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Abstract—This paper investigates effects of realistic, non-ideal,
decisions of energy users as to whether to participate in an
energy trading system proposed for demand-side management
of a residential community. The energy trading system adopts a
non-cooperative Stackelberg game between a community energy
storage (CES) device and users with rooftop photovoltaic panels
where the CES operator is the leader and the users are the follow-
ers. Participating users determine their optimal energy trading
starting time to minimize their personal daily energy costs while
subjectively viewing their opponents’ actions. Following a non-
cooperative game, we study the subjective behavior of users when
they decide on energy trading starting time using prospect theory.
We show that depending on the decisions of participating-time,
the proposed energy trading system has a unique Stackelberg
equilibrium at which the CES operator maximizes their revenue
while users minimize their personal energy costs attaining a Nash
equilibrium. Simulation results confirm that the benefits of the
energy trading system are robust to decisions of participating-
time that significantly deviate from complete rationality.

I. INTRODUCTION

Demand-side management helps utilities to regulate increas-
ing energy demand by utilizing existing power grid infras-
tructure. Recent efforts of demand-side management include
load-shifting methods, load curtailing methods and energy
conservation strategies [1]]. Distributed energy resources such
as energy storage devices and renewable energy resources
provide vast opportunities for demand-side management by
storing extra energy generated by renewable resources that
can be dispatched to support peak energy demand.

In general, effectiveness of consumer-driven demand-side
management methods depends on active participation of users.
However, in the long run, users may change their participating
behavior leading to unexpected outcomes such as lower peak
energy reduction and economic benefits. Therefore, designing
successful demand-side management approaches have often
been challenging with volatile user behavior [2].

In this paper, we investigate impacts of realistic energy user
behavior, which is not completely rational, on a decentralized
energy trading system proposed to regulate electricity demand
of a residential community. In the energy trading system, users
with photovoltaic (PV) energy generation can decide to par-
ticipate across time to trade energy with a community energy
storage (CES) device. First, we elaborate a non-cooperative
Stackelberg game to study the energy trading between the CES
operator and participating users where the CES operator acts
as the leader and the users are their followers. Then we develop
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another non-cooperative game between users to explore their
behavior in determining optimal energy trading starting times
that minimize personal daily energy costs under two different
user-behavioral models: expected utility theory and prospect
theory. The contributions of this work are:

o With time-varying subsets of active participating users
that depend on their decisions of participating-time, the
energy trading system attains a unique Stackelberg equi-
librium across time where the CES operator maximizes
revenue while users minimize energy costs.

o Benefits of the energy trading system are robust to
users’ participating-time strategies that significantly de-
viate from complete rationality.

Game-theoretic demand-side management methods have
been widely investigated in literature [1]], [3]1-[5], [15], [16].
These studies assume that users act rationally and ideally obey-
ing the strategies predicted by game-theoretic systems. How-
ever, social studies have proved that the rationality assumption
of game theory can be violated in real world when users
face uncertainty in decision making [6]. Abundant research
using prospect theory has shown how real life user behavior
contravenes the conventional game theoretic rationality as-
sumption [7], [8]]. In [9]], a prospect theoretic study for a load-
shifting approach showed that deviations of users’ decisions to
participate from conventional game-theoretic decisions result
in significantly different outcomes. In contrast to [9], we
apply prospect theory to study users’ behavior of choosing to
participate across time in a Stackelberg game-theoretic energy
trading system that does not intend to shift regular energy
consumption of users. In this regard, we show that the out-
comes of the energy trading system are indistinguishable under
both prospect theory and expected utility theory, even though
users’ decisions to choose to participate differ between the
two models. The Stackelberg game-theoretic energy trading
system between a CES device and users in [10] assumes users
participate from the beginning of day and hence the number
of users remain consistent over time. Here, we extend the
Stackelberg energy trading system to study users’ decisions of
selecting energy trading starting times incorporating prospect
theory. The CES-user Stackelberg game in this paper differs
from that in [10]] because the number of active participating
users is time-variant depending upon each user’s decision of
choosing an energy trading starting time.
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II. SYSTEM CONFIGURATION
A. Demand-side model

The community consists of two types of energy users:
participating users P (|P| = I) and non-participating users
N (JN] = N). The users P have rooftop PV panels and they
are the players in the energy trading optimization who trade
energy with the grid and the CES device. The users N are
conventional grid users without behind-the-meter energy gen-
eration and are not players in the energy trading optimization.
Depending on net PV energy after consuming, the users P
are classified into surplus users S; and deficit users D, those
are time-dependent. For the energy trading optimization, the
entire control time period M, usually a day, is partitioned
into K number of equal time slots with granularity of A. We
assume that PV power generation and demand forecasts of the
following day are available to the users P to decide their day-
ahead energy trading strategies. If g,,, and e, are the PV
energy and the regular energy demand of user n € P at time
t € M, respectively, then they sell/buy energy amount x,,;
to/from the CES device at time ¢ such that,

en,t); (D

where [, ; is the grid energy consumption of the user. Note
that [,,, > 0 when the user buys energy from the grid and
ln,+ < 0 when the user sells energy to the grid. If the surplus
energy of the user n is s, ¢ = gnt — €n,t, €ach user ¢ € S;
sells energy to the CES device and user j € D; buys energy
from the CES device such that,

Tn,t = ln,t + (gn,t -

0< 2 <84,

2
55,0 < 2 < 0. @

B. Energy Storage Model

The CES operator trades [g + energy with the grid at each
time ¢ where lg; > 0 (< 0) if the CES device is charged
(discharged). Here, we use the same CES model given in [[10]
that is similar to the energy storage model in [4]). In this regard,
per-slot energy trading amounts are given as ,, ; = x,‘;t—x;}t
and g = lgt —lg,; where xj{t and lg , are the per-slot
charging energy amounts, and z,, , and [, , are the per-slot
discharging energy amounts. We deﬁne a charglng efficiency
0 < B+ < 1, a discharging efficiency 3~ > 1 and a leakage
rate 0 < 7 < 1 for the energy storage. Denoting ¢qg is the
charge level at the beginning of day, the energy capacity limit
of the CES device gives,

0<qr+T[LT,-L7]B =B, (3)

where B € RE>1 with elements of maximum energy capacity
of the CES device B. k € RX*! with elements [k]; = 7! and
the (I,m) entry of the lower triangular matrix T' € RE*K ig
) = 7™ B =[8",87]T, 0is the K x 1 zero matrix
and £+, £ € RF*! with elements £ = S _ (o}, +
150, L7 =0 (wn, +1g,). respectively.

We define @) to ensure the continuity of the CES device
operation of the following day and to avert its over-charging

or over-discharging across M such that,

9 = 4K “4)

where qx is the charge level at the end of day. Readers are
referred to [[10] for detailed description of the CES model.

C. Energy cost models

The pricing mechanism of the grid is similar to [1]] and in
particular the unit energy price at time ¢ depends on the total
load on the grid at time t, Ly = Z£:1 I+t +1g, where
Inr¢ is the total grid load of the users A/ and . Then at time
t, the unit energy price of the grid is,

Pt = ¢ Ly + 0y, (5)

where ¢; > 0 and §; > 0. The CES operator also adopts
a unit energy price a, for their energy transactions with the
users P such that any user n € P receives a.x,; from the
CES operator for their selling energy x,, ;. Then the energy
cost of the user n € P at time ¢ is,

Cn,t = ptln,t — AtTn,t- (6)

The CES operator obtains a revenue from the energy trading
with the users P and the grid that is given by,

R= Z ( —a Z Tnt — ptlQ,t)- @)

Here, we assume that the energy trading between the CES
operator and the grid uses the energy rate of the grid.

III. ENERGY TRADING STACKELBERG GAME

In the energy trading system, the CES operator maximizes
their revenue in (7) by choosing optimal a; and [ ;. Following
the strategies of the CES operator, each user n € P is sup-
posed to minimize their energy cost in (6)) at each time ¢t € M
by determining optimal z,, ;. Based on contractual agreements
with the system owners, the users P can individually choose
a time h, € {1,2,---,K} to start energy trading with the
system such that their total daily energy cost is minimized
(this process is explained in Section [[V). After participating
at h,,, they continue to trade energy for h, <t < K. Given
the opportunity to choose energy trading starting times, the
number of active participating users at each time ¢ may not
be uniform, and we denote the number of active participating
users at time ¢ is I; = |P¢| < I where P, C P.

A. Participating Users-Side Analysis

Using the pricing signal @ = [a1,- - ,ax] and the grid
energy trading profile lg = [lg1,--- ,lg, k] broadcasted by
the CES operator, the users P; at each time t € [1,---, K]
minimize their personal energy costs in (6)). Let us consider a
single time slot ¢ where I; > 2[ﬂ Then for user k € P, the
cost function (€) is quadratic with respect to zy ¢,

2
Ck,t = w1Ty 4 + w2Tgt + ws, (®)

'I; = 1 implies that there is a single active user who minimizes their
energy cost without a game among users P.
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where w1 = ¢, wy = (¢4(L_ps — 25x4) + 6 — a;) and
wg = (PrSkt(Skt — L_gt) — 08k,¢) using (1) and (). Here,
L_j; is the total grid energy load at time ¢ excluding the
load of the user k and L_j; = Zk,ep\k Lt + vt + 10
Clearly, is interdependent on each other’s behavior and
we study the energy trading coordination between the users
P using a non-cooperative game G = (P, X,C). Here,
X ={X14 -, Xk, -, Xt} is the strategy set avail-
able to the users P; and Xy, is the strategy set of the
user k subject to (). C is the set of cost functions given by
C={Cis, ,Cryy-,Cre}.

Each user £k € 'P; determines the optimal energy
trading amount from X ; such that their energy cost
Ci(zgt,®_kt) = Cky is minimized. Here, &_j  denotes
the strategy profile of the opponents of the user k that is
given by ®_r; = {14, Th-1,4,Tht1,t -, L1t }. Then
the optimization problem of each user k£ € P, is to find,

fkﬂg = argmin C’k(xk,t,m_kﬂg). (9)
Tp t€EXk,t

Note that the game G is similar to the non-cooperative
subgame between users in [10]. However, the subsets of
players P; are not uniform for the game G played at each
time ¢t € M in contrast to [10]. Although the number of
players is time-variant, using the same rationale in [10] we
can prove that the game G played at any particular time ¢ has
a unique Nash equilibrium for any feasible a; and g ;. At the
Nash equilibrium of the game G, the optimal energy trading
amount of the user k, Zj; can be found by setting the first
derivative of (8) with respect to xy ; to zero that gives,

OC ¢
axk,t

= 2W1Tg,t + w2 = 0. (10)

Solving (T0) for all users P; simultaneously, we can obtain,

(1)

Tkt = Skt + Yty
where v = (It + 1)_1(¢t71(at —6) —lne—log).

B. CES operator-Side Analysis

The CES operator also maximizes their revenue in by
determining optimal @ and lg. By substituting in [@), we
can write the objective of the CES operator as,

K

la,lq] = argmax > _(Maf + Aear + sl + Malg.e),
a,lQEQ t=1
(12)
where \y = —L(I + 1) "¢, Ao = (L + 1) (s +
G 0) = Yy sk Az = —¢u(ly + 1)7L and Ay =

— (Lt +1)" (pelar+ +0¢). Q is the strategy set available to the
operator subject to (3) and (). There is a unique solution for
the objective function of the CES operator, since is strictly
concave because of the negative definite Hessian matrix with
respect to all feasible a, lg and the strategy set Q is convex
due to linear constraints (3) and (@).

C. Stackelberg Equilibrium

The CES operator first sets optimal [a,lg] to maximize
and broadcasts them to the users P = {P; U--- U Px}.
Then the users P; at each time ¢ € M follow these signals
to find optimal z, by playing the game G. We model this
hierarchical interaction between the CES operator and the
users P using a non-cooperative Stackelberg game Z=. In
the game =, players are the CES operator and the users P
where the CES operator is the leader and the users P are
the followers. As the strategies, the CES operator determines
[a,lg] € Q to maximize (7) and at time ¢, user k € P, selects
xp,t € X, to minimize cost in (6). The utilities are as defined
in (7) for the CES operator and (@) for the user k € P;.

Definition 1. Ler p = [a,ig] be the solution of and
X = {[@]", - ,[Zx]"} where & be the solution of the

game G at time t € M. Then the point [p, X| is a Stackelberg
equilibrium if and only if,

R(X,p) > R(X,p), Vp € Q, (13)
Cr(Zt, p) < Crp(Thyt, T—ieyt, P),
Vk € Py, Vap, € Xpy, Vi€ M. (14)

Proposition 1. The game = has a unique Stackelberg equi-
librium.

Proof: The game G played at any time ¢ has a unique
Nash equilibrium for feasible a; and ¢ ;. Further, the revenue
maximization of the CES operator in has a unique
solution. Hence, the game = converges to a unique Stackelberg
equilibrium once the CES operator obtains optimal strategy
p while the users P attain their K-tuple of unique Nash
equilibrium solutions X. [ ]

IV. PARTICIPATION-TIME SELECTION GAME

Before the Stackelberg game in Section [III] takes place, the
users P individually select optimal times h,, to start energy
trading such that their total daily energy costs are minimized.
Similar to [9]], to explicitly study such user behavior with
respect to choosing to participate across time in our system,
we develop a non-cooperative game I' between the users P
that has the strategic form I' = (P, H,U) and study it under
expected utility theory and prospect theory. Here, H is the
set of available strategies to the users P i.e., energy trading
starting times. H = {H,},cp where H, = {1,--- | K};
Vn € P. U = {Uy}nep is the set of cost functions that
captures the daily energy costs for each user n € P. Note that
the Stackelberg equilibrium described in Section [III] depends
on temporal distribution of the users P, which is a result
of how the users P begin energy trading across time. At
the Stackelberg equilibrium corresponding to an action (i.e.,
energy trading starting time) profile h = {h,,h_,} =
{h1,-+- ,hr} of the users P where h,, € H,, the daily energy
cost of user n, U, is,

K
Un(h) =Y pr(h)lni(h) — ai(R)in(h).  (15)
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Here, p:(h), ai(h), l,:(h), &,.(h) are the grid price,
CES energy price, user n’s grid load and their CES energy
trading amount at the Stackelberg equilibrium obtained for h,
respectively. Note that h_,, is the action profile of the users
‘P except user n. In the game I', each user n € P chooses an
energy trading starting time h,, for given h_,, such that their
energy cost in (I3) is minimized.

Remark 1. After the users P decide to participate as per
optimal energy trading starting times determined by playing
the game T, the Stackelberg energy trading in Section [l takes
place that ultimately achieves a Stackelberg equilibrium.

In the long run, the users P may change their behavior with
respect to choosing an energy trading starting time. Hence,
we investigate a solution for the non-cooperative game I'
that captures empirical frequencies of actions followed by
the users P. The straightforward interpretation is that each
user n € P assigns a probability for each action in H,,. In
such a paradigm, users face uncertainty to make decisions
and we characterize solutions for the game I' based on
mixed strategies under two different user-behavioral models:
expected utility theory and prospect theory.

A. Energy Trading Under Expected Utility Theory

Under the notion of mixed strategies, each user n € P
determines the optimal probability distribution over the actions
in H, to minimize expected daily energy cost. Here, we
explore how the users P decide probabilities of energy trading
starting times according to expected utility theory assuming
that all users make rational choices by objectively viewing
their opponents’ behavior. According to the theory, the ex-
pected daily energy cost of the user n can be given as,

I
EEUT(y) = 3" Un(h) [ wr (0, (16)

heH

where Y= {yn7 y—n}’ Yn = [yn(l); e ayn(K)} and yn(h”)
is the probability of choosing h, by the user n. y_,, is the
probabilities of the users P except user n.

The intuition behind the cost in (I6) relies on the assumption
that the user n assesses their neighbours’ empirical frequencies
of actions identical to their objective probabilities of choosing
actions. However, this generalization may not be valid in the
real world as people overweight outcomes with low probabili-
ties and underweight outcomes with high probabilities. These
observations are clearly explained under prospect theory [6].

B. Energy Trading under Prospect Theory

In practice, the users P may subjectively evaluate their
neighbors’ actions to minimize energy costs. This charac-
teristic is more realistic than assuming users act rationally
and perceive their neighbors’ behavior objectively [6]. In this
regard, we study actual user behavior as to when they select
their energy trading starting time using prospect theory.

To this end, probability weighting functions are used to
model the subjective behavior of users when they make deci-
sions under risk and uncertainty. In this regard, the probability

weighting function w, (y) implies the subjective evaluation of
the user n about an outcome with y probability. We use the
Prelec function [11] to model the subjective perceptions of
users on each other’s behavior that is given by,

wy(y) = exp(—(=Iny)*); 0 < a, < 1. (17)

Here, o, is a parameter that decreases as the user’s subjective
evaluation deviates from the objective probability. If the user’s
subjective and objective probabilities are equal, then «,, =1
and this corresponds to expected utility theory. Assuming that
the subjective probabilities of user n € P about their own
actions are equal to their objective probabilities, the expected
daily energy cost of user n under prospect theory is,

I-1
EYT(y) = Y Un(Ryn(hn)( [T walyr(hr))).  (18)

heH reP\n
C. e-Nash Equilibria

After defining the expected daily costs of the users P,
we now analyze the solutions for the game I' played under
expected utility theory and prospect theory. Due to com-
putational usefulness [[12]], here we study the existence of
e—Nash equilibria. For the game I', a mixed strategy profile
y* ={y’,y*,} is an e—Nash equilibrium if it satisfies,

En(yny2,) < En(y,,y2,) +6 Yy, € Yy, Vn € P, (19)

where ), is the set of all mixed strategy profiles over H,,
and € > 0. In general, e—Nash equilibria always exist [[12] and
for the game I', we are interested to find e-Nash equilibrium
located close to a mixed strategy Nash equilibrium under
both expected utility theory and prospect theory. We use the
iterative algorithm proposed in [9]] that was proved to converge
to an e-Nash equilibrium close to a mixed strategy Nash
equilibrium under both expected utility theory and prospect
theory. In summary, the algorithm is given by,
y i =yl + ) - yD), 20)
where ¢ is the iteration number, 0 < n < 1 is the inertia
weight. v = {0 (A1), -+, 08 (hn )} of which,

1, if hyy = argminen(hn,y(_i;l)),
hn€H,

0, otherwise,

Ufl(hn,t) = (21)

where en(hn,yggl)) is the expected cost when the user n
selects the pure strategy h,, in response to the mixed strategies
of other players at iteration (i — 1) i.e., y(_l; Y Note that for

prospect theory, y(_l,zl) considers the weighted probabilities of
other users’ mixed strategies at (¢ — 1).

Remark 2. As the algorithm converges, e-Nash equilibrium
with respect to strategy profile y is obtained under both
expected utility theory and prospect theory.

Given the equilibrium probabilities of participating-time
decisions of the users P, we can define the expected revenue
of the CES operator under both prospect theory and expected
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Fig. 1. Average PV power and user electricity demand.

utility theory. In this regard, if Y% and Yy are the e-Nash
equilibriums under expected utility theory and prospect theory,
respectively, then the subsequent expected daily CES revenue
W in each case can be obtained by,

I
W= R(h) [ (), (22)

heH
where R(h) is the CES revenue as per (7) at the Stackelberg
equilibrium corresponds to h, y’(h,) € YLy for expected
utility theory and y(h,) € ypp for prospect theory.

V. SIMULATION RESULTS

In simulations, we consider real data of average PV power
and user demand of the Western Power Network in Australia
on a summer day [13] (see Fig. |I[) and we assume that all users
have power profiles same to these average profiles. Further,
K =24, A = 1h, B = 80 kWh, ¢y = 20 kWh, 7 = 0.9(1/48),
BT = 0.9 and 3~ = 1.1 [4]. Peak hours of the grid are
between 16.00 and 23.00 and we select ¢; such that ¢peax =
1.5 Qoff-peak- We choose ¢peqr such that the predicted grid price
range is same to the reference time-of-use price range in [14]
and J; is set to a constant such that the average predicted grid
price is equal to the average reference price. The community
has 10 households where 6 users are participating users P in
the system. The allowable energy trading starting times for the
users P are 01.00, 12.00 and 17.00 so that H,, = {1,12,17}.
For comparisons, we use a baseline without a CES device
where the users P trade energy directly with the grid that
uses the same energy cost model. For the algorithm, we use
Yy =10.3,0.3,0.4); ¥n € P and n = 0.7.

Fig. P] illustrates expected cost savings of the users P
under expected utility theory, and under prospect theory for
three different o € (0,1] (i.e., 0.7, 0.4 and 0.1)E| assuming
an, = a; Vn € P. Here, cost savings are calculated compared
to the baseline. When o = 0.7, and even when o« = 0.4
with significant non-ideal behavior, the expected cost savings
remained almost 28% under both models because for all users,
participation probabilities at each time in H,, using prospect
theory do not significantly deviate from those obtained under
expected utility theory as shown in Table[} When a = 0.1, the

2From (T7). as « tends to O users become more subjective deviating from
the objective evaluation assumption in expected utility theory.

30 . . . . . ,
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Fig. 2. Expected user cost savings under expected utility theory (EUT) and
prospect theory (PT).

participation probabilities at h,, = 1 are significantly increased
for the fourth and fifth users compared to those predicted using
expected utility theory (see Table[l). As a result, the expected
cost savings reduced from 28% to 21.5% for all users.

Fig. B Fig. [ and Fig. [3] depict the variations in different
aspects of system performance across the range of possible
« values. Here, larger « tending to 1 reflects that the users
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Fig. 3. Average of expected user cost savings with different a.
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TABLE I

EUT PT (o = 0.7) PT (o = 0.4) PT (oo = 0.1)
User | hp=1 | hn=12 | hn =17 | hn=1 | hpn =12 | hu =17 | hn=1 | hyp =12 | hy =17 hn=1| hp=12 | hp =17
1 0.9966 0.0005 0.0029 0.9988 0.0005 0.0007 0.9989 0.0005 0.0006 0.9979 0.0009 0.0012
2 0.9966 0.0005 0.0029 0.9988 0.0005 0.0007 0.9989 0.0005 0.0006 0.9979 0.0009 0.0012
3 0.9966 0.0005 0.0029 0.9988 0.0005 0.0007 0.9989 0.0005 0.0006 0.9979 0.0009 0.0012
4 0.0070 0.9924 0.0006 0.0076 0.9918 0.0006 0.0070 0.9924 0.0006 0.9979 0.0009 0.0012
5 0.0070 0.0005 0.9925 0.0076 0.0005 0.9919 0.0095 0.0005 0.9900 0.9979 0.0009 0.0012
6 0.9966 0.0005 0.0029 0.9988 0.0005 0.0007 0.9989 0.0005 0.0006 0.9979 0.0009 0.0012
behave closer to the rationality assumption in expected utility REFERENCES

theory, and smaller « tending to O implies that their evaluations
of opponents’ actions are more distorted from that of expected
utility theory. Fig. [3] shows that under expect utility theory,
the average of expected cost savings of the users achieved by
participating in the system is 28.1%. On the other hand, even
if the users’ weighting effects on their opponents’ actions are
getting larger, i.e., when « is getting smaller, the expected
cost savings will not significantly fluctuate and remain almost
at 28% except for 0 < « < 0.1. Fig. shows that,
when o > 0.15, expected revenue for the CES operator
retains nearly unchanged compared to the expected revenue
calculated under expected utility theory. In terms of demand-
side management of the grid, the expected peak-to-average
ratio reduction compared to the baseline will not change
notably from the peak-to-average ratio reduction predicted
using expected utility theory when o« > 0.15. This is because
as shown in Table [I for o > 0.15, users’ prospect theoretic
probabilities of participation at each time remain almost the
same as those in expected utility theory. When 0 < o < 0.1,
the fourth and fifth users will more likely to start energy
trading from the beginning under prospect theory, which is not
the case under expected utility theory. However, this behavioral
change will only reduce the expected peak-to-average ratio
reduction from 17.7% to 16.55% (see Fig.[5).

VI. CONCLUSION

In this paper, we have studied effects of realistic, non-ideal,
behavior of users, with respect to choosing energy trading
starting times, on a game-theoretic demand-side management
energy trading system between a community energy storage
(CES) device and users. First, we have developed the non-
cooperative Stackelberg game to study the energy trading
interaction between the users and the CES operator based
on users’ decisions as to whether to participate across time.
Next we have studied a non-cooperative game to explore how
the users make decisions to participate in the above energy
trading system under two user-behavioral models: prospect
theory and expected utility theory. Simulation results show
that the benefits of the energy trading system are robust to
users’ strategies of participating-time that significantly deviate
from complete rationality. We postulate that the energy trading
system can be scaled to any number of participating users and
present similar performance trends.
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