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Abstract—The development of signal processing techniques 

that allows the estimation of parameters from the power system 

are crucial to keep the grid within a safe margin of operation. 

Some methods require a specific sampling rate in order to avoid 

asynchronous sampling, which may result in errors in estimation 

algorithms. Due to unbalances between demand and supply, the 

power signal is time-varying in nature, hindering the selection of 

an optimal fixed window length. In this work is proposed a 

technique in which the window length adapts to the actual value 

of estimated frequency, achieving better performance. The filter 

utilized to test the method was a moving average filter, but it can 

be expanded for other algorithms. Results have shown good 

performance when changing the filter coefficients according to 

frequency estimation.  

Keywords— Adjustable Filter, Frequency Oscillation, Modified 

Moving Average Filter, Parameter Estimation, Variable Window 

Length.  

I. INTRODUCTION 

Power quality issues brought by the widespread use of 
nonlinear electronic equipment are of great concern among 
industries, consumers and utilities. In this sense, the estimation 
of amplitude, spectrum content, fundamental frequency and 
phase from the electrical power system’s signals are of extreme 
importance to keep relevant parameters within regulated limits. 
Additionally, the recent modernization of the power grid 
toward the smart grid concepts, demands improved monitoring 
capability, which relies in novel methods of signal processing 
techniques [1], justifying this area of research. The degree of 
accuracy for measuring and detecting relevant events related to 
the power quality are discussed in some standards and amongst 
them is cited the IEC 61000 [2], which defines assessment for 
conformity and identify vulnerability from the power grid. In 
order to extract these useful parameters from the power system 
signal to assure a safe and reliable operation, one may utilize 
several well-known signal processing algorithms [3].  

However, the great majority of techniques require a specific 
sampling rate in order to avoid asynchronous sampling, 
achieving in this way better results [4]. Due to imbalance 
between demand and supply, the power signal is time-varying 
in nature, hindering the selection of an optimal fixed window 
length. Even though the permissible tolerances of known 
standards are around ±0.5 Hz, this small deviation is sufficient 
to cause considerable errors in estimation approaches.  

It is possible to overcome the improper sampling issue by 
varying the sampling period or the window length of the 
observable data, as can be seen in [5] and [6], respectively. 
However these methodologies are still under developed, 
presenting some implementation difficulties such as the 
practical problems for storing and analyzing the variable 
sampled signal and fractional window lengths.  

In this way, it is proposed in this paper an improvement of 
the variable window length algorithm that adjusts itself by 
considering the estimated frequency at each iteration and that 
comprises an interpolator structure, overcoming difficulties 
imposed by fractional lengths. To validate the adjustable vector 
length algorithm and evaluate how a filter with variable 
coefficients behaves with several transient conditions, a 
Moving Average Filter (MAF) is utilized for amplitude 
estimation and fundamental component reconstruction. It is 
noteworthy that this algorithm is heavily dependent on reliable 
frequency estimators, since it interferes directly in the 
calculation of new window size. 

This paper is organized as follows. The second section 
discusses the recursive moving average filter with fixed 
coefficient. Section III presents the methodology for adapting 
the filter’s coefficients for optimal estimation when the 
fundamental frequency varies. In section IV is shown the 
results considering both algorithms, fixed and adjustable 
coefficients, proving that the proposed algorithm achieved 
better results.  

II. MOVING AVERAGE FILTER DESIGN WITH FIXED WINDOW 

 

This is one of the simplest digital low pass filters, which 
computes the average of “L” samples, updating its buffer in 
every iteration. The equation that computes the average of L 
past samples is presented in (1). 
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By performing some simple mathematical manipulations, it 
is possible to rewrite (1) in a recursive form as presented in (2). 
This process is described in details in reference [7]. For the z-
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domain representation, it is sufficient to consider each delay in 
the time-domain as z-1, resulting in (3).  
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The transfer function can be calculated considering the 
ratio between the output Y[z] and the input X[z]. From (3), it is 
possible to obtain the transfer function of the moving average 
filter, which is presented in (4). Note that it exists only one 
pole different than zero, located at Z = 1, and from the Moivre 
theorem, Z-L results in L complex roots equally spaced. The 
pole in Z=1 forces the pass band to be in the low frequency 
region. 
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The number of samples to perform the average directly 
affects the cutoff frequency of the overall system. It has 
particular application within power systems due to the 
possibility to eliminate harmonics when the sampling 
frequency and the value of “L” are chosen correctly. 
Considering for example a situation where a signal is sampled 
at 16 samples per cycle and L is chosen as 16, then the 
magnitude response as well as the poles and zeros localization 
in the complex circle is as presented in Fig. 1 and Fig. 2, 
respectively. Note that the pass band is in the DC component 
of the signal and has a cutoff frequency for every integer 
multiple of 60 Hz.  

Once the filter’s coefficients are defined, it will remain 
fixed independently of the actual value of the signal frequency 
and therefore, will no longer eliminate unwanted harmonics 
with good performance, only attenuating it. Another issue to 
address when using this kind of filter for amplitude estimation 
of power systems signals is that, since it is a low pass filter, it 
is necessary to modulate the original signal in order to shift the 
fundamental component to its passband.  

 

Fig. 1. Magnitude response of a MAF with window length equal to the 
number of samples per cycle. 

 

Fig. 2.  Poles and zeros representation in the complex circle. 

III. PROPOSED ALGORITHM FOR ADJUSTING THE 

WINDOW LENGTH 

A common error while applying signal processing 
techniques to analyze power system signals is the selection of 
the observable data. It is known that in order to obtain better 
performance in several algorithms, the number of samples 
utilized must be inside an integer number of cycles. This is not 
an easy task due to the time-varying nature of the signal.  

It is discussed in references [8]-[11] some methods for 
reducing the error when asynchronous sampling occurs. 
Another form to increase the estimation process performance is 
to avoid this condition, which can be achieved by either 
working with a variable sampling rate or with a variable 
window length, both updated by the current frequency 
estimation. The difficulties imposed by the adjustable sampling 
rate are due to the complexity for hardware implementation 
and data recording for offline analysis, while the adjustable 
window algorithm may result in a fractional length and 
therefore, still output estimations with errors. This work 
presents a form to enhance the variable window length method 
by adjusting the size of the observable data, inserting an 
interpolator structure to the moving average design.  

A. Adjustable Window Method 

In this section, an implementation of a flexible window 
length to be used in parameters estimation algorithms is 
presented. To validate the methodology, this technique is 
applied in a moving average filter (MAF) in order to estimate 
amplitude as well as to reconstruct the fundamental component 
from a typical frequency varying signal. This method consists 
in changing the size of the observable data based on the 
frequency estimation using the relation presented in (5), where 
f is the fundamental frequency of the correspondent signal and 
the parameter Ts is the sampling interval. 

L =  
1

T�. f
 (5) 

In this way, a new window length is computed for each 
frequency output. In order to obtain the amplitude estimation 
and the desired component reconstruction with a low pass 
filter, it is first required to modulate the signal in order to shift 
it to the passband. Since the power system signal is time-
varying, the frequency estimator updates the modulator 
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accordingly. The MAF algorithm is used with the modulated 
signal and as result, the quadrature and in phase components 
are computed. This procedure is depicted in Fig. 3.  

 

Fig. 3. Diagram for computing the in phase and quadrature components for 

amplitude estimation and component reconstruction. 

The first traced block concerns the frequency estimator 
algorithm (e.g. phasor rotating, zero crossing, phase locked 
loop, among others), which will be used to modify the MAF 
coefficients and also to change the modulator. Since the 
phase angle of the analyzed signal may vary, it is necessary 
to perform the modulation with a sine and with a cosine 
function to obtain the in phase and quadrature 
components. The third traced block is the recursive 
implementation of the moving average filter presented in 
(4), where L is the computed window length. 

The amplitude estimation of the sampled signal can be 
calculated by the norm of YC and YS. The desired 
component reconstruction is calculated by adding the 
modulated versions of the output of the MAF structure of 
Fig. 3. It is important to note that the modulator must be set 
with the same frequency of the first modulator. The 
amplitude estimation and signal reconstruction is 
presented in Fig. 4 

 

Fig. 4. Diagram for estimating the amplitude of the signal and reconstruct the 
desired component. 

To achieve a variable window length, this method relies 
on a fixed and oversized buffer in order to comport the 
information of past samples to be used in the MAF 
algorithm. It must be oversized so that when frequency 
decreases, according to (5) the observable vector will 
increase and must still fit in the buffer. In Fig. 5 is presented 
an example of the variable window length with a fixed and 
oversized buffer. The nominal value of “L” is 6. After an 
increase in frequency estimation, it is known that the 
number of samples within a complete cycle decreases, so 

now “L” is 5 and therefore, only the first five elements 
stored in the buffer will be used in the algorithm. With a 
decrement in the system frequency, the new “L” is higher. 
Therefore, in this fictional example, the window length 
needs to be 7, so the first seven elements of the buffer will 
be used in the algorithm. It is noteworthy that the buffer 
updates in real time. 

 

Fig. 5. Fixed and oversized buffer for implementing the variable window 

length algorithm. 

A common problem in applying the variable window 
technique is when the result is a fractional length, which is 
usually just rounded to the closest value. This procedure 
still presents large values of error in oscillatory frequency 
cases, such as in the power system. This work proposes an 
interpolating structure to achieve better performance with 
minor alteration in the implementation form presented in 
Fig. 3. 

B. Interpolation of the Fractional Window Length in a 

Moving Average Filter 

The frequency in a power system signal is allowed to 
oscillate around 0.5 Hz in normal conditions [2]. Depending 
on the sampling rate, this small deviation may not be 
enough to cause an integer change in the window length to 
fit a complete cycle. So it is of great relevance to interpolate 
whenever the length results in a fractional value. For high 
sampling rate, a simple linear interpolation can be utilized, 
achieving low errors. In Fig. 6 is presented an illustration of 
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a linear interpolation case where “L” is the rounded length, 
“Lf” is the fractional window length and “n” is the current 
sample. In this way, the estimation of the signal value in the 
fractional sample is performed based on the delayed by the 
integer “L” and “L-1” samples, which are both known and 
stored in the buffer. It is worth to notice that the linear 
interpolation also presents some error due to the linear 
approximation of the original signal in the interval of two 
consecutive samples. 

 

Fig. 6. Linear interpolation of the fractional window length. 

By analyzing the red and green triangles, it is possible to 
write an expression to calculate x [n – Lf] as a function of its 
delayed by L and L-1 values. The equations presented in 
(6) and (7) describe this process. 

,[- − /] − ,[- − / − 1]
1

=
,[- − /] − ,[- − /1]

/1 − /
 (6) 

Separating the term X[n – Lf] and writing the constant 
Lf–L as Lfrac it is possible to obtain (7). 

,4- − /15 = ,[- − /] − /1678 . (,[- − /] − ,[9 − / − 1]) (7) 

In (7) is stated how to use the linear interpolated value 
of the signal delayed by fractional “Lf” samples using data 
from the buffer. This must be incorporated to the moving 
average filter design presented in (2) changing the term of 
X[n – L] to X[N – Lf]. The recursive form in a diagram 
representation is shown in Fig. 7, where “Lfrac” is the 
constant equal to the difference between the fractional 
length and the rounded version and “Lf”. 

 

Fig. 7. Diagram for implementing the linear interpolator for variable window 

length applied to a moving average filter. 

To obtain the moving average filter with variable 
window length, considering the interpolation process for 

optimal amplitude estimation as well as fundamental 
component reconstruction, the traced red block depicted in 
Fig. 3 must be substituted by the diagram of Fig. 7. 

With the adjustable window implemented in a fixed and 
oversized buffer, accounting the algorithm for modulating 
and interpolating fractional windows, it is possible to 
estimate the amplitude of a signal with oscillating 
frequency with better performance. The following section 
presents the results obtained as well as comparisons with 
the conventional method under some specific cases with 
variable frequency and amplitude of a sinusoidal signal.   

IV. RESULTS 

It is analyzed two types of signal in order to compare 
performances between the proposed method and the 
conventional one for estimating amplitude. In both cases, 
there is a step change in frequency from 60 to 61 Hz. 
However, in the second there is also a decrease in voltage 
for a brief period of time to evaluate the amplitude tracking 
capability. 

The sampling rate chosen for the experiments is of 128 
samples per cycle of a 60 Hz fundamental frequency, i.e. 
7680 samples per second. The conventional MAF is 
designed with a fixed window length containing 128 
samples. In the proposed design is utilized a variable 
number of samples proportional to the signal estimated 
frequency according to (5). The frequency estimator 
algorithm used is the simple zero crossing approach, which 
detects consecutive passage through zero and compute the 
time between them to determine the system’s frequency. A 
low pass filter is added in the output of the frequency 
estimator in order to obtain a smooth curve. The estimator 
performance compared to the real value can be seen in Fig. 
8. It is noteworthy that an abrupt change in the systems 
frequency is not real. However, a step change is interesting 
for analyzing steady state and transient behavior of the 
proposed methodology.  

 

Fig. 8. Frequency estimation in the case with step change in frequency, using 

zero crossing technique. 

The amplitude estimation of the sinusoidal signal with 
step change in frequency using the conventional and the 
proposed method can be visualized in Fig. 9 and Fig. 10, 
respectively. The abrupt transition in frequency causes an 
oscillation in the filter output and, therefore, a reset of the 
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buffer is required in both cases. Otherwise, some small 
error may be present in the steady state condition. 

 

Fig. 9. Amplitude estimation in the case with step change in frequency using 

the conventional algorithm.  

 

Fig. 10. Amplitude estimation in the case with step change in frequency using 

the proposed algorithm. 

Note the oscillation present in the amplitude estimation 
using the conventional method after the frequency changes 
from 60 to 61 Hz. This is caused by the filter’s coefficients 
that were selected based on a 60 Hz fundamental 
frequency. With the proposed method, this effect is almost 
negligible, reaching errors around 0.004% compared to 
errors around 1.5% achieved with the conventional 
method. The comparison of errors obtained with both 
algorithms considering the same test signal is presented in 
Fig. 11. The error obtained with the proposed method is 
shown in more detail in Fig. 12, with a proper axis 
dimension. 

 

Fig. 11. Comparison of the error obtained with the proposed method and the 

error obtained with the conventional method for the first case. 

 

Fig. 12. Error of amplitude estimation in the case with step change in 

frequency using the proposed method. 

Beside the step change in frequency, the second case 
also contains a momentary decrease in the signal 
amplitude, characterized by voltage dips in power systems 
applications. This test is useful to evaluate the capability to 
track the signal’s amplitude. The test signal as well as the 
amplitude estimation is depicted in Fig. 13. 

 

Fig. 13. Amplitude estimation of a signal with step change in frequency as 
well as signal dip. 

It is expected some error during the transition in 
amplitude, since the algorithm presents some delay. 
However, during the steady state condition, it is desired to 
have a more precise estimation. The error curve for the 
amplitude estimation using the conventional method is 
depicted in Fig. 14. Note that before 2 seconds, the error is 
null since the fundamental frequency is the same as the one 
used for defining the filter’s coefficients. During the 
exponential decrease in amplitude, the error increases due 
to the delay. The abrupt change in frequency causes the 
peak in error. It can be noted that after the frequency 
change, the conventional method always carries an error 
around 1.5% and increases when the amplitude starts 
varying. 

The error obtained in the proposed method, for this 
same case is presented in Fig. 14. The error obtained when 
the frequency is 60 Hz is fairly close to the error obtained 
when the system’s frequency changed to 61 Hz, validating 
the capability to adjust the filter’s coefficients to the actual 
frequency estimation provided from the zero crossing 
algorithm. The same delay issue is also present, resulting in 
high errors during the varying amplitude. However, it is 
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possible to see that while the voltage is increasing with 
frequency of 61 Hz, the error obtained from the proposed 
method is lower than the one obtained by the conventional 
one. After the amplitude is constant and frequency is 
different from nominal, the adjusted coefficients results in 
errors near to zero. 

 

Fig. 14. Error of amplitude estimation in the case with step change in 
frequency and sag event using the conventional method. 

 

Fig. 15. Error of amplitude estimation in the case with step change in 

frequency and sag event using the proposed method. 

It is possible to note from comparing both figures that 
the time interval with high value of error due to the delay 
for tracking amplitude is the same for both algorithms. 
However, the error using the proposed method is much 
lower than the obtained by the conventional design. 

V. CONCLUSION 

In order to present the proposed method for adjusting 
the window length according to the estimated frequency of 
the signal, a brief review of amplitude estimation with 
moving average filter was presented as well as the 
algorithm for implementing a variable window length. The 
proposed work has improved this technique by 
interpolating whenever the length results in a fractional 
length.  

A test has been performed using a moving average filter 
applied in two test signals, both with a step change in 
frequency from 60 Hz to 61 Hz. However, in one case the 
amplitude kept constant, while the other contained a sag 
event. 

Results have shown good performance for amplitude 
estimation when changing the filter coefficients as the 
frequency varies, without representing high computational 
effort. It is noteworthy that the tracking capability is still 
not perfect, reaching errors around 3%. However, others 
well-known algorithms also have the same issue. 

For future works, it is intended to analyze performance 
with other interpolating functions, evaluating 
computational complexity and performance. Additionally, it 
is desired to implement this technique in other parameter 
estimation algorithms to evaluate how it could behave.  
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