity being traded is processing unit
using virtual money. The framework is realized as a collection
of autonomous entities called agents, one for each task, core,
cluster, and the entire chip. The performance requirement is

Fig. 4: Bahurupi dynamic heterogeneous multi-core

modeled as the demand while the processing capability is
modeled as the supply (depends on core type and frequency).
The principle of price theory states that the market is only
stable at a price equilibrium, which is the price at which the
supply is equal to the demand and hence corresponds to the
minimal energy consumption. We implemented this framework
by modifying the commodity Linux operating system on
the prototype ARM big.LITTLE platform mentioned earlier.
Across a range of workloads, the price theory based power
management framework reduces average power consumption
to 2.96W compared to 5.99W for Linux heterogeneity-aware
scheduler (which makes naive task migration decision) plus
on-demand governor (for DVFS) at the same or even better
performance level. The framework is also highly scalable with
overhead being only 12ms for 256 clusters in a datacenter
compared to hundreds of ms for existing approaches based on
linear solvers [13].

So far we have discussed static heterogeneous multi-cores
and runtime mechanisms for power management of such
systems. The difficulty with static heterogeneous multi-core
is that the mix of simple and complex cores has to be freezed
at design time. The next logical step forward is to design
dynamic heterogeneous multi-core that can, at runtime, tailor
itself according to the applications and can provide even
better speedup [9]. Towards this end, we recently proposed
an architecture, called Bahurupi [14] that is physically fab-
ricated as a set of clusters, each containing four simple 2-
way out-of-order cores. Figure 4 shows an example of 8-core
Bahurupi architecture with two clusters (C0-C3) and (C4-C7).
At runtime, two or more such simple cores within a cluster
can form a coalition to create a more complex virtual core.
Similarly, the simple cores participating in a complex virtual
core, can be disjoined at any point of time. Thus we can create
diverse range of heterogeneous multi-cores on-demand through
simple reconfiguration. The highlighted cores in Figure 4 are
involved in two coalitions of two (C0, C1) and four (C4-
C7) cores. In this example one parallel application runs its
two threads on cores C2 and C3, one medium-ILP sequential
application is scheduled to coalition (C0–C1) and one high-
ILP sequential application is scheduled to coalition (C4–
C7). Careful task scheduling on Bahurupi architecture [15]



Fig. 5: CPU-GPU power behavior for mobile 3D games

yields speedup ranging from 10% to 62% compared to static
homogeneous and heterogeneous multi-cores across a large
range of task sets.

III. FUNCTIONALLY HETEROGENEOUS MULTI-CORE

As mentioned earlier, a large class of heterogeneous multi-
cores comprise of cores with different functionality. This is
fairly common in the embedded space where a multipro-
cessor system-on-chip (MPSoC) consists of general-purpose
processor cores, GPU, DSP, and various hardware accelerators
(e.g., video encoder/decoder). The heterogeneity is introduced
here to meet the performance demand under stringent power
budget. For example, 3G mobile phone receiver requires 35–
40 giga operations per second (GOPS) at 1W budget, which is
impossible to achieve without custom designed ASIC acceler-
ator [16]. Similarly, embedded GPUs are ubiquitous today in
mobile platforms to enable not only mobile 3D gaming but also
general-purpose computing on GPU for data-parallel (DLP)
compute-intensive tasks such as voice recognition, speech
processing, image processing, gesture recognition, and so on.
Figure 1 shows a simplified block diagram of Samsung Exynos
SoC consisting of ARM cores and PowerVR GPU core.

Traditionally, the power management of MPSoCs with
mostly hardware accelerators apart from the programmable
CPU is quite straightforward. The focus is only on managing
power of the CPU while employing power/clock gating for
the accelerators. As MPSoCs introduce more programmable
cores (CPU, GPU, DSP), it is imperative to devise systematic
runtime power management strategies for these cores. For
example, Figure 5 shows the power behavior of the CPU
(Cortex-A15 cluster only) and the GPU on the Exynos 5 Octa
MPSoC running a popular Android game Asphalt 7: Heat
over 2-minute lifetime. Clearly, both the CPU and the GPU
contribute equally to the power consumption. Unfortunately,
current power management strategies, for example for Linux
in Android, are quite naive. Moreover, there is absolutely no
co-ordination between the OS-level CPU power manager and
device-driver level GPU power manager. This leads to wasted
energy and poor performance specially when the chip power
exceeds the TDP budget. We show that an integrated CPU-
GPU power management strategy [17] can achieve similar to or
better performance than current Andriod system while saving
substantial energy.

IV. CONCLUSIONS

We have presented heterogeneous multi-core architectures
as a promising approach towards energy-efficient computing.
We have discussed the challenges and the opportunities offered
by such architecture and the crucial runtime layer that is
required to exploit heterogeneity.

ACKNOWLEDGMENT

This work was partially supported by CSR research funding
and Singapore Ministry of Education Academic Research Fund
Tier 2 MOE2012-T2-1-115.

REFERENCES

[1] G. E. Moore et al., “Cramming more components onto integrated
circuits,” 1965.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions,” Solid-State Circuits, IEEE Journal of, vol. 9, no. 5, pp.
256–268, 1974.

[3] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Computer
Architecture (ISCA), 2011 38th Annual International Symposium on.
IEEE, 2011, pp. 365–376.

[4] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” in MICRO, 2003, pp. 81–92.

[5] A. Peter Greenhalgh, “Big.LITTLE Processing with ARM Cortex-A15
& Cortex-A7,” 2011.

[6] nVidia, “Variable SMP A Multi-Core CPU Architecture for Low Power
and High Performance,” 2011.

[7] Ineda Systems, “Hierarchical Computing,” 2014. [Online]. Available:
http://inedasystems.com/hierarchical-computing.html

[8] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[9] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era.” IEEE
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[10] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and
S. Vishin, “Power-performance modeling on asymmetric multi-cores,”
in Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2013 International Conference on, 2013, pp. 1–10.

[11] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-
core in dark silicon era,” in Proceedings of the 50th Annual Design
Automation Conference. ACM, 2013, p. 174.

[12] T. Somu Muthukaruppan, A. Pathania, and T. Mitra, “Price theory based
power management for heterogeneous multi-cores,” in Proceedings of
the 19th international conference on Architectural support for program-
ming languages and operating systems. ACM, 2014, pp. 161–176.

[13] M. Guevara, B. Lubin, and B. C. Lee, “Navigating heterogeneous
processors with market mechanisms,” in High Performance Computer
Architecture (HPCA2013), 2013 IEEE 19th International Symposium
on. IEEE, 2013, pp. 95–106.

[14] M. Pricopi and T. Mitra, “Bahurupi: A polymorphic heterogeneous
multi-core architecture,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 8, no. 4, p. 22, 2012.

[15] ——, “Task scheduling on adaptive multi-core,” IEEE Transactions on
Computers, vol. 63, no. 10, pp. 2590–2603, 2014.

[16] W. J. Dally, J. D. Balfour, D. Black-Schaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient embedded computing.”
IEEE Computer, vol. 41, no. 7, pp. 27–32, 2008.

[17] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated CPU-GPU
power management for 3D mobile games,” in Proceedings of the The
51st Annual Design Automation Conference on Design Automation
Conference. ACM, 2014, pp. 1–6.


